fix some gym envs

This commit is contained in:
Erwin Coumans
2019-01-28 16:21:52 -08:00
parent c97d1041ed
commit 0818112ede
7 changed files with 65 additions and 48 deletions

View File

@@ -69,7 +69,7 @@ class MJCFBaseBulletEnv(gym.Env):
self.potential = self.robot.calc_potential() self.potential = self.robot.calc_potential()
return s return s
def render(self, mode='human'): def render(self, mode='human', close=False):
if mode == "human": if mode == "human":
self.isRender = True self.isRender = True
if mode != "rgb_array": if mode != "rgb_array":
@@ -125,7 +125,6 @@ class MJCFBaseBulletEnv(gym.Env):
_render = render _render = render
_reset = reset _reset = reset
_seed = seed _seed = seed
_step = step
class Camera: class Camera:
def __init__(self): def __init__(self):

View File

@@ -24,7 +24,7 @@ for i in range (1):
p.setJointMotorControl2(bike,1,p.VELOCITY_CONTROL,targetVelocity=5, force=0) p.setJointMotorControl2(bike,1,p.VELOCITY_CONTROL,targetVelocity=5, force=0)
p.setJointMotorControl2(bike,2,p.VELOCITY_CONTROL,targetVelocity=15, force=20) p.setJointMotorControl2(bike,2,p.VELOCITY_CONTROL,targetVelocity=15, force=20)
p.changeDynamics(plane,-1, mass=20,lateralFriction=1, linearDamping=0, angularDamping=0) p.changeDynamics(plane,-1, mass=0,lateralFriction=1, linearDamping=0, angularDamping=0)
p.changeDynamics(bike,1,lateralFriction=1,linearDamping=0, angularDamping=0) p.changeDynamics(bike,1,lateralFriction=1,linearDamping=0, angularDamping=0)
p.changeDynamics(bike,2,lateralFriction=1,linearDamping=0, angularDamping=0) p.changeDynamics(bike,2,lateralFriction=1,linearDamping=0, angularDamping=0)
#p.resetJointState(bike,1,0,100) #p.resetJointState(bike,1,0,100)

View File

@@ -4,10 +4,11 @@
import csv import csv
import math import math
import os
import os, inspect import inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir)) parentdir = os.path.dirname(os.path.dirname(os.path.dirname(currentdir)))
print("parentdir=",parentdir)
os.sys.path.insert(0,parentdir) os.sys.path.insert(0,parentdir)
import argparse import argparse

View File

@@ -5,6 +5,13 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import os
import inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(os.path.dirname(currentdir)))
os.sys.path.insert(0,parentdir)
import tensorflow as tf import tensorflow as tf
from pybullet_envs.minitaur.envs import minitaur_raibert_controller from pybullet_envs.minitaur.envs import minitaur_raibert_controller
from pybullet_envs.minitaur.envs import minitaur_gym_env from pybullet_envs.minitaur.envs import minitaur_gym_env

View File

@@ -6,11 +6,21 @@ from __future__ import print_function
import os import os
import time import time
import inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(os.path.dirname(currentdir)))
print("parentdir=",parentdir)
os.sys.path.insert(0,parentdir)
import tensorflow as tf import tensorflow as tf
from pybullet_envs.minitaur.agents.scripts import utility from pybullet_envs.minitaur.agents.scripts import utility
import pybullet_data import pybullet_data
from pybullet_envs.minitaur.envs import simple_ppo_agent from pybullet_envs.minitaur.envs import simple_ppo_agent
flags = tf.app.flags flags = tf.app.flags
FLAGS = tf.app.flags.FLAGS FLAGS = tf.app.flags.FLAGS
LOG_DIR = os.path.join(pybullet_data.getDataPath(), "policies/ppo/minitaur_reactive_env") LOG_DIR = os.path.join(pybullet_data.getDataPath(), "policies/ppo/minitaur_reactive_env")

View File

@@ -22,9 +22,9 @@ class XmlBasedRobot:
self.robot_body = None self.robot_body = None
high = np.ones([action_dim]) high = np.ones([action_dim])
self.action_space = gym.spaces.Box(-high, high, dtype=np.float32) self.action_space = gym.spaces.Box(-high, high)
high = np.inf * np.ones([obs_dim]) high = np.inf * np.ones([obs_dim])
self.observation_space = gym.spaces.Box(-high, high, dtype=np.float32) self.observation_space = gym.spaces.Box(-high, high)
#self.model_xml = model_xml #self.model_xml = model_xml
self.robot_name = robot_name self.robot_name = robot_name