update minitaur gym env
This commit is contained in:
101
examples/pybullet/gym/pybullet_envs/bullet/motor.py
Normal file
101
examples/pybullet/gym/pybullet_envs/bullet/motor.py
Normal file
@@ -0,0 +1,101 @@
|
||||
"""This file implements an accurate motor model."""
|
||||
import numpy as np
|
||||
|
||||
VOLTAGE_CLIPPING = 50
|
||||
OBSERVED_TORQUE_LIMIT = 5.7
|
||||
MOTOR_VOLTAGE = 16.0
|
||||
MOTOR_RESISTANCE = 0.186
|
||||
MOTOR_TORQUE_CONSTANT = 0.0954
|
||||
MOTOR_VISCOUS_DAMPING = 0
|
||||
MOTOR_SPEED_LIMIT = MOTOR_VOLTAGE / (MOTOR_VISCOUS_DAMPING
|
||||
+ MOTOR_TORQUE_CONSTANT)
|
||||
|
||||
|
||||
class MotorModel(object):
|
||||
"""The accurate motor model, which is based on the physics of DC motors.
|
||||
|
||||
The motor model support two types of control: position control and torque
|
||||
control. In position control mode, a desired motor angle is specified, and a
|
||||
torque is computed based on the internal motor model. When the torque control
|
||||
is specified, a pwm signal in the range of [-1.0, 1.0] is converted to the
|
||||
torque.
|
||||
|
||||
The internal motor model takes the following factors into consideration:
|
||||
pd gains, viscous friction, back-EMF voltage and current-torque profile.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
torque_control_enabled=False,
|
||||
kp=1.2,
|
||||
kd=0):
|
||||
self._torque_control_enabled = torque_control_enabled
|
||||
self._kp = kp
|
||||
self._kd = kd
|
||||
self._resistance = MOTOR_RESISTANCE
|
||||
self._voltage = MOTOR_VOLTAGE
|
||||
self._torque_constant = MOTOR_TORQUE_CONSTANT
|
||||
self._viscous_damping = MOTOR_VISCOUS_DAMPING
|
||||
self._current_table = [0, 10, 20, 30, 40, 50, 60]
|
||||
self._torque_table = [0, 1, 1.9, 2.45, 3.0, 3.25, 3.5]
|
||||
|
||||
def set_voltage(self, voltage):
|
||||
self._voltage = voltage
|
||||
|
||||
def get_voltage(self):
|
||||
return self._voltage
|
||||
|
||||
def set_viscous_damping(self, viscous_damping):
|
||||
self._viscous_damping = viscous_damping
|
||||
|
||||
def get_viscous_dampling(self):
|
||||
return self._viscous_damping
|
||||
|
||||
def convert_to_torque(self, motor_commands, current_motor_angle,
|
||||
current_motor_velocity):
|
||||
"""Convert the commands (position control or torque control) to torque.
|
||||
|
||||
Args:
|
||||
motor_commands: The desired motor angle if the motor is in position
|
||||
control mode. The pwm signal if the motor is in torque control mode.
|
||||
current_motor_angle: The motor angle at the current time step.
|
||||
current_motor_velocity: The motor velocity at the current time step.
|
||||
Returns:
|
||||
actual_torque: The torque that needs to be applied to the motor.
|
||||
observed_torque: The torque observed by the sensor.
|
||||
"""
|
||||
if self._torque_control_enabled:
|
||||
pwm = motor_commands
|
||||
else:
|
||||
pwm = (-self._kp * (current_motor_angle - motor_commands)
|
||||
- self._kd * current_motor_velocity)
|
||||
pwm = np.clip(pwm, -1.0, 1.0)
|
||||
return self._convert_to_torque_from_pwm(pwm, current_motor_velocity)
|
||||
|
||||
def _convert_to_torque_from_pwm(self, pwm, current_motor_velocity):
|
||||
"""Convert the pwm signal to torque.
|
||||
|
||||
Args:
|
||||
pwm: The pulse width modulation.
|
||||
current_motor_velocity: The motor velocity at the current time step.
|
||||
Returns:
|
||||
actual_torque: The torque that needs to be applied to the motor.
|
||||
observed_torque: The torque observed by the sensor.
|
||||
"""
|
||||
observed_torque = np.clip(
|
||||
self._torque_constant * (pwm * self._voltage / self._resistance),
|
||||
-OBSERVED_TORQUE_LIMIT, OBSERVED_TORQUE_LIMIT)
|
||||
|
||||
# Net voltage is clipped at 50V by diodes on the motor controller.
|
||||
voltage_net = np.clip(pwm * self._voltage -
|
||||
(self._torque_constant + self._viscous_damping)
|
||||
* current_motor_velocity,
|
||||
-VOLTAGE_CLIPPING, VOLTAGE_CLIPPING)
|
||||
current = voltage_net / self._resistance
|
||||
current_sign = np.sign(current)
|
||||
current_magnitude = np.absolute(current)
|
||||
|
||||
# Saturate torque based on empirical current relation.
|
||||
actual_torque = np.interp(current_magnitude, self._current_table,
|
||||
self._torque_table)
|
||||
actual_torque = np.multiply(current_sign, actual_torque)
|
||||
return actual_torque, observed_torque
|
||||
Reference in New Issue
Block a user