refactor to make minitaur example more general

This commit is contained in:
Jie Tan
2017-02-16 15:23:46 -08:00
parent 83e5e816f5
commit 0665a447af
2 changed files with 59 additions and 36 deletions

View File

@@ -1,7 +1,7 @@
import pybullet as p
from minitaur import Minitaur
import minitaur_evaluate
from minitaur_evaluate import *
import time
import math
import numpy as np
@@ -12,29 +12,12 @@ def main(unused_args):
if (c<0):
c = p.connect(p.GUI)
amplitude = 0.24795664427
speed = 0.2860877729434
params = [0.1903581461951056, 0.0006732219568880068, 0.05018085615283363, 3.219916795483583, 6.2406418167980595, 4.189869754607539]
evaluate_func = 'evaluate_desired_motorAngle_2Amplitude4Phase'
energy_weight = 0.01
final_distance = minitaur_evaluate.evaluate_params_hop(params=[amplitude, speed], timeStep=timeStep, sleepTime=timeStep)
print(final_distance)
finalReturn = evaluate_params(evaluateFunc = evaluate_func, params=params, objectiveParams=[energy_weight], timeStep=timeStep, sleepTime=timeStep)
# p.resetSimulation()
# p.setTimeStep(timeStep)
# p.loadURDF("plane.urdf")
# p.setGravity(0,0,-10)
# minitaur = Minitaur()
# for i in range(1000):
# a1 = math.sin(i*speed)*amplitude+1.57
# a2 = math.sin(i*speed+3.14)*amplitude+1.57
# joint_values = [a1, 1.57, a2, 1.57, 1.57, a1, 1.57, a2]
# minitaur.applyAction(joint_values)
# torques = minitaur.getMotorTorques()
# print(torques)
# p.stepSimulation()
# time.sleep(timeStep)
# final_distance = np.linalg.norm(np.asarray(minitaur.getBasePosition()))
# print(final_distance)
print(finalReturn)
main(0)