use size_t instead of int, for allocator

added hashtable based PairManager, thanks Pierre Terdiman and Erin Catto
improved friction in 'cachefriendly' solver
moved 'refreshcontactpoints' into collision detection, instead of solver
avoid linear search for contact manifolds, by storing an index
ignore margin for sphere shape (its entire radius is already margin)
avoid alignment checks in BVH serialization, they don't compile on 64-bit architectures
made 'bomb' box more heavy
This commit is contained in:
ejcoumans
2007-10-11 03:17:54 +00:00
parent bb89cbcf08
commit 0405ce278a
36 changed files with 1485 additions and 460 deletions

View File

@@ -445,7 +445,7 @@ void DemoApplication::shootBox(const btVector3& destination)
if (m_dynamicsWorld)
{
float mass = 1.f;
float mass = 100.f;
btTransform startTransform;
startTransform.setIdentity();
btVector3 camPos = getCameraPosition();

View File

@@ -0,0 +1,377 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btBulletDynamicsCommon.h"
#include "StressTestDemo.h"
#define SHOW_NUM_DEEP_PENETRATIONS
#include "LinearMath/btDefaultMotionState.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btDefaultMotionState.h"
#include "BulletCollision/BroadphaseCollision/btMultiSapBroadphase.h"
#include "BulletCollision/CollisionDispatch/btSphereSphereCollisionAlgorithm.h"
//#define REGISTER_BOX_BOX 1
#ifdef REGISTER_BOX_BOX
#include "../Extras/AlternativeCollisionAlgorithms/BoxBoxCollisionAlgorithm.h"
#endif //REGISTER_BOX_BOX
//#define SHOW_MEMORY_DETAILS 1
//#ifdef SHOW_MEMORY_DETAILS
// #include "LinearMath/btGenericPoolAllocator.h"
//#endif
/// Including GIMPACT here
#include "BMF_Api.h"
#include "GLDebugDrawer.h"
#include "GL_ShapeDrawer.h"
#include "GlutStuff.h"
#ifdef SHOW_NUM_DEEP_PENETRATIONS
extern int gNumDeepPenetrationChecks;
extern int gNumGjkChecks;
#endif //
GLDebugDrawer debugDrawer;
//Real dts = 0.000001f;
btScalar dts = 1.0 / 60.0;
///**************************************************************************************
/// GIMPACT Test Demo made by DevO
///
///**************************************************************************************
//------------------------------------------------------------------------------
///User can override this material combiner by implementing gContactAddedCallback and setting body0->m_collisionFlags |= btCollisionObject::customMaterialCallback;
inline btScalar calculateCombinedFriction(float friction0,float friction1)
{
btScalar friction = friction0 * friction1;
const btScalar MAX_FRICTION = 10.f;
if (friction < -MAX_FRICTION)
friction = -MAX_FRICTION;
if (friction > MAX_FRICTION)
friction = MAX_FRICTION;
return friction;
}
//------------------------------------------------------------------------------
inline btScalar calculateCombinedRestitution(float restitution0,float restitution1)
{
return restitution0 * restitution1;
}
//------------------------------------------------------------------------------
bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObject* colObj0,int partId0,int index0,const btCollisionObject* colObj1,int partId1,int index1)
{
float friction0 = colObj0->getFriction();
float friction1 = colObj1->getFriction();
float restitution0 = colObj0->getRestitution();
float restitution1 = colObj1->getRestitution();
if (colObj0->getCollisionFlags() & btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK)
{
friction0 = 1.0;//partId0,index0
restitution0 = 0.f;
}
if (colObj1->getCollisionFlags() & btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK)
{
if (index1&1)
{
friction1 = 1.0f;//partId1,index1
} else
{
friction1 = 0.f;
}
restitution1 = 0.f;
}
cp.m_combinedFriction = calculateCombinedFriction(friction0,friction1);
cp.m_combinedRestitution = calculateCombinedRestitution(restitution0,restitution1);
//this return value is currently ignored, but to be on the safe side: return false if you don't calculate friction
return true;
}
extern ContactAddedCallback gContactAddedCallback;
//################################## main #####################################
int main(int argc,char** argv)
{
//gContactAddedCallback = CustomMaterialCombinerCallback;
int sizeofbp = sizeof(btBroadphaseProxy);
StressTestDemo* concaveDemo = new StressTestDemo(); /// This will not be Deleted!!!
concaveDemo->initPhysics();
concaveDemo->setCameraDistance(45.f);
//cannot run stepFront yet, the OpenGL context is not opened (stepFront updates camera...)
// concaveDemo->stepFront();
// concaveDemo->stepFront();
// concaveDemo->stepFront();
// concaveDemo->stepFront();
return glutmain(argc, argv,640,480,"DevO,s GIMPACT Test Demo",concaveDemo);
}
//--------------------------
//------------------------------------------------------------------------------
void StressTestDemo::initPhysics()
{
/// Init Bullet
m_collisionConfiguration = new btDefaultCollisionConfiguration();
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
#ifdef REGISTER_BOX_BOX
m_dispatcher->registerCollisionCreateFunc(BOX_SHAPE_PROXYTYPE,BOX_SHAPE_PROXYTYPE,new BoxBoxCollisionAlgorithm::CreateFunc);
#endif //REGISTER_BOX_BOX
LONG maxProxies = 4096;
btVector3 worldAabbMin(-1000,-1000,-1000);
btVector3 worldAabbMax( 1000, 1000, 1000);
m_broadphase = new btAxisSweep3(worldAabbMin,worldAabbMax,maxProxies);
//m_broadphase = new btMultiSapBroadphase();
//m_broadphase = new btSimpleBroadphase();
btSequentialImpulseConstraintSolver* solver = new btSequentialImpulseConstraintSolver();;
m_constraintSolver = solver;
btDiscreteDynamicsWorld* world = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_constraintSolver);
world->getSolverInfo().m_numIterations = 4;
// solver->setSolverMode(btSequentialImpulseConstraintSolver::SOLVER_CACHE_FRIENDLY);//btSequentialImpulseConstraintSolver::SOLVER_RANDMIZE_ORDER);
// solver->setSolverMode(btSequentialImpulseConstraintSolver::SOLVER_RANDMIZE_ORDER);
m_dynamicsWorld = world;
m_dynamicsWorld->setDebugDrawer(&debugDrawer);
// register algorithm
if(0)
{
m_spheresphere_collisionCreateFunc = new btSphereSphereCollisionAlgorithm::CreateFunc; /// NEW
m_dispatcher->registerCollisionCreateFunc(SPHERE_SHAPE_PROXYTYPE,SPHERE_SHAPE_PROXYTYPE,m_spheresphere_collisionCreateFunc);
m_spherebox_collisionCreateFunc = new btSphereBoxCollisionAlgorithm::CreateFunc;
m_dispatcher->registerCollisionCreateFunc(SPHERE_SHAPE_PROXYTYPE,BOX_SHAPE_PROXYTYPE,m_spherebox_collisionCreateFunc);
m_dispatcher->registerCollisionCreateFunc(SPHERE_SHAPE_PROXYTYPE,BOX_SHAPE_PROXYTYPE,m_spherebox_collisionCreateFunc);
}
//create trimesh model and shape
/// Create Scene
float mass = 0.f;
btTransform startTransform;
startTransform.setIdentity();
btCollisionShape* staticboxShape1 = new btBoxShape(btVector3(20,1,20));//floor
btCollisionShape* staticboxShape2 = new btBoxShape(btVector3(1,50,200));//left wall
btCollisionShape* staticboxShape3 = new btBoxShape(btVector3(1,50,200));//right wall
btCollisionShape* staticboxShape4 = new btBoxShape(btVector3(200,50,1));//front wall
btCollisionShape* staticboxShape5 = new btBoxShape(btVector3(200,50,1));//back wall
#ifdef USE_COMPOUND
btCompoundShape* staticScenario = new btCompoundShape();//static scenario
startTransform.setOrigin(btVector3(0,-10,0));
staticScenario->addChildShape(startTransform,staticboxShape1);
startTransform.setOrigin(btVector3(-200,15,0));
staticScenario->addChildShape(startTransform,staticboxShape2);
startTransform.setOrigin(btVector3(200,15,0));
staticScenario->addChildShape(startTransform,staticboxShape3);
startTransform.setOrigin(btVector3(0,15,200));
staticScenario->addChildShape(startTransform,staticboxShape4);
startTransform.setOrigin(btVector3(0,15,-200));
staticScenario->addChildShape(startTransform,staticboxShape5);
startTransform.setOrigin(btVector3(0,0,0));
btRigidBody* staticBody = localCreateRigidBody(mass, startTransform,staticScenario);
#else
startTransform.setOrigin(btVector3(0,-7,0));//;//-10,0));
btRigidBody* staticBody = localCreateRigidBody(mass, startTransform,staticboxShape1);
/*startTransform.setOrigin(btVector3(-200,15,0));
staticBody = localCreateRigidBody(mass, startTransform,staticboxShape2);
startTransform.setOrigin(btVector3(200,15,0));
staticBody = localCreateRigidBody(mass, startTransform,staticboxShape3);
startTransform.setOrigin(btVector3(0,15,200));
staticBody = localCreateRigidBody(mass, startTransform,staticboxShape4);
startTransform.setOrigin(btVector3(0,15,-200));
staticBody = localCreateRigidBody(mass, startTransform,staticboxShape5);
*/
#endif //USE_COMPOUND
//enable custom material callback
// staticBody->setCollisionFlags(staticBody->getCollisionFlags()|btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK);
startTransform.setIdentity();
btCollisionShape* sphShape = new btSphereShape(1);
btScalar radii[1] = {btScalar(1)};
btVector3 poss[1]={btVector3(0,0,0)};
// btCollisionShape* sphShape = new btMultiSphereShape(btVector3(1,1,1),&poss[0],&radii[0],1);
btScalar margin(0.04);
btCollisionShape* boxShape = new btBoxShape(btVector3(1,1,1));//1.-margin,1.-margin,1.-margin));
boxShape->setMargin(margin);
/// Create Dynamic Boxes
{
float start_x = START_POS_X - ARRAY_SIZE_X/2;
float start_y = START_POS_Y;
float start_z = START_POS_Z - ARRAY_SIZE_Z/2;
for (int k=0;k<ARRAY_SIZE_Y;k++)
{
for (int i=0;i<ARRAY_SIZE_X;i++)
{
for(int j = 0;j<ARRAY_SIZE_Z;j++)
{
startTransform.setOrigin(btVector3(
2.0*i + start_x,
2.0*k + start_y,
2.0*j + start_z));
#ifdef SPHERES
localCreateRigidBody(1, startTransform,sphShape);
#else
localCreateRigidBody(1, startTransform,boxShape);
#endif
}
}
}
}
//m_debugMode |= btIDebugDraw::DBG_DrawWireframe;
}
//------------------------------------------------------------------------------
void StressTestDemo::clientMoveAndDisplay()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
int start, end;
start = glutGet(GLUT_ELAPSED_TIME);
float dt = float(m_clock.getTimeMicroseconds()) * 0.000001f;
m_clock.reset();
m_dynamicsWorld->stepSimulation(dt,1);
m_steps_done++;
end = glutGet(GLUT_ELAPSED_TIME);
printf("Time %d \n", end-start);
renderme();
glFlush();
glutSwapBuffers();
}
//------------------------------------------------------------------------------
void StressTestDemo::displayCallback(void) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderme();
glFlush();
glutSwapBuffers();
}
//------------------------------------------------------------------------------
void StressTestDemo::clientResetScene()
{
m_steps_done = 0;
DemoApplication::clientResetScene();
}
#define KEY_ESCAPE 0x1B
//------------------------------------------------------------------------------
void StressTestDemo::keyboardCallback(unsigned char key, int x, int y)
{
switch (key)
{
case '.':
{
break;
}
case '2':
{
dts += 0.000001f;
break;
}
case '3':
{
dts -= 0.000001f; if(dts<0.000001f) dts = 0.000001f;
break;
}
default:
DemoApplication::keyboardCallback(key, x, y);
}
}

View File

@@ -0,0 +1,99 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef TEST_CONCAVE_DEMO_H
#define TEST_CONCAVE_DEMO_H
#include "DemoApplication.h"
struct btCollisionAlgorithmCreateFunc;
///StressTestDemo shows usage of static concave triangle meshes
///It also shows per-triangle material (friction/restitution) through CustomMaterialCombinerCallback
class StressTestDemo : public DemoApplication
{
public:
StressTestDemo()
: m_collisionConfiguration(NULL),
m_dispatcher(NULL),
m_broadphase(NULL),
m_constraintSolver(NULL),
m_steps_done(0),
m_spheresphere_collisionCreateFunc(0),
m_spherebox_collisionCreateFunc(0)
{
}
virtual ~StressTestDemo()
{
delete m_spheresphere_collisionCreateFunc;
delete m_spherebox_collisionCreateFunc;
delete m_collisionConfiguration;
delete m_dispatcher;
delete m_broadphase;
delete m_constraintSolver;
delete m_dynamicsWorld;
}
void initGImpactCollision();
void initPhysics();
virtual void clientMoveAndDisplay();
virtual void displayCallback();
virtual void clientResetScene();
virtual void keyboardCallback(unsigned char key, int x, int y);
public: ///data
unsigned int m_steps_done;
btVector3 kinTorusTran;
btQuaternion kinTorusRot;
btRigidBody *kinematicTorus;
btCollisionAlgorithmCreateFunc* m_spheresphere_collisionCreateFunc;
btCollisionAlgorithmCreateFunc* m_spherebox_collisionCreateFunc;
btDefaultCollisionConfiguration* m_collisionConfiguration;
btCollisionDispatcher* m_dispatcher;
btBroadphaseInterface* m_broadphase;
btConstraintSolver* m_constraintSolver;
};
#define SPHERES 1
#define START_POS_X -5
#define START_POS_Y -5
#define START_POS_Z -3
#define ARRAY_SIZE_X 10
#define ARRAY_SIZE_Y 10
#define ARRAY_SIZE_Z 10
#endif //CONCAVE_DEMO_H

View File

@@ -19,6 +19,8 @@ subject to the following restrictions:
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BoxBoxDetector.h"
#define USE_PERSISTENT_CONTACTS 1
BoxBoxCollisionAlgorithm::BoxBoxCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* obj0,btCollisionObject* obj1)
: btCollisionAlgorithm(ci),
m_ownManifold(false),
@@ -54,8 +56,9 @@ void BoxBoxCollisionAlgorithm::processCollision (btCollisionObject* body0,btColl
/// report a contact. internally this will be kept persistent, and contact reduction is done
resultOut->setPersistentManifold(m_manifoldPtr);
#ifndef USE_PERSISTENT_CONTACTS
m_manifoldPtr->clearManifold();
#endif //USE_PERSISTENT_CONTACTS
btDiscreteCollisionDetectorInterface::ClosestPointInput input;
input.m_maximumDistanceSquared = 1e30f;
@@ -65,6 +68,14 @@ void BoxBoxCollisionAlgorithm::processCollision (btCollisionObject* body0,btColl
BoxBoxDetector detector(box0,box1);
detector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
#ifdef USE_PERSISTENT_CONTACTS
// refreshContactPoints is only necessary when using persistent contact points. otherwise all points are newly added
if (m_ownManifold)
{
resultOut->refreshContactPoints();
}
#endif //USE_PERSISTENT_CONTACTS
}
btScalar BoxBoxCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)

View File

@@ -109,7 +109,8 @@ btScalar btParallelSequentialImpulseSolver::solveGroup(btCollisionObject** bodie
{
if (!numManifolds && !numConstraints)
return 0;
///refresh contact points is not needed anymore, it has been moved into the processCollision detection part.
#ifdef FORCE_REFESH_CONTACT_MANIFOLDS
for (int i = 0; i < numManifolds; ++i)
{
btPersistentManifold* currManifold = manifold[i];
@@ -118,6 +119,7 @@ btScalar btParallelSequentialImpulseSolver::solveGroup(btCollisionObject** bodie
currManifold->refreshContactPoints(rb0->getCenterOfMassTransform(),rb1->getCenterOfMassTransform());
}
#endif //FORCE_REFESH_CONTACT_MANIFOLDS
// Record and mark the manifolds to the cells
for (int i = 0; i < numManifolds; ++i)

View File

@@ -58,7 +58,7 @@ public:
// indexes into the edge arrays
BP_FP_INT_TYPE m_minEdges[3], m_maxEdges[3]; // 6 * 2 = 12
BP_FP_INT_TYPE m_handleId;
// BP_FP_INT_TYPE m_uniqueId;
BP_FP_INT_TYPE m_pad;
//void* m_pOwner; this is now in btBroadphaseProxy.m_clientObject
@@ -102,10 +102,10 @@ protected:
void quantize(BP_FP_INT_TYPE* out, const btPoint3& point, int isMax) const;
void sortMinDown(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps = true);
void sortMinUp(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps = true);
void sortMaxDown(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps = true);
void sortMaxUp(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps = true);
void sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
void sortMinUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
void sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
void sortMaxUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
public:
@@ -116,17 +116,17 @@ public:
virtual void calculateOverlappingPairs(btDispatcher* dispatcher);
BP_FP_INT_TYPE addHandle(const btPoint3& aabbMin,const btPoint3& aabbMax, void* pOwner,short int collisionFilterGroup,short int collisionFilterMask);
BP_FP_INT_TYPE addHandle(const btPoint3& aabbMin,const btPoint3& aabbMax, void* pOwner,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher);
void removeHandle(BP_FP_INT_TYPE handle,btDispatcher* dispatcher);
void updateHandle(BP_FP_INT_TYPE handle, const btPoint3& aabbMin,const btPoint3& aabbMax);
void updateHandle(BP_FP_INT_TYPE handle, const btPoint3& aabbMin,const btPoint3& aabbMax,btDispatcher* dispatcher);
inline Handle* getHandle(BP_FP_INT_TYPE index) const {return m_pHandles + index;}
void processAllOverlappingPairs(btOverlapCallback* callback);
//Broadphase Interface
virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr ,short int collisionFilterGroup,short int collisionFilterMask);
virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr ,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher);
virtual void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax);
virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher);
bool testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);
@@ -173,10 +173,10 @@ void btAxisSweep3<BP_FP_INT_TYPE>::debugPrintAxis(int axis, bool checkCardinalit
#endif //DEBUG_BROADPHASE
template <typename BP_FP_INT_TYPE>
btBroadphaseProxy* btAxisSweep3Internal<BP_FP_INT_TYPE>::createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr,short int collisionFilterGroup,short int collisionFilterMask)
btBroadphaseProxy* btAxisSweep3Internal<BP_FP_INT_TYPE>::createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher)
{
(void)shapeType;
BP_FP_INT_TYPE handleId = addHandle(aabbMin,aabbMax, userPtr,collisionFilterGroup,collisionFilterMask);
BP_FP_INT_TYPE handleId = addHandle(aabbMin,aabbMax, userPtr,collisionFilterGroup,collisionFilterMask,dispatcher);
Handle* handle = getHandle(handleId);
@@ -189,14 +189,14 @@ template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
{
Handle* handle = static_cast<Handle*>(proxy);
removeHandle(handle->m_handleId,dispatcher);
removeHandle(handle->m_uniqueId,dispatcher);
}
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax)
void btAxisSweep3Internal<BP_FP_INT_TYPE>::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher)
{
Handle* handle = static_cast<Handle*>(proxy);
updateHandle(handle->m_handleId,aabbMin,aabbMax);
updateHandle(handle->m_uniqueId,aabbMin,aabbMax,dispatcher);
}
@@ -335,7 +335,7 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::freeHandle(BP_FP_INT_TYPE handle)
template <typename BP_FP_INT_TYPE>
BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btPoint3& aabbMin,const btPoint3& aabbMax, void* pOwner,short int collisionFilterGroup,short int collisionFilterMask)
BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btPoint3& aabbMin,const btPoint3& aabbMax, void* pOwner,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher)
{
// quantize the bounds
BP_FP_INT_TYPE min[3], max[3];
@@ -348,7 +348,7 @@ BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btPoint3& a
Handle* pHandle = getHandle(handle);
pHandle->m_handleId = handle;
pHandle->m_uniqueId = handle;
//pHandle->m_pOverlaps = 0;
pHandle->m_clientObject = pOwner;
pHandle->m_collisionFilterGroup = collisionFilterGroup;
@@ -377,12 +377,12 @@ BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btPoint3& a
}
// now sort the new edges to their correct position
sortMinDown(0, pHandle->m_minEdges[0], false);
sortMaxDown(0, pHandle->m_maxEdges[0], false);
sortMinDown(1, pHandle->m_minEdges[1], false);
sortMaxDown(1, pHandle->m_maxEdges[1], false);
sortMinDown(2, pHandle->m_minEdges[2], true);
sortMaxDown(2, pHandle->m_maxEdges[2], true);
sortMinDown(0, pHandle->m_minEdges[0], dispatcher,false);
sortMaxDown(0, pHandle->m_maxEdges[0], dispatcher,false);
sortMinDown(1, pHandle->m_minEdges[1], dispatcher,false);
sortMaxDown(1, pHandle->m_maxEdges[1], dispatcher,false);
sortMinDown(2, pHandle->m_minEdges[2], dispatcher,true);
sortMaxDown(2, pHandle->m_maxEdges[2], dispatcher,true);
return handle;
@@ -418,14 +418,14 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::removeHandle(BP_FP_INT_TYPE handle,bt
BP_FP_INT_TYPE max = pHandle->m_maxEdges[axis];
pEdges[max].m_pos = m_handleSentinel;
sortMaxUp(axis,max,false);
sortMaxUp(axis,max,dispatcher,false);
BP_FP_INT_TYPE i = pHandle->m_minEdges[axis];
pEdges[i].m_pos = m_handleSentinel;
sortMinUp(axis,i,false);
sortMinUp(axis,i,dispatcher,false);
pEdges[limit-1].m_handle = 0;
pEdges[limit-1].m_pos = m_handleSentinel;
@@ -445,13 +445,16 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::removeHandle(BP_FP_INT_TYPE handle,bt
}
extern int gOverlappingPairs;
#include <stdio.h>
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::calculateOverlappingPairs(btDispatcher* dispatcher)
{
#ifdef USE_LAZY_REMOVAL
if (m_ownsPairCache)
{
btBroadphasePairArray& overlappingPairArray = m_pairCache->getOverlappingPairArray();
//perform a sort, to find duplicates and to sort 'invalid' pairs to the end
@@ -524,7 +527,12 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::calculateOverlappingPairs(btDispatche
m_invalidPair = 0;
#endif//CLEAN_INVALID_PAIRS
//printf("overlappingPairArray.size()=%d\n",overlappingPairArray.size());
}
#endif //USE_LAZY_REMOVAL
}
@@ -581,7 +589,7 @@ bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testOverlap(int ignoreAxis,const Hand
}
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::updateHandle(BP_FP_INT_TYPE handle, const btPoint3& aabbMin,const btPoint3& aabbMax)
void btAxisSweep3Internal<BP_FP_INT_TYPE>::updateHandle(BP_FP_INT_TYPE handle, const btPoint3& aabbMin,const btPoint3& aabbMax,btDispatcher* dispatcher)
{
// assert(bounds.IsFinite());
//assert(bounds.HasVolume());
@@ -607,17 +615,17 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::updateHandle(BP_FP_INT_TYPE handle, c
// expand (only adds overlaps)
if (dmin < 0)
sortMinDown(axis, emin);
sortMinDown(axis, emin,dispatcher,true);
if (dmax > 0)
sortMaxUp(axis, emax);
sortMaxUp(axis, emax,dispatcher,true);
// shrink (only removes overlaps)
if (dmin > 0)
sortMinUp(axis, emin);
sortMinUp(axis, emin,dispatcher,true);
if (dmax < 0)
sortMaxDown(axis, emax);
sortMaxDown(axis, emax,dispatcher,true);
#ifdef DEBUG_BROADPHASE
debugPrintAxis(axis);
@@ -632,7 +640,7 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::updateHandle(BP_FP_INT_TYPE handle, c
// sorting a min edge downwards can only ever *add* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinDown(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps)
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
@@ -680,7 +688,7 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinDown(int axis, BP_FP_INT_TYPE
// sorting a min edge upwards can only ever *remove* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinUp(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps)
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pNext = pEdge + 1;
@@ -692,17 +700,16 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinUp(int axis, BP_FP_INT_TYPE ed
if (pNext->IsMax())
{
#ifndef USE_LAZY_REMOVAL
// if next edge is maximum remove any overlap between the two handles
if (updateOverlaps)
{
/*
Handle* handle0 = getHandle(pEdge->m_handle);
Handle* handle1 = getHandle(pNext->m_handle);
btBroadphasePair tmpPair(*handle0,*handle1);
removeOverlappingPair(tmpPair);
*/
m_pairCache->removeOverlappingPair(handle0,handle1,dispatcher);
}
#endif //USE_LAZY_REMOVAL
// update edge reference in other handle
pHandleNext->m_maxEdges[axis]--;
@@ -727,7 +734,7 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinUp(int axis, BP_FP_INT_TYPE ed
// sorting a max edge downwards can only ever *remove* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxDown(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps)
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
@@ -744,17 +751,12 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxDown(int axis, BP_FP_INT_TYPE
if (updateOverlaps)
{
//this is done during the overlappingpairarray iteration/narrowphase collision
/*
#ifndef USE_LAZY_REMOVAL
Handle* handle0 = getHandle(pEdge->m_handle);
Handle* handle1 = getHandle(pPrev->m_handle);
btBroadphasePair* pair = findPair(handle0,handle1);
//assert(pair);
m_pairCache->removeOverlappingPair(handle0,handle1,dispatcher);
if (pair)
{
removeOverlappingPair(*pair);
}
*/
#endif //USE_LAZY_REMOVAL
}
@@ -785,7 +787,7 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxDown(int axis, BP_FP_INT_TYPE
// sorting a max edge upwards can only ever *add* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxUp(int axis, BP_FP_INT_TYPE edge, bool updateOverlaps)
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pNext = pEdge + 1;

View File

@@ -31,9 +31,9 @@ class btBroadphaseInterface
public:
virtual ~btBroadphaseInterface() {}
virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr, short int collisionFilterGroup,short int collisionFilterMask) =0;
virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr, short int collisionFilterGroup,short int collisionFilterMask, btDispatcher* dispatcher) =0;
virtual void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher)=0;
virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax)=0;
virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax, btDispatcher* dispatcher)=0;
///calculateOverlappingPairs is optional: incremental algorithms (sweep and prune) might do it during the set aabb
virtual void calculateOverlappingPairs(btDispatcher* dispatcher)=0;

View File

@@ -65,6 +65,7 @@ CONCAVE_SHAPES_END_HERE,
///btBroadphaseProxy
ATTRIBUTE_ALIGNED16(struct) btBroadphaseProxy
//struct btBroadphaseProxy
{
BT_DECLARE_ALIGNED_ALLOCATOR();
@@ -96,6 +97,12 @@ BT_DECLARE_ALIGNED_ALLOCATOR();
};
int m_uniqueId;//m_uniqueId is introduced for paircache. could get rid of this, by calculating the address offset etc.
inline int getUid()
{
return m_uniqueId;//(int)this;
}
//used for memory pools
btBroadphaseProxy() :m_clientObject(0){}
@@ -106,6 +113,8 @@ BT_DECLARE_ALIGNED_ALLOCATOR();
{
}
static inline bool isPolyhedral(int proxyType)
{
return (proxyType < IMPLICIT_CONVEX_SHAPES_START_HERE);

View File

@@ -56,14 +56,14 @@ btMultiSapBroadphase::~btMultiSapBroadphase()
{
}
btBroadphaseProxy* btMultiSapBroadphase::createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr, short int collisionFilterGroup,short int collisionFilterMask)
btBroadphaseProxy* btMultiSapBroadphase::createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr, short int collisionFilterGroup,short int collisionFilterMask, btDispatcher* dispatcher)
{
btMultiSapProxy* proxy = new btMultiSapProxy(aabbMin, aabbMax,shapeType,userPtr, collisionFilterGroup,collisionFilterMask);
m_multiSapProxies.push_back(proxy);
///we don't pass the userPtr but our multisap proxy. We need to patch this, before processing an actual collision
///this is needed to be able to calculate the aabb overlap
btBroadphaseProxy* simpleProxy = m_simpleBroadphase->createProxy(aabbMin,aabbMax,shapeType,userPtr,collisionFilterGroup,collisionFilterMask);
btBroadphaseProxy* simpleProxy = m_simpleBroadphase->createProxy(aabbMin,aabbMax,shapeType,userPtr,collisionFilterGroup,collisionFilterMask, dispatcher);
simpleProxy->m_multiSapParentProxy = proxy;
btChildProxy* childProxyRef = new btChildProxy();
@@ -72,7 +72,7 @@ btBroadphaseProxy* btMultiSapBroadphase::createProxy( const btVector3& aabbMin,
proxy->m_childProxies.push_back(childProxyRef);
///this should deal with inserting/removal into child broadphases
setAabb(proxy,aabbMin,aabbMax);
setAabb(proxy,aabbMin,aabbMax,dispatcher);
return proxy;
}
@@ -82,7 +82,7 @@ void btMultiSapBroadphase::destroyProxy(btBroadphaseProxy* proxy,btDispatcher* d
btAssert(0);
}
void btMultiSapBroadphase::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax)
void btMultiSapBroadphase::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax, btDispatcher* dispatcher)
{
btMultiSapProxy* multiProxy = static_cast<btMultiSapProxy*>(proxy);
multiProxy->m_aabbMin = aabbMin;
@@ -91,7 +91,7 @@ void btMultiSapBroadphase::setAabb(btBroadphaseProxy* proxy,const btVector3& aab
for (int i=0;i<multiProxy->m_childProxies.size();i++)
{
btChildProxy* childProxyRef = multiProxy->m_childProxies[i];
childProxyRef->m_childBroadphase->setAabb(childProxyRef->m_proxy,aabbMin,aabbMax);
childProxyRef->m_childBroadphase->setAabb(childProxyRef->m_proxy,aabbMin,aabbMax,dispatcher);
}
}

View File

@@ -95,9 +95,9 @@ public:
virtual ~btMultiSapBroadphase();
virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr, short int collisionFilterGroup,short int collisionFilterMask);
virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr, short int collisionFilterGroup,short int collisionFilterMask, btDispatcher* dispatcher);
virtual void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax);
virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax, btDispatcher* dispatcher);
///calculateOverlappingPairs is optional: incremental algorithms (sweep and prune) might do it during the set aabb
virtual void calculateOverlappingPairs(btDispatcher* dispatcher);

View File

@@ -28,6 +28,19 @@ m_blockedForChanges(false),
m_overlapFilterCallback(0)
//m_NumOverlapBroadphasePair(0)
{
#ifdef USE_HASH_PAIRCACHE
m_overlappingPairArray.reserve(b2_maxPairs);
for (int32 i = 0; i < b2_tableCapacity; ++i)
{
m_hashTable[i] = b2_nullPair;
}
for (int32 i = 0; i < b2_maxPairs; ++i)
{
m_next[i] = b2_nullPair;
}
#endif //USE_HASH_PAIRCACHE
}
@@ -36,23 +49,6 @@ btOverlappingPairCache::~btOverlappingPairCache()
//todo/test: show we erase/delete data, or is it automatic
}
void btOverlappingPairCache::removeOverlappingPair(btBroadphasePair& findPair, btDispatcher* dispatcher )
{
int findIndex = m_overlappingPairArray.findLinearSearch(findPair);
if (findIndex < m_overlappingPairArray.size())
{
gOverlappingPairs--;
btBroadphasePair& pair = m_overlappingPairArray[findIndex];
cleanOverlappingPair(pair,dispatcher);
m_overlappingPairArray.swap(findIndex,m_overlappingPairArray.size()-1);
m_overlappingPairArray.pop_back();
}
}
void btOverlappingPairCache::cleanOverlappingPair(btBroadphasePair& pair,btDispatcher* dispatcher)
{
if (pair.m_algorithm)
@@ -66,50 +62,6 @@ void btOverlappingPairCache::cleanOverlappingPair(btBroadphasePair& pair,btDispa
}
void btOverlappingPairCache::addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
{
//don't add overlap with own
assert(proxy0 != proxy1);
if (!needsBroadphaseCollision(proxy0,proxy1))
return;
btBroadphasePair pair(*proxy0,*proxy1);
m_overlappingPairArray.push_back(pair);
gOverlappingPairs++;
}
///this findPair becomes really slow. Either sort the list to speedup the query, or
///use a different solution. It is mainly used for Removing overlapping pairs. Removal could be delayed.
///we could keep a linked list in each proxy, and store pair in one of the proxies (with lowest memory address)
///Also we can use a 2D bitmap, which can be useful for a future GPU implementation
btBroadphasePair* btOverlappingPairCache::findPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
{
if (!needsBroadphaseCollision(proxy0,proxy1))
return 0;
btBroadphasePair tmpPair(*proxy0,*proxy1);
int findIndex = m_overlappingPairArray.findLinearSearch(tmpPair);
if (findIndex < m_overlappingPairArray.size())
{
//assert(it != m_overlappingPairSet.end());
btBroadphasePair* pair = &m_overlappingPairArray[findIndex];
return pair;
}
return 0;
}
void btOverlappingPairCache::cleanProxyFromPairs(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
{
@@ -144,8 +96,6 @@ void btOverlappingPairCache::cleanProxyFromPairs(btBroadphaseProxy* proxy,btDisp
}
void btOverlappingPairCache::removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
{
@@ -173,6 +123,317 @@ void btOverlappingPairCache::removeOverlappingPairsContainingProxy(btBroadphaseP
}
#ifdef USE_HASH_PAIRCACHE
// Thomas Wang's hash, see: http://www.concentric.net/~Ttwang/tech/inthash.htm
// This assumes proxyId1 and proxyId2 are 16-bit.
inline uint32 Hash(uint32 proxyId1, uint32 proxyId2)
{
uint32 key = (proxyId2 << 16) | proxyId1;
key = ~key + (key << 15);
key = key ^ (key >> 12);
key = key + (key << 2);
key = key ^ (key >> 4);
key = key * 2057;
key = key ^ (key >> 16);
return key;
}
inline bool Equals(const btBroadphasePair& pair, int32 proxyId1, int32 proxyId2)
{
return pair.m_pProxy0->getUid() == proxyId1 && pair.m_pProxy1->getUid() == proxyId2;
}
inline btBroadphasePair* btOverlappingPairCache::Find(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1, uint32 hash)
{
int32 proxyId1 = proxy0->getUid();
int32 proxyId2 = proxy1->getUid();
if (proxyId1 > proxyId2)
btSwap(proxyId1, proxyId2);
int32 index = m_hashTable[hash];
while( index != b2_nullPair && Equals(m_overlappingPairArray[index], proxyId1, proxyId2) == false)
{
index = m_next[index];
}
if ( index == b2_nullPair )
{
return NULL;
}
btAssert(index < m_overlappingPairArray.size());
return &m_overlappingPairArray[index];
}
btBroadphasePair* btOverlappingPairCache::Find(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1)
{
int32 proxyId1 = proxy0->getUid();
int32 proxyId2 = proxy1->getUid();
if (proxyId1 > proxyId2)
btSwap(proxyId1, proxyId2);
int32 hash = Hash(proxyId1, proxyId2) & b2_tableMask;
int32 index = m_hashTable[hash];
while (index != b2_nullPair && Equals(m_overlappingPairArray[index], proxyId1, proxyId2) == false)
{
index = m_next[index];
}
if (index == b2_nullPair)
{
return NULL;
}
btAssert(index < m_overlappingPairArray.size());
return &m_overlappingPairArray[index];
}
#include <stdio.h>
btBroadphasePair* btOverlappingPairCache::Add(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1)
{
int32 proxyId1 = proxy0->getUid();
int32 proxyId2 = proxy1->getUid();
if (proxyId1 > proxyId2)
btSwap(proxyId1, proxyId2);
int32 hash = Hash(proxyId1, proxyId2) & b2_tableMask;
btBroadphasePair* pair = Find(proxy0, proxy1, hash);
if (pair != NULL)
{
return pair;
}
if (m_overlappingPairArray.size() == b2_maxPairs)
{
btAssert(false);
return NULL;
}
int count = m_overlappingPairArray.size();
void* mem = &m_overlappingPairArray.expand();
pair = new (mem) btBroadphasePair(*proxy0,*proxy1);
// pair->m_pProxy0 = proxy0;
// pair->m_pProxy1 = proxy1;
pair->m_algorithm = 0;
pair->m_userInfo = 0;
m_next[count] = m_hashTable[hash];
m_hashTable[hash] = (uint16)count;
return pair;
}
void* btOverlappingPairCache::Remove(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1,btDispatcher* dispatcher)
{
int32 proxyId1 = proxy0->getUid();
int32 proxyId2 = proxy1->getUid();
if (proxyId1 > proxyId2)
btSwap(proxyId1, proxyId2);
int32 hash = Hash(proxyId1, proxyId2) & b2_tableMask;
btBroadphasePair* pair = Find(proxy0, proxy1, hash);
if (pair == NULL)
{
return NULL;
}
cleanOverlappingPair(*pair,dispatcher);
void* userData = pair->m_userInfo;
btAssert(pair->m_pProxy0->getUid() == proxyId1);
btAssert(pair->m_pProxy1->getUid() == proxyId2);
int32 pairIndex = int32(pair - &m_overlappingPairArray[0]);
btAssert(pairIndex < m_overlappingPairArray.size());
// Remove the pair from the hash table.
int32 index = m_hashTable[hash];
btAssert(index != b2_nullPair);
int32 previous = b2_nullPair;
while (index != pairIndex)
{
previous = index;
index = m_next[index];
}
if (previous != b2_nullPair)
{
btAssert(m_next[previous] == pairIndex);
m_next[previous] = m_next[pairIndex];
}
else
{
m_hashTable[hash] = m_next[pairIndex];
}
// We now move the last pair into spot of the
// pair being removed. We need to fix the hash
// table indices to support the move.
int32 lastPairIndex = m_overlappingPairArray.size() - 1;
// If the removed pair is the last pair, we are done.
if (lastPairIndex == pairIndex)
{
m_overlappingPairArray.pop_back();
return userData;
}
// Remove the last pair from the hash table.
const btBroadphasePair* last = &m_overlappingPairArray[lastPairIndex];
int32 lastHash = Hash(last->m_pProxy0->getUid(), last->m_pProxy1->getUid()) & b2_tableMask;
index = m_hashTable[lastHash];
btAssert(index != b2_nullPair);
previous = b2_nullPair;
while (index != lastPairIndex)
{
previous = index;
index = m_next[index];
}
if (previous != b2_nullPair)
{
btAssert(m_next[previous] == lastPairIndex);
m_next[previous] = m_next[lastPairIndex];
}
else
{
m_hashTable[lastHash] = m_next[lastPairIndex];
}
// Copy the last pair into the remove pair's spot.
m_overlappingPairArray[pairIndex] = m_overlappingPairArray[lastPairIndex];
// Insert the last pair into the hash table
m_next[pairIndex] = m_hashTable[lastHash];
m_hashTable[lastHash] = (uint16)pairIndex;
m_overlappingPairArray.pop_back();
return userData;
}
#include <stdio.h>
void btOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback* callback,btDispatcher* dispatcher)
{
int i;
//printf("m_overlappingPairArray.size()=%d\n",m_overlappingPairArray.size());
for (i=0;i<m_overlappingPairArray.size();)
{
btBroadphasePair* pair = &m_overlappingPairArray[i];
if (callback->processOverlap(*pair))
{
removeOverlappingPair(pair->m_pProxy0,pair->m_pProxy1,dispatcher);
gOverlappingPairs--;
} else
{
i++;
}
}
}
#else
void btOverlappingPairCache::removeOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1, btDispatcher* dispatcher )
{
#ifndef USE_LAZY_REMOVAL
btBroadphasePair findPair(*proxy0,*proxy1);
int findIndex = m_overlappingPairArray.findLinearSearch(findPair);
if (findIndex < m_overlappingPairArray.size())
{
gOverlappingPairs--;
btBroadphasePair& pair = m_overlappingPairArray[findIndex];
cleanOverlappingPair(pair,dispatcher);
m_overlappingPairArray.swap(findIndex,m_overlappingPairArray.size()-1);
m_overlappingPairArray.pop_back();
}
#endif //USE_LAZY_REMOVAL
}
void btOverlappingPairCache::addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
{
//don't add overlap with own
assert(proxy0 != proxy1);
if (!needsBroadphaseCollision(proxy0,proxy1))
return;
btBroadphasePair pair(*proxy0,*proxy1);
m_overlappingPairArray.push_back(pair);
gOverlappingPairs++;
}
///this findPair becomes really slow. Either sort the list to speedup the query, or
///use a different solution. It is mainly used for Removing overlapping pairs. Removal could be delayed.
///we could keep a linked list in each proxy, and store pair in one of the proxies (with lowest memory address)
///Also we can use a 2D bitmap, which can be useful for a future GPU implementation
btBroadphasePair* btOverlappingPairCache::findPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
{
if (!needsBroadphaseCollision(proxy0,proxy1))
return 0;
btBroadphasePair tmpPair(*proxy0,*proxy1);
int findIndex = m_overlappingPairArray.findLinearSearch(tmpPair);
if (findIndex < m_overlappingPairArray.size())
{
//assert(it != m_overlappingPairSet.end());
btBroadphasePair* pair = &m_overlappingPairArray[findIndex];
return pair;
}
return 0;
}
#include <stdio.h>
void btOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback* callback,btDispatcher* dispatcher)
{
@@ -199,4 +460,4 @@ void btOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback* callb
#endif //USE_HASH_PAIRCACHE

View File

@@ -24,6 +24,9 @@ subject to the following restrictions:
#include "LinearMath/btAlignedObjectArray.h"
class btDispatcher;
#define USE_HASH_PAIRCACHE 1
struct btOverlapCallback
{
virtual ~btOverlapCallback()
@@ -42,6 +45,132 @@ struct btOverlapFilterCallback
typedef btAlignedObjectArray<btBroadphasePair> btBroadphasePairArray;
#ifdef USE_HASH_PAIRCACHE
const int b2_maxPairs = 65536;//32768;
typedef unsigned short int uint16;
typedef int int32;
typedef unsigned int uint32;
/// Hash-space based Pair Cache, thanks to Erin Catto, Box2D, http://www.box2d.org, and Pierre Terdiman, Codercorner, http://codercorner.com
const uint16 b2_nullPair = 0xffff;
const uint16 b2_nullProxy = 0xffff;
const int32 b2_tableCapacity = b2_maxPairs; // must be a power of two
const int32 b2_tableMask = b2_tableCapacity - 1;
class btOverlappingPairCache
{
btBroadphasePairArray m_overlappingPairArray;
btOverlapFilterCallback* m_overlapFilterCallback;
bool m_blockedForChanges;
public:
btOverlappingPairCache();
~btOverlappingPairCache();
void removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
void removeOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1,btDispatcher* dispatcher)
{
Remove(proxy0,proxy1,dispatcher);
}
inline bool needsBroadphaseCollision(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1) const
{
if (m_overlapFilterCallback)
return m_overlapFilterCallback->needBroadphaseCollision(proxy0,proxy1);
bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0;
collides = collides && (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask);
return collides;
}
void addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
{
if (!needsBroadphaseCollision(proxy0,proxy1))
return;
Add(proxy0,proxy1);
}
btBroadphasePair* findPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
{
return Find(proxy0,proxy1);
}
void cleanProxyFromPairs(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
virtual void processAllOverlappingPairs(btOverlapCallback*,btDispatcher* dispatcher);
btBroadphasePair* getOverlappingPairArrayPtr()
{
return &m_overlappingPairArray[0];
}
const btBroadphasePair* getOverlappingPairArrayPtr() const
{
return &m_overlappingPairArray[0];
}
btBroadphasePairArray& getOverlappingPairArray()
{
return m_overlappingPairArray;
}
const btBroadphasePairArray& getOverlappingPairArray() const
{
return m_overlappingPairArray;
}
void cleanOverlappingPair(btBroadphasePair& pair,btDispatcher* dispatcher);
// Add a pair and return the new pair. If the pair already exists,
// no new pair is created and the old one is returned.
btBroadphasePair* Add(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1);
// Remove a pair, return the pair's userData.
void* Remove(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1,btDispatcher* dispatcher);
btBroadphasePair* Find(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1);
int32 GetCount() const { return m_overlappingPairArray.size(); }
// btBroadphasePair* GetPairs() { return m_pairs; }
btOverlapFilterCallback* getOverlapFilterCallback()
{
return m_overlapFilterCallback;
}
void setOverlapFilterCallback(btOverlapFilterCallback* callback)
{
m_overlapFilterCallback = callback;
}
int getNumOverlappingPairs() const
{
return m_overlappingPairArray.size();
}
private:
btBroadphasePair* Find(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1, uint32 hashValue);
public:
uint16 m_hashTable[b2_tableCapacity];
uint16 m_next[b2_maxPairs];
};
#else//USE_HASH_PAIRCACHE
#define USE_LAZY_REMOVAL 1
///btOverlappingPairCache maintains the objects with overlapping AABB
///Typically managed by the Broadphase, Axis3Sweep or btSimpleBroadphase
class btOverlappingPairCache
@@ -63,7 +192,7 @@ class btOverlappingPairCache
virtual void processAllOverlappingPairs(btOverlapCallback*,btDispatcher* dispatcher);
void removeOverlappingPair(btBroadphasePair& pair,btDispatcher* dispatcher);
void removeOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1,btDispatcher* dispatcher);
void cleanOverlappingPair(btBroadphasePair& pair,btDispatcher* dispatcher);
@@ -98,6 +227,9 @@ class btOverlappingPairCache
return m_overlappingPairArray;
}
btBroadphasePair* getOverlappingPairArrayPtr()
{
return &m_overlappingPairArray[0];
@@ -124,6 +256,8 @@ class btOverlappingPairCache
}
};
#endif //USE_HASH_PAIRCACHE
#endif //OVERLAPPING_PAIR_CACHE_H

View File

@@ -26,22 +26,18 @@ extern int gOverlappingPairs;
void btSimpleBroadphase::validate()
{
for (int i=0;i<m_numProxies;i++)
for (int i=0;i<m_numHandles;i++)
{
for (int j=i+1;j<m_numProxies;j++)
for (int j=i+1;j<m_numHandles;j++)
{
assert(m_pProxies[i] != m_pProxies[j]);
btAssert(&m_pHandles[i] != &m_pHandles[j]);
}
}
}
btSimpleBroadphase::btSimpleBroadphase(int maxProxies, btOverlappingPairCache* overlappingPairCache)
:
m_firstFreeProxy(0),
m_numProxies(0),
m_maxProxies(maxProxies),
m_invalidPair(0),
:m_invalidPair(0),
m_pairCache(overlappingPairCache),
m_ownsPairCache(false)
{
@@ -52,31 +48,31 @@ btSimpleBroadphase::btSimpleBroadphase(int maxProxies, btOverlappingPairCache* o
m_ownsPairCache = true;
}
m_proxies = new btSimpleBroadphaseProxy[maxProxies];
m_freeProxies = new int[maxProxies];
m_pProxies = new btSimpleBroadphaseProxy*[maxProxies];
// allocate handles buffer and put all handles on free list
void* ptr = btAlignedAlloc(sizeof(btSimpleBroadphaseProxy)*maxProxies,16);
m_pHandles = new(ptr) btSimpleBroadphaseProxy[maxProxies];
m_maxHandles = maxProxies;
m_numHandles = 0;
m_firstFreeHandle = 0;
m_firstAllocatedHandle = -1;
int i;
for (i=0;i<m_maxProxies;i++)
{
m_freeProxies[i] = i;
for (int i = m_firstFreeHandle; i < maxProxies; i++)
{
m_pHandles[i].SetNextFree(i + 1);
m_pHandles[i].m_uniqueId = i+2;//any UID will do, we just avoid too trivial values (0,1) for debugging purposes
m_pHandles[i].SetNextAllocated(-1);
}
m_pHandles[maxProxies - 1].SetNextFree(0);
m_pHandles[maxProxies - 1].SetNextAllocated(-1);
}
}
btSimpleBroadphase::~btSimpleBroadphase()
{
delete[] m_proxies;
delete []m_freeProxies;
delete [] m_pProxies;
/*int i;
for (i=m_numProxies-1;i>=0;i--)
{
BP_Proxy* proxy = m_pProxies[i];
destroyProxy(proxy);
}
*/
btAlignedFree(m_pHandles);
if (m_ownsPairCache)
{
@@ -85,27 +81,17 @@ btSimpleBroadphase::~btSimpleBroadphase()
}
btBroadphaseProxy* btSimpleBroadphase::createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr ,short int collisionFilterGroup,short int collisionFilterMask)
btBroadphaseProxy* btSimpleBroadphase::createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr ,short int collisionFilterGroup,short int collisionFilterMask, btDispatcher* dispatcher)
{
if (m_numProxies >= m_maxProxies)
if (m_numHandles >= m_maxHandles)
{
assert(0);
btAssert(0);
return 0; //should never happen, but don't let the game crash ;-)
}
assert(aabbMin[0]<= aabbMax[0] && aabbMin[1]<= aabbMax[1] && aabbMin[2]<= aabbMax[2]);
int freeIndex= m_freeProxies[m_firstFreeProxy];
btSimpleBroadphaseProxy* proxy = new (&m_proxies[freeIndex])btSimpleBroadphaseProxy(aabbMin,aabbMax,shapeType,userPtr,collisionFilterGroup,collisionFilterMask);
m_firstFreeProxy++;
btSimpleBroadphaseProxy* proxy1 = &m_proxies[0];
int index = int(proxy - proxy1);
btAssert(index == freeIndex);
m_pProxies[m_numProxies] = proxy;
m_numProxies++;
//validate();
int newHandleIndex = allocHandle();
btSimpleBroadphaseProxy* proxy = new (&m_pHandles[newHandleIndex])btSimpleBroadphaseProxy(aabbMin,aabbMax,shapeType,userPtr,collisionFilterGroup,collisionFilterMask);
return proxy;
}
@@ -145,28 +131,15 @@ void btSimpleBroadphase::destroyProxy(btBroadphaseProxy* proxyOrg,btDispatcher*
int i;
btSimpleBroadphaseProxy* proxy0 = static_cast<btSimpleBroadphaseProxy*>(proxyOrg);
btSimpleBroadphaseProxy* proxy1 = &m_proxies[0];
int index = int(proxy0 - proxy1);
btAssert (index < m_maxProxies);
m_freeProxies[--m_firstFreeProxy] = index;
freeHandle(proxy0);
m_pairCache->removeOverlappingPairsContainingProxy(proxyOrg,dispatcher);
for (i=0;i<m_numProxies;i++)
{
if (m_pProxies[i] == proxyOrg)
{
m_pProxies[i] = m_pProxies[m_numProxies-1];
break;
}
}
m_numProxies--;
//validate();
}
void btSimpleBroadphase::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax)
void btSimpleBroadphase::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax, btDispatcher* dispatcher)
{
btSimpleBroadphaseProxy* sbp = getSimpleProxyFromProxy(proxy);
sbp->m_min = aabbMin;
@@ -206,99 +179,124 @@ void btSimpleBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
//first check for new overlapping pairs
int i,j;
for (i=0;i<m_numProxies;i++)
if (m_firstAllocatedHandle >= 0)
{
btBroadphaseProxy* proxy0 = m_pProxies[i];
for (j=i+1;j<m_numProxies;j++)
{
btBroadphaseProxy* proxy1 = m_pProxies[j];
btSimpleBroadphaseProxy* p0 = getSimpleProxyFromProxy(proxy0);
btSimpleBroadphaseProxy* p1 = getSimpleProxyFromProxy(proxy1);
if (aabbOverlap(p0,p1))
btSimpleBroadphaseProxy* proxy0 = &m_pHandles[m_firstAllocatedHandle];
for (i=0;i<m_numHandles;i++)
{
btSimpleBroadphaseProxy* proxy1 = &m_pHandles[m_firstAllocatedHandle];
for (j=0;j<m_numHandles;j++)
{
if ( !m_pairCache->findPair(proxy0,proxy1))
if (proxy0 != proxy1)
{
m_pairCache->addOverlappingPair(proxy0,proxy1);
btSimpleBroadphaseProxy* p0 = getSimpleProxyFromProxy(proxy0);
btSimpleBroadphaseProxy* p1 = getSimpleProxyFromProxy(proxy1);
if (aabbOverlap(p0,p1))
{
if ( !m_pairCache->findPair(proxy0,proxy1))
{
m_pairCache->addOverlappingPair(proxy0,proxy1);
}
} else
{
#ifdef USE_HASH_PAIRCACHE
if ( m_pairCache->findPair(proxy0,proxy1))
{
m_pairCache->removeOverlappingPair(proxy0,proxy1,dispatcher);
}
#endif //USE_HASH_PAIRCACHE
}
}
proxy1 = &m_pHandles[proxy1->GetNextAllocated()];
}
proxy0 = &m_pHandles[proxy0->GetNextAllocated()];
}
}
if (m_ownsPairCache)
{
#ifndef USE_HASH_PAIRCACHE
btBroadphasePairArray& overlappingPairArray = m_pairCache->getOverlappingPairArray();
//perform a sort, to find duplicates and to sort 'invalid' pairs to the end
overlappingPairArray.heapSort(btBroadphasePairSortPredicate());
overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
m_invalidPair = 0;
btBroadphasePair previousPair;
previousPair.m_pProxy0 = 0;
previousPair.m_pProxy1 = 0;
previousPair.m_algorithm = 0;
for (i=0;i<overlappingPairArray.size();i++)
if (m_ownsPairCache)
{
btBroadphasePair& pair = overlappingPairArray[i];
btBroadphasePairArray& overlappingPairArray = m_pairCache->getOverlappingPairArray();
bool isDuplicate = (pair == previousPair);
//perform a sort, to find duplicates and to sort 'invalid' pairs to the end
overlappingPairArray.heapSort(btBroadphasePairSortPredicate());
previousPair = pair;
overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
m_invalidPair = 0;
bool needsRemoval = false;
if (!isDuplicate)
btBroadphasePair previousPair;
previousPair.m_pProxy0 = 0;
previousPair.m_pProxy1 = 0;
previousPair.m_algorithm = 0;
for (i=0;i<overlappingPairArray.size();i++)
{
bool hasOverlap = testAabbOverlap(pair.m_pProxy0,pair.m_pProxy1);
if (hasOverlap)
btBroadphasePair& pair = overlappingPairArray[i];
bool isDuplicate = (pair == previousPair);
previousPair = pair;
bool needsRemoval = false;
if (!isDuplicate)
{
needsRemoval = false;//callback->processOverlap(pair);
bool hasOverlap = testAabbOverlap(pair.m_pProxy0,pair.m_pProxy1);
if (hasOverlap)
{
needsRemoval = false;//callback->processOverlap(pair);
} else
{
needsRemoval = true;
}
} else
{
//remove duplicate
needsRemoval = true;
//should have no algorithm
btAssert(!pair.m_algorithm);
}
} else
{
//remove duplicate
needsRemoval = true;
//should have no algorithm
btAssert(!pair.m_algorithm);
if (needsRemoval)
{
m_pairCache->cleanOverlappingPair(pair,dispatcher);
// m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
// m_overlappingPairArray.pop_back();
pair.m_pProxy0 = 0;
pair.m_pProxy1 = 0;
m_invalidPair++;
gOverlappingPairs--;
}
}
if (needsRemoval)
{
m_pairCache->cleanOverlappingPair(pair,dispatcher);
///if you don't like to skip the invalid pairs in the array, execute following code:
#define CLEAN_INVALID_PAIRS 1
#ifdef CLEAN_INVALID_PAIRS
// m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
// m_overlappingPairArray.pop_back();
pair.m_pProxy0 = 0;
pair.m_pProxy1 = 0;
m_invalidPair++;
gOverlappingPairs--;
}
//perform a sort, to sort 'invalid' pairs to the end
overlappingPairArray.heapSort(btBroadphasePairSortPredicate());
overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
m_invalidPair = 0;
#endif//CLEAN_INVALID_PAIRS
}
///if you don't like to skip the invalid pairs in the array, execute following code:
#define CLEAN_INVALID_PAIRS 1
#ifdef CLEAN_INVALID_PAIRS
//perform a sort, to sort 'invalid' pairs to the end
overlappingPairArray.heapSort(btBroadphasePairSortPredicate());
overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
m_invalidPair = 0;
#endif//CLEAN_INVALID_PAIRS
#endif //USE_HASH_PAIRCACHE
}
}

View File

@@ -24,6 +24,10 @@ struct btSimpleBroadphaseProxy : public btBroadphaseProxy
{
btVector3 m_min;
btVector3 m_max;
int m_nextFree;
int m_nextAllocated;
// int m_handleId;
btSimpleBroadphaseProxy() {};
@@ -35,6 +39,13 @@ struct btSimpleBroadphaseProxy : public btBroadphaseProxy
}
inline void SetNextFree(int next) {m_nextFree = next;}
inline int GetNextFree() const {return m_nextFree;}
inline void SetNextAllocated(int next) {m_nextAllocated = next;}
inline int GetNextAllocated() const {return m_nextAllocated;}
};
///SimpleBroadphase is a brute force aabb culling broadphase based on O(n^2) aabb checks
@@ -43,19 +54,46 @@ class btSimpleBroadphase : public btBroadphaseInterface
protected:
btSimpleBroadphaseProxy* m_proxies;
int* m_freeProxies;
int m_firstFreeProxy;
int m_numHandles; // number of active handles
int m_maxHandles; // max number of handles
btSimpleBroadphaseProxy* m_pHandles; // handles pool
int m_firstFreeHandle; // free handles list
int m_firstAllocatedHandle;
int allocHandle()
{
int freeHandle = m_firstFreeHandle;
m_firstFreeHandle = m_pHandles[freeHandle].GetNextFree();
m_pHandles[freeHandle].SetNextAllocated(m_firstAllocatedHandle);
m_firstAllocatedHandle = freeHandle;
m_numHandles++;
return freeHandle;
}
void freeHandle(btSimpleBroadphaseProxy* proxy)
{
int handle = int(proxy-m_pHandles);
btAssert(handle > 0 && handle < m_maxHandles);
proxy->SetNextFree(m_firstFreeHandle);
m_firstFreeHandle = handle;
m_firstAllocatedHandle = proxy->GetNextAllocated();
proxy->SetNextAllocated(-1);
m_numHandles--;
}
btSimpleBroadphaseProxy** m_pProxies;
int m_numProxies;
btOverlappingPairCache* m_pairCache;
bool m_ownsPairCache;
int m_invalidPair;
int m_maxProxies;
inline btSimpleBroadphaseProxy* getSimpleProxyFromProxy(btBroadphaseProxy* proxy)
@@ -80,12 +118,12 @@ public:
static bool aabbOverlap(btSimpleBroadphaseProxy* proxy0,btSimpleBroadphaseProxy* proxy1);
virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr ,short int collisionFilterGroup,short int collisionFilterMask);
virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr ,short int collisionFilterGroup,short int collisionFilterMask, btDispatcher* dispatcher);
virtual void calculateOverlappingPairs(btDispatcher* dispatcher);
virtual void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax);
virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax, btDispatcher* dispatcher);
btOverlappingPairCache* getOverlappingPairCache()
{

View File

@@ -81,6 +81,7 @@ btPersistentManifold* btCollisionDispatcher::getNewManifold(void* b0,void* b1)
void* mem = m_persistentManifoldPoolAllocator->allocate(sizeof(btPersistentManifold));
btPersistentManifold* manifold = new(mem) btPersistentManifold (body0,body1,0);
manifold->m_index1a = m_manifoldsPtr.size();
m_manifoldsPtr.push_back(manifold);
return manifold;
@@ -100,16 +101,14 @@ void btCollisionDispatcher::releaseManifold(btPersistentManifold* manifold)
//printf("releaseManifold: gNumManifold %d\n",gNumManifold);
clearManifold(manifold);
///todo: this can be improved a lot, linear search might be slow part!
int findIndex = m_manifoldsPtr.findLinearSearch(manifold);
if (findIndex < m_manifoldsPtr.size())
{
m_manifoldsPtr.swap(findIndex,m_manifoldsPtr.size()-1);
m_manifoldsPtr.pop_back();
int findIndex = manifold->m_index1a;
btAssert(findIndex < m_manifoldsPtr.size());
m_manifoldsPtr.swap(findIndex,m_manifoldsPtr.size()-1);
m_manifoldsPtr[findIndex]->m_index1a = findIndex;
m_manifoldsPtr.pop_back();
manifold->~btPersistentManifold();
m_persistentManifoldPoolAllocator->free(manifold);
}
manifold->~btPersistentManifold();
m_persistentManifoldPoolAllocator->free(manifold);
}

View File

@@ -109,7 +109,8 @@ void btCollisionWorld::addCollisionObject(btCollisionObject* collisionObject,sho
type,
collisionObject,
collisionFilterGroup,
collisionFilterMask
collisionFilterMask,
m_dispatcher1
)) ;
@@ -134,7 +135,7 @@ void btCollisionWorld::performDiscreteCollisionDetection()
for (int i=0;i<m_collisionObjects.size();i++)
{
m_collisionObjects[i]->getCollisionShape()->getAabb(m_collisionObjects[i]->getWorldTransform(),aabbMin,aabbMax);
m_broadphasePairCache->setAabb(m_collisionObjects[i]->getBroadphaseHandle(),aabbMin,aabbMax);
m_broadphasePairCache->setAabb(m_collisionObjects[i]->getBroadphaseHandle(),aabbMin,aabbMax,m_dispatcher1);
}
m_broadphasePairCache->calculateOverlappingPairs(m_dispatcher1);

View File

@@ -189,6 +189,7 @@ void btConvexConcaveCollisionAlgorithm::processCollision (btCollisionObject* bod
concaveShape->processAllTriangles( &m_btConvexTriangleCallback,m_btConvexTriangleCallback.getAabbMin(),m_btConvexTriangleCallback.getAabbMax());
resultOut->refreshContactPoints();
}

View File

@@ -152,6 +152,11 @@ void btConvexConvexAlgorithm ::processCollision (btCollisionObject* body0,btColl
m_gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
#endif
if (m_ownManifold)
{
resultOut->refreshContactPoints();
}
}

View File

@@ -79,6 +79,8 @@ void btManifoldResult::addContactPoint(const btVector3& normalOnBInWorld,const b
}
btManifoldPoint newPt(localA,localB,normalOnBInWorld,depth);
newPt.m_positionWorldOnA = pointA;
newPt.m_positionWorldOnB = pointInWorld;
int insertIndex = m_manifoldPtr->getCacheEntry(newPt);

View File

@@ -18,7 +18,7 @@ subject to the following restrictions:
#define MANIFOLD_RESULT_H
class btCollisionObject;
class btPersistentManifold;
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
class btManifoldPoint;
#include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
@@ -70,6 +70,22 @@ public:
virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth);
SIMD_FORCE_INLINE void refreshContactPoints()
{
btAssert(m_manifoldPtr);
if (!m_manifoldPtr->getNumContacts())
return;
bool isSwapped = m_manifoldPtr->getBody0() != m_body0;
if (isSwapped)
{
m_manifoldPtr->refreshContactPoints(m_rootTransB,m_rootTransA);
} else
{
m_manifoldPtr->refreshContactPoints(m_rootTransA,m_rootTransB);
}
}
};

View File

@@ -68,18 +68,25 @@ void btSphereBoxCollisionAlgorithm::processCollision (btCollisionObject* body0,b
btScalar dist = getSphereDistance(boxObj,pOnBox,pOnSphere,sphereCenter,radius);
resultOut->setPersistentManifold(m_manifoldPtr);
if (dist < SIMD_EPSILON)
{
btVector3 normalOnSurfaceB = (pOnBox- pOnSphere).normalize();
/// report a contact. internally this will be kept persistent, and contact reduction is done
resultOut->setPersistentManifold(m_manifoldPtr);
resultOut->addContactPoint(normalOnSurfaceB,pOnBox,dist);
}
if (m_ownManifold)
{
if (m_manifoldPtr->getNumContacts())
{
resultOut->refreshContactPoints();
}
}
}

View File

@@ -46,6 +46,8 @@ void btSphereSphereCollisionAlgorithm::processCollision (btCollisionObject* col0
if (!m_manifoldPtr)
return;
resultOut->setPersistentManifold(m_manifoldPtr);
btSphereShape* sphere0 = (btSphereShape*)col0->getCollisionShape();
btSphereShape* sphere1 = (btSphereShape*)col1->getCollisionShape();
@@ -54,10 +56,13 @@ void btSphereSphereCollisionAlgorithm::processCollision (btCollisionObject* col0
btScalar radius0 = sphere0->getRadius();
btScalar radius1 = sphere1->getRadius();
m_manifoldPtr->clearManifold();
///iff distance positive, don't generate a new contact
if ( len > (radius0+radius1))
{
return;
}
///distance (negative means penetration)
btScalar dist = len - (radius0+radius1);
@@ -68,9 +73,12 @@ void btSphereSphereCollisionAlgorithm::processCollision (btCollisionObject* col0
btVector3 pos1 = col1->getWorldTransform().getOrigin() + radius1* normalOnSurfaceB;
/// report a contact. internally this will be kept persistent, and contact reduction is done
resultOut->setPersistentManifold(m_manifoldPtr);
resultOut->addContactPoint(normalOnSurfaceB,pos1,dist);
//no resultOut->refreshContactPoints(); needed, because of clearManifold (all points are new)
}
btScalar btSphereSphereCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)

View File

@@ -48,8 +48,11 @@ void btSphereTriangleCollisionAlgorithm::processCollision (btCollisionObject* co
if (!m_manifoldPtr)
return;
btSphereShape* sphere = (btSphereShape*)col0->getCollisionShape();
btTriangleShape* triangle = (btTriangleShape*)col1->getCollisionShape();
btCollisionObject* sphereObj = m_swapped? col1 : col0;
btCollisionObject* triObj = m_swapped? col0 : col1;
btSphereShape* sphere = (btSphereShape*)sphereObj->getCollisionShape();
btTriangleShape* triangle = (btTriangleShape*)triObj->getCollisionShape();
/// report a contact. internally this will be kept persistent, and contact reduction is done
resultOut->setPersistentManifold(m_manifoldPtr);
@@ -62,6 +65,9 @@ void btSphereTriangleCollisionAlgorithm::processCollision (btCollisionObject* co
detector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
if (m_ownManifold)
resultOut->refreshContactPoints();
}
btScalar btSphereTriangleCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)

View File

@@ -18,6 +18,7 @@ subject to the following restrictions:
btUnionFind::~btUnionFind()
{
Free();

View File

@@ -906,12 +906,13 @@ bool btOptimizedBvh::serialize(void *o_alignedDataBuffer, unsigned i_dataBufferS
assert(m_subtreeHeaderCount == m_SubtreeHeaders.size());
m_subtreeHeaderCount = m_SubtreeHeaders.size();
if (i_dataBufferSize < calculateSerializeBufferSize() || o_alignedDataBuffer == NULL || (((unsigned)o_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0))
/* if (i_dataBufferSize < calculateSerializeBufferSize() || o_alignedDataBuffer == NULL || (((unsigned)o_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0))
{
///check alignedment for buffer?
btAssert(0);
return false;
}
*/
btOptimizedBvh *targetBvh = (btOptimizedBvh *)o_alignedDataBuffer;
@@ -946,7 +947,7 @@ bool btOptimizedBvh::serialize(void *o_alignedDataBuffer, unsigned i_dataBufferS
unsigned char *nodeData = (unsigned char *)targetBvh;
nodeData += sizeof(btOptimizedBvh);
unsigned sizeToAdd = (BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
nodeData += sizeToAdd;
int nodeCount = m_curNodeIndex;
@@ -1021,7 +1022,7 @@ bool btOptimizedBvh::serialize(void *o_alignedDataBuffer, unsigned i_dataBufferS
nodeData += sizeof(btOptimizedBvhNode) * nodeCount;
}
sizeToAdd = (BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
nodeData += sizeToAdd;
// Now serialize the subtree headers
@@ -1068,7 +1069,7 @@ bool btOptimizedBvh::serialize(void *o_alignedDataBuffer, unsigned i_dataBufferS
btOptimizedBvh *btOptimizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian)
{
if (i_alignedDataBuffer == NULL || (((unsigned)i_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0))
if (i_alignedDataBuffer == NULL)// || (((unsigned)i_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0))
{
return NULL;
}
@@ -1097,7 +1098,7 @@ btOptimizedBvh *btOptimizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, un
unsigned char *nodeData = (unsigned char *)bvh;
nodeData += sizeof(btOptimizedBvh);
unsigned sizeToAdd = (BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
nodeData += sizeToAdd;
int nodeCount = bvh->m_curNodeIndex;
@@ -1146,7 +1147,7 @@ btOptimizedBvh *btOptimizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, un
nodeData += sizeof(btOptimizedBvhNode) * nodeCount;
}
sizeToAdd = (BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
nodeData += sizeToAdd;
// Now serialize the subtree headers

View File

@@ -42,7 +42,7 @@ public:
virtual int getShapeType() const { return SPHERE_SHAPE_PROXYTYPE; }
btScalar getRadius() const { return m_implicitShapeDimensions.getX();}
btScalar getRadius() const { return m_implicitShapeDimensions.getX() * m_localScaling.getX();}
//debugging
virtual char* getName()const {return "SPHERE";}
@@ -55,7 +55,7 @@ public:
{
//to improve gjk behaviour, use radius+margin as the full margin, so never get into the penetration case
//this means, non-uniform scaling is not supported anymore
return m_localScaling.getX() * getRadius() + btConvexInternalShape::getMargin();
return getRadius();
}

View File

@@ -27,20 +27,12 @@ btPersistentManifold::btPersistentManifold()
:m_body0(0),
m_body1(0),
m_cachedPoints (0),
m_index1(0)
m_index1a(0)
{
}
void btPersistentManifold::clearManifold()
{
int i;
for (i=0;i<m_cachedPoints;i++)
{
clearUserCache(m_pointCache[i]);
}
m_cachedPoints = 0;
}
#ifdef DEBUG_PERSISTENCY
#include <stdio.h>
@@ -198,10 +190,20 @@ btScalar btPersistentManifold::getContactBreakingThreshold() const
return gContactBreakingThreshold;
}
void btPersistentManifold::refreshContactPoints(const btTransform& trA,const btTransform& trB)
{
int i;
#ifdef DEBUG_PERSISTENCY
printf("refreshContactPoints posA = (%f,%f,%f) posB = (%f,%f,%f)\n",
trA.getOrigin().getX(),
trA.getOrigin().getY(),
trA.getOrigin().getZ(),
trB.getOrigin().getX(),
trB.getOrigin().getY(),
trB.getOrigin().getZ());
#endif //DEBUG_PERSISTENCY
/// first refresh worldspace positions and distance
for (i=getNumContacts()-1;i>=0;i--)
{

View File

@@ -58,7 +58,7 @@ public:
BT_DECLARE_ALIGNED_ALLOCATOR();
int m_index1;
int m_index1a;
btPersistentManifold();
@@ -67,11 +67,11 @@ public:
{
}
inline void* getBody0() { return m_body0;}
inline void* getBody1() { return m_body1;}
SIMD_FORCE_INLINE void* getBody0() { return m_body0;}
SIMD_FORCE_INLINE void* getBody1() { return m_body1;}
inline const void* getBody0() const { return m_body0;}
inline const void* getBody1() const { return m_body1;}
SIMD_FORCE_INLINE const void* getBody0() const { return m_body0;}
SIMD_FORCE_INLINE const void* getBody1() const { return m_body1;}
void setBodies(void* body0,void* body1)
{
@@ -85,22 +85,22 @@ public:
void DebugPersistency();
#endif //
inline int getNumContacts() const { return m_cachedPoints;}
SIMD_FORCE_INLINE int getNumContacts() const { return m_cachedPoints;}
inline const btManifoldPoint& getContactPoint(int index) const
SIMD_FORCE_INLINE const btManifoldPoint& getContactPoint(int index) const
{
btAssert(index < m_cachedPoints);
return m_pointCache[index];
}
inline btManifoldPoint& getContactPoint(int index)
SIMD_FORCE_INLINE btManifoldPoint& getContactPoint(int index)
{
btAssert(index < m_cachedPoints);
return m_pointCache[index];
}
/// todo: get this margin from the current physics / collision environment
btScalar getContactBreakingThreshold() const;
SIMD_FORCE_INLINE btScalar getContactBreakingThreshold() const;
int getCacheEntry(const btManifoldPoint& newPoint) const;
@@ -150,7 +150,16 @@ public:
/// calculated new worldspace coordinates and depth, and reject points that exceed the collision margin
void refreshContactPoints( const btTransform& trA,const btTransform& trB);
void clearManifold();
SIMD_FORCE_INLINE void clearManifold()
{
int i;
for (i=0;i<m_cachedPoints;i++)
{
clearUserCache(m_pointCache[i]);
}
m_cachedPoints = 0;
}

View File

@@ -14,6 +14,8 @@ subject to the following restrictions:
*/
//#define COMPUTE_IMPULSE_DENOM 1
//It is not necessary (redundant) to refresh contact manifolds, this refresh has been moved to the collision algorithms.
//#define FORCE_REFESH_CONTACT_MANIFOLDS 1
#include "btSequentialImpulseConstraintSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
@@ -397,21 +399,30 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
// printf("empty\n");
return 0.f;
}
btPersistentManifold* manifold = 0;
btRigidBody* rb0=0,*rb1=0;
#ifdef FORCE_REFESH_CONTACT_MANIFOLDS
BEGIN_PROFILE("refreshManifolds");
int i;
for (i=0;i<numManifolds;i++)
{
btPersistentManifold* manifold = manifoldPtr[i];
btRigidBody* rb0 = (btRigidBody*)manifold->getBody0();
btRigidBody* rb1 = (btRigidBody*)manifold->getBody1();
manifold = manifoldPtr[i];
rb1 = (btRigidBody*)manifold->getBody1();
rb0 = (btRigidBody*)manifold->getBody0();
manifold->refreshContactPoints(rb0->getCenterOfMassTransform(),rb1->getCenterOfMassTransform());
}
END_PROFILE("refreshManifolds");
#endif //FORCE_REFESH_CONTACT_MANIFOLDS
BEGIN_PROFILE("gatherSolverData");
@@ -458,9 +469,10 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
for (i=0;i<numManifolds;i++)
{
btPersistentManifold* manifold = manifoldPtr[i];
btRigidBody* rb0 = (btRigidBody*)manifold->getBody0();
btRigidBody* rb1 = (btRigidBody*)manifold->getBody1();
manifold = manifoldPtr[i];
rb1 = (btRigidBody*)manifold->getBody1();
rb0 = (btRigidBody*)manifold->getBody0();
int solverBodyIdA=-1;
@@ -503,7 +515,6 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
btManifoldPoint& cp = manifold->getContactPoint(j);
int frictionIndex = tmpSolverConstraintPool.size();
if (cp.getDistance() <= btScalar(0.))
{
@@ -519,6 +530,8 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
btScalar rel_vel;
btVector3 vel;
int frictionIndex = tmpSolverConstraintPool.size();
{
btSolverConstraint& solverConstraint = tmpSolverConstraintPool.expand();
@@ -586,18 +599,22 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
{
btVector3 lat_vel = vel - cp.m_normalWorldOnB * rel_vel;
btScalar lat_rel_vel = lat_vel.length2();
btVector3 frictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
btScalar lat_rel_vel = frictionDir1.length2();
if (lat_rel_vel > SIMD_EPSILON)//0.0f)
{
lat_vel /= btSqrt(lat_rel_vel);
addFrictionConstraint(lat_vel,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,rb0,rb1, relaxation);
btVector3 frictionDir2 = lat_vel.cross(cp.m_normalWorldOnB);
frictionDir1 /= btSqrt(lat_rel_vel);
addFrictionConstraint(frictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,rb0,rb1, relaxation);
btVector3 frictionDir2 = frictionDir1.cross(cp.m_normalWorldOnB);
frictionDir2.normalize();//??
addFrictionConstraint(frictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,rb0,rb1, relaxation);
} else
{
//re-calculate friction direction every frame, todo: check if this is really needed
btVector3 frictionDir1,frictionDir2;
btPlaneSpace1(cp.m_normalWorldOnB,frictionDir1,frictionDir2);
addFrictionConstraint(frictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,rb0,rb1, relaxation);
addFrictionConstraint(frictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,rb0,rb1, relaxation);
}
}
@@ -907,8 +924,9 @@ void btSequentialImpulseConstraintSolver::prepareConstraints(btPersistentManifol
//only necessary to refresh the manifold once (first iteration). The integration is done outside the loop
{
#ifdef FORCE_REFESH_CONTACT_MANIFOLDS
manifoldPtr->refreshContactPoints(body0->getCenterOfMassTransform(),body1->getCenterOfMassTransform());
#endif //FORCE_REFESH_CONTACT_MANIFOLDS
int numpoints = manifoldPtr->getNumContacts();
gTotalContactPoints += numpoints;

View File

@@ -179,7 +179,7 @@ void btContinuousDynamicsWorld::updateTemporalAabbs(btScalar timeStep)
temporalAabbMin -= angularMotion3d;
temporalAabbMax += angularMotion3d;
m_broadphasePairCache->setAabb(body->getBroadphaseHandle(),temporalAabbMin,temporalAabbMax);
m_broadphasePairCache->setAabb(body->getBroadphaseHandle(),temporalAabbMin,temporalAabbMax,m_dispatcher1);
}
}

View File

@@ -606,7 +606,7 @@ void btDiscreteDynamicsWorld::updateAabbs()
//moving objects should be moderately sized, probably something wrong if not
if ( colObj->isStaticObject() || ((maxAabb-minAabb).length2() < btScalar(1e12)))
{
bp->setAabb(body->getBroadphaseHandle(),minAabb,maxAabb);
bp->setAabb(body->getBroadphaseHandle(),minAabb,maxAabb, m_dispatcher1);
} else
{
//something went wrong, investigate

View File

@@ -134,7 +134,7 @@ void btSimpleDynamicsWorld::updateAabbs()
btPoint3 minAabb,maxAabb;
colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb,maxAabb);
btBroadphaseInterface* bp = getBroadphase();
bp->setAabb(body->getBroadphaseHandle(),minAabb,maxAabb);
bp->setAabb(body->getBroadphaseHandle(),minAabb,maxAabb, m_dispatcher1);
}
}
}

View File

@@ -19,7 +19,7 @@ subject to the following restrictions:
#if defined (BT_HAS_ALIGNED_ALOCATOR)
#include <malloc.h>
void* btAlignedAlloc (int size, int alignment)
void* btAlignedAlloc (size_t size, int alignment)
{
void* ptr = _aligned_malloc(size,alignment);
// printf("btAlignedAlloc %d, %x\n",size,ptr);
@@ -41,7 +41,7 @@ void btAlignedFree (void* ptr)
int numAllocs = 0;
int numFree = 0;
void* btAlignedAlloc (int size, int alignment)
void* btAlignedAlloc (size_t size, int alignment)
{
numAllocs++;
return memalign(alignment, size);
@@ -55,7 +55,7 @@ void btAlignedFree (void* ptr)
#else
void* btAlignedAlloc (int size, int alignment)
void* btAlignedAlloc (size_t size, int alignment)
{
void *ret;
char *real;

View File

@@ -22,7 +22,7 @@ subject to the following restrictions:
#include "btScalar.h"
void* btAlignedAlloc (int size, int alignment);
void* btAlignedAlloc (size_t size, int alignment);
void btAlignedFree (void* ptr);

View File

@@ -61,6 +61,17 @@ public:
return result;
}
bool validPtr(void* ptr)
{
if (ptr) {
if (((unsigned char*)ptr >= m_pool && (unsigned char*)ptr < m_pool + m_maxElements * m_elemSize))
{
return true;
}
}
return false;
}
void free(void* ptr)
{
if (ptr) {

View File

@@ -288,6 +288,13 @@ SIMD_FORCE_INLINE float btSelect(unsigned condition, float valueIfConditionNonZe
#endif
}
template<typename T> inline void btSwap(T& a, T& b)
{
T tmp = a;
a = b;
b = tmp;
}
//PCK: endian swapping functions
SIMD_FORCE_INLINE unsigned btSwapEndian(unsigned val)