optimized the island management. It was unoptimized, and becomes a bottleneck for large amounts of objects.

This commit is contained in:
ejcoumans
2006-09-14 23:43:50 +00:00
parent db2265ce03
commit 0607bfe9de
3 changed files with 236 additions and 132 deletions

View File

@@ -5,6 +5,8 @@
#include "CollisionDispatch/CollisionObject.h" #include "CollisionDispatch/CollisionObject.h"
#include "CollisionDispatch/CollisionWorld.h" #include "CollisionDispatch/CollisionWorld.h"
#include <stdio.h>
#include <algorithm>
SimulationIslandManager::SimulationIslandManager() SimulationIslandManager::SimulationIslandManager()
@@ -105,7 +107,23 @@ void SimulationIslandManager::StoreIslandActivationState(CollisionWorld* colWorl
} }
} }
inline int getIslandId(const PersistentManifold* lhs)
{
int islandId;
const CollisionObject* rcolObj0 = static_cast<const CollisionObject*>(lhs->GetBody0());
const CollisionObject* rcolObj1 = static_cast<const CollisionObject*>(lhs->GetBody1());
islandId= rcolObj0->m_islandTag1>=0?rcolObj0->m_islandTag1:rcolObj1->m_islandTag1;
return islandId;
}
bool PersistentManifoldSortPredicate(const PersistentManifold* lhs, const PersistentManifold* rhs)
{
int rIslandId0,lIslandId0;
rIslandId0 = getIslandId(rhs);
lIslandId0 = getIslandId(lhs);
return lIslandId0 < rIslandId0;
}
// //
@@ -114,101 +132,143 @@ void SimulationIslandManager::StoreIslandActivationState(CollisionWorld* colWorl
void SimulationIslandManager::BuildAndProcessIslands(Dispatcher* dispatcher,CollisionObjectArray& collisionObjects, IslandCallback* callback) void SimulationIslandManager::BuildAndProcessIslands(Dispatcher* dispatcher,CollisionObjectArray& collisionObjects, IslandCallback* callback)
{ {
int numBodies = collisionObjects.size(); int numBodies = collisionObjects.size();
//first calculate the number of islands, and iterate over the islands id's //we are going to sort the unionfind array, and store the element id in the size
//afterwards, we clean unionfind, to make sure no-one uses it anymore
GetUnionFind().sortIslands();
int numElem = GetUnionFind().getNumElements();
const UnionFind& uf = this->GetUnionFind(); int startIslandIndex=0,endIslandIndex=1;
for (int islandId=0;islandId<uf.getNumElements();islandId++) //update the sleeping state for bodies, if all are sleeping
for (int startIslandIndex=0;startIslandIndex<numElem;startIslandIndex = endIslandIndex)
{ {
if (uf.isRoot(islandId)) int islandId = GetUnionFind().getElement(startIslandIndex).m_id;
for (endIslandIndex = startIslandIndex+1;(endIslandIndex<numElem) && (GetUnionFind().getElement(endIslandIndex).m_id == islandId);endIslandIndex++)
{ {
}
std::vector<PersistentManifold*> islandmanifold; //int numSleeping = 0;
//int numSleeping = 0;
bool allSleeping = true; bool allSleeping = true;
int i; int idx;
for (i=0;i<numBodies;i++) for (idx=startIslandIndex;idx<endIslandIndex;idx++)
{
int i = GetUnionFind().getElement(idx).m_sz;
CollisionObject* colObj0 = collisionObjects[i];
if ((colObj0->m_islandTag1 != islandId) && (colObj0->m_islandTag1 != -1))
{ {
CollisionObject* colObj0 = collisionObjects[i]; printf("error in island management\n");
if (colObj0->m_islandTag1 == islandId)
{
if (colObj0->GetActivationState()== ACTIVE_TAG)
{
allSleeping = false;
}
if (colObj0->GetActivationState()== DISABLE_DEACTIVATION)
{
allSleeping = false;
}
}
} }
assert((colObj0->m_islandTag1 == islandId) || (colObj0->m_islandTag1 == -1));
if (colObj0->m_islandTag1 == islandId)
if (allSleeping)
{ {
int i; if (colObj0->GetActivationState()== ACTIVE_TAG)
for (i=0;i<numBodies;i++)
{ {
CollisionObject* colObj0 = collisionObjects[i]; allSleeping = false;
if (colObj0->m_islandTag1 == islandId) }
if (colObj0->GetActivationState()== DISABLE_DEACTIVATION)
{
allSleeping = false;
}
}
}
if (allSleeping)
{
int idx;
for (idx=startIslandIndex;idx<endIslandIndex;idx++)
{
int i = GetUnionFind().getElement(idx).m_sz;
CollisionObject* colObj0 = collisionObjects[i];
if ((colObj0->m_islandTag1 != islandId) && (colObj0->m_islandTag1 != -1))
{
printf("error in island management\n");
}
assert((colObj0->m_islandTag1 == islandId) || (colObj0->m_islandTag1 == -1));
if (colObj0->m_islandTag1 == islandId)
{
colObj0->SetActivationState( ISLAND_SLEEPING );
}
}
} else
{
int idx;
for (idx=startIslandIndex;idx<endIslandIndex;idx++)
{
int i = GetUnionFind().getElement(idx).m_sz;
CollisionObject* colObj0 = collisionObjects[i];
if ((colObj0->m_islandTag1 != islandId) && (colObj0->m_islandTag1 != -1))
{
printf("error in island management\n");
}
assert((colObj0->m_islandTag1 == islandId) || (colObj0->m_islandTag1 == -1));
if (colObj0->m_islandTag1 == islandId)
{
if ( colObj0->GetActivationState() == ISLAND_SLEEPING)
{ {
colObj0->SetActivationState( ISLAND_SLEEPING ); colObj0->SetActivationState( WANTS_DEACTIVATION);
} }
} }
} else
{
int i;
for (i=0;i<numBodies;i++)
{
CollisionObject* colObj0 = collisionObjects[i];
if (colObj0->m_islandTag1 == islandId)
{
if ( colObj0->GetActivationState() == ISLAND_SLEEPING)
{
colObj0->SetActivationState( WANTS_DEACTIVATION);
}
}
}
for (i=0;i<dispatcher->GetNumManifolds();i++)
{
PersistentManifold* manifold = dispatcher->GetManifoldByIndexInternal(i);
//filtering for response
CollisionObject* colObj0 = static_cast<CollisionObject*>(manifold->GetBody0());
CollisionObject* colObj1 = static_cast<CollisionObject*>(manifold->GetBody1());
assert(colObj0);
assert(colObj1);
{
if (((colObj0)->m_islandTag1 == (islandId)) ||
((colObj1)->m_islandTag1 == (islandId)))
{
if (dispatcher->NeedsResponse(*colObj0,*colObj1))
islandmanifold.push_back(manifold);
}
}
}
/// Process the actual simulation, only if not sleeping/deactivated
if (islandmanifold.size())
{
callback->ProcessIsland(&islandmanifold[0],islandmanifold.size());
}
} }
} }
} }
std::vector<PersistentManifold*> islandmanifold;
int i;
int numManifolds = dispatcher->GetNumManifolds();
islandmanifold.reserve(numManifolds);
for (i=0;i<numManifolds ;i++)
{
PersistentManifold* manifold = dispatcher->GetManifoldByIndexInternal(i);
CollisionObject* colObj0 = static_cast<CollisionObject*>(manifold->GetBody0());
CollisionObject* colObj1 = static_cast<CollisionObject*>(manifold->GetBody1());
//todo: check sleeping conditions!
if (((colObj0) && colObj0->GetActivationState() != ISLAND_SLEEPING) ||
((colObj1) && colObj1->GetActivationState() != ISLAND_SLEEPING))
{
//filtering for response
if (dispatcher->NeedsResponse(*colObj0,*colObj1))
islandmanifold.push_back(manifold);
}
}
// Sort manifolds, based on islands
// Sort the vector using predicate and std::sort
std::sort(islandmanifold.begin(), islandmanifold.end(), PersistentManifoldSortPredicate);
//now process all active islands (sets of manifolds for now)
int startManifoldIndex = 0;
int endManifoldIndex = 1;
for (startManifoldIndex=0;startManifoldIndex<numManifolds;startManifoldIndex = endManifoldIndex)
{
int islandId = getIslandId(islandmanifold[startManifoldIndex]);
for (endManifoldIndex = startManifoldIndex+1;(endManifoldIndex<numManifolds) && (islandId == getIslandId(islandmanifold[endManifoldIndex]));endManifoldIndex++)
{
}
/// Process the actual simulation, only if not sleeping/deactivated
int numIslandManifolds = endManifoldIndex-startManifoldIndex;
if (numIslandManifolds)
{
callback->ProcessIsland(&islandmanifold[startManifoldIndex],numIslandManifolds);
}
}
} }

View File

@@ -15,28 +15,9 @@ subject to the following restrictions:
#include "UnionFind.h" #include "UnionFind.h"
#include <assert.h> #include <assert.h>
#include <algorithm>
int UnionFind::find(int x)
{
assert(x < m_N);
assert(x >= 0);
while (x != m_id[x])
{
//not really a reason not to use path compression, and it flattens the trees/improves find performance dramatically
#define USE_PATH_COMPRESSION 1
#ifdef USE_PATH_COMPRESSION
//
m_id[x] = m_id[m_id[x]];
#endif //
x = m_id[x];
assert(x < m_N);
assert(x >= 0);
}
return x;
}
UnionFind::~UnionFind() UnionFind::~UnionFind()
{ {
@@ -45,8 +26,7 @@ UnionFind::~UnionFind()
} }
UnionFind::UnionFind() UnionFind::UnionFind()
:m_id(0), :m_elements(0),
m_sz(0),
m_N(0) m_N(0)
{ {
@@ -56,11 +36,10 @@ void UnionFind::Allocate(int N)
{ {
if (m_N < N) if (m_N < N)
{ {
Free(); //Free(); //not necessary with stl vectors
m_N = N; m_N = N;
m_id = new int[N]; m_elements.resize(N);// = new Element[N];
m_sz = new int[N];
} }
} }
void UnionFind::Free() void UnionFind::Free()
@@ -68,8 +47,7 @@ void UnionFind::Free()
if (m_N) if (m_N)
{ {
m_N=0; m_N=0;
delete m_id; m_elements.clear();
delete m_sz;
} }
} }
@@ -80,29 +58,32 @@ void UnionFind::reset(int N)
for (int i = 0; i < m_N; i++) for (int i = 0; i < m_N; i++)
{ {
m_id[i] = i; m_sz[i] = 1; m_elements[i].m_id = i; m_elements[i].m_sz = 1;
} }
} }
bool UnionFindElementSortPredicate(const Element& lhs, const Element& rhs)
int UnionFind ::find(int p, int q)
{
return (find(p) == find(q));
}
void UnionFind ::unite(int p, int q)
{ {
int i = find(p), j = find(q); return lhs.m_id < rhs.m_id;
if (i == j)
return;
//weighted quick union, this keeps the 'trees' balanced, and keeps performance of unite O( log(n) )
if (m_sz[i] < m_sz[j])
{
m_id[i] = j; m_sz[j] += m_sz[i];
}
else
{
m_id[j] = i; m_sz[i] += m_sz[j];
}
} }
///this is a special operation, destroying the content of UnionFind.
///it sorts the elements, based on island id, in order to make it easy to iterate over islands
void UnionFind::sortIslands()
{
//first store the original body index, and islandId
int numElements = m_elements.size();
for (int i=0;i<numElements;i++)
{
m_elements[i].m_id = find(i);
m_elements[i].m_sz = i;
}
// Sort the vector using predicate and std::sort
std::sort(m_elements.begin(), m_elements.end(), UnionFindElementSortPredicate);
}

View File

@@ -16,22 +16,32 @@ subject to the following restrictions:
#ifndef UNION_FIND_H #ifndef UNION_FIND_H
#define UNION_FIND_H #define UNION_FIND_H
#include <vector>
struct Element
{
int m_id;
int m_sz;
};
///UnionFind calculates connected subsets ///UnionFind calculates connected subsets
// Implements weighted Quick Union with path compression // Implements weighted Quick Union with path compression
// optimization: could use short ints instead of ints (halving memory, would limit the number of rigid bodies to 64k, sounds reasonable) // optimization: could use short ints instead of ints (halving memory, would limit the number of rigid bodies to 64k, sounds reasonable)
class UnionFind class UnionFind
{ {
private: private:
int* m_id; std::vector<Element> m_elements;
int* m_sz;
int m_N; int m_N;
public: public:
int find(int x);
UnionFind(); UnionFind();
~UnionFind(); ~UnionFind();
//this is a special operation, destroying the content of UnionFind.
//it sorts the elements, based on island id, in order to make it easy to iterate over islands
void sortIslands();
void reset(int N); void reset(int N);
inline int getNumElements() const inline int getNumElements() const
@@ -40,15 +50,68 @@ class UnionFind
} }
inline bool isRoot(int x) const inline bool isRoot(int x) const
{ {
return (x == m_id[x]); return (x == m_elements[x].m_id);
} }
int find(int p, int q); Element& getElement(int index)
void unite(int p, int q); {
return m_elements[index];
}
const Element& getElement(int index) const
{
return m_elements[index];
}
void Allocate(int N); void Allocate(int N);
void Free(); void Free();
int find(int p, int q)
{
return (find(p) == find(q));
}
void unite(int p, int q)
{
int i = find(p), j = find(q);
if (i == j)
return;
//weighted quick union, this keeps the 'trees' balanced, and keeps performance of unite O( log(n) )
if (m_elements[i].m_sz < m_elements[j].m_sz)
{
m_elements[i].m_id = j; m_elements[j].m_sz += m_elements[i].m_sz;
}
else
{
m_elements[j].m_id = i; m_elements[i].m_sz += m_elements[j].m_sz;
}
}
int find(int x)
{
//assert(x < m_N);
//assert(x >= 0);
while (x != m_elements[x].m_id)
{
//not really a reason not to use path compression, and it flattens the trees/improves find performance dramatically
#define USE_PATH_COMPRESSION 1
#ifdef USE_PATH_COMPRESSION
//
m_elements[x].m_id = m_elements[m_elements[x].m_id].m_id;
#endif //
x = m_elements[x].m_id;
//assert(x < m_N);
//assert(x >= 0);
}
return x;
}
}; };