add RacecarGymEnv as a gym experimentation environment

This commit is contained in:
Erwin Coumans
2017-06-08 19:45:48 -07:00
parent 7ee8126d66
commit 0aeb4d5058
6 changed files with 189 additions and 3 deletions

View File

@@ -0,0 +1,108 @@
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import pybullet as p
from . import racecar
class RacecarGymEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self,
urdfRoot="",
actionRepeat=1,
isEnableSelfCollision=True,
render=True):
print("init")
self._timeStep = 0.01
self._urdfRoot = urdfRoot
self._actionRepeat = actionRepeat
self._isEnableSelfCollision = isEnableSelfCollision
self._observation = []
self._ballUniqueId = -1
self._envStepCounter = 0
self._render = render
self._p = p
if self._render:
p.connect(p.GUI)
else:
p.connect(p.DIRECT)
self._seed()
self.reset()
observationDim = self._racecar.getObservationDimension()
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
actionDim = 8
action_high = np.array([1] * actionDim)
self.action_space = spaces.Box(-action_high, action_high)
self.observation_space = spaces.Box(-observation_high, observation_high)
self.viewer = None
def _reset(self):
p.resetSimulation()
#p.setPhysicsEngineParameter(numSolverIterations=300)
p.setTimeStep(self._timeStep)
#p.loadURDF("%splane.urdf" % self._urdfRoot)
p.loadSDF("%sstadium.sdf" % self._urdfRoot)
self._ballUniqueId = p.loadURDF("sphere2.urdf",[20,20,1])
p.setGravity(0,0,-10)
self._racecar = racecar.Racecar(urdfRootPath=self._urdfRoot, timeStep=self._timeStep)
self._envStepCounter = 0
for i in range(100):
p.stepSimulation()
self._observation = self._racecar.getObservation()
return self._observation
def __del__(self):
p.disconnect()
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def _step(self, action):
if (self._render):
basePos,orn = p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
p.resetDebugVisualizerCamera(1, 30, -40, basePos)
if len(action) != self._racecar.getActionDimension():
raise ValueError("We expect {} continuous action not {}.".format(self._racecar.getActionDimension(), len(action)))
for i in range(len(action)):
if not -1.01 <= action[i] <= 1.01:
raise ValueError("{}th action should be between -1 and 1 not {}.".format(i, action[i]))
self._racecar.applyAction(action)
for i in range(self._actionRepeat):
p.stepSimulation()
if self._render:
time.sleep(self._timeStep)
self._observation = self._racecar.getObservation()
if self._termination():
break
self._envStepCounter += 1
reward = self._reward()
done = self._termination()
return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False):
return
def _termination(self):
return False
def _reward(self):
closestPoints = p.getClosestPoints(self._racecar.racecarUniqueId,self._ballUniqueId,10000)
numPt = len(closestPoints)
reward=-1000
print(numPt)
if (numPt>0):
print("reward:")
reward = closestPoints[0][8]
print(reward)
return reward