First stage in refactoring Bullet: moved Bullet Collision and Dynamics and LinearMath into src folder, and all files in Collision Detection and Dynamics have bt prefix.
Made all buildsystems to work again (jam, msvc, cmake)
This commit is contained in:
@@ -0,0 +1,598 @@
|
||||
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
Elsevier CDROM license agreements grants nonexclusive license to use the software
|
||||
for any purpose, commercial or non-commercial as long as the following credit is included
|
||||
identifying the original source of the software:
|
||||
|
||||
Parts of the source are "from the book Real-Time Collision Detection by
|
||||
Christer Ericson, published by Morgan Kaufmann Publishers,
|
||||
(c) 2005 Elsevier Inc."
|
||||
|
||||
*/
|
||||
|
||||
|
||||
#include "btVoronoiSimplexSolver.h"
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#define VERTA 0
|
||||
#define VERTB 1
|
||||
#define VERTC 2
|
||||
#define VERTD 3
|
||||
|
||||
#define CATCH_DEGENERATE_TETRAHEDRON 1
|
||||
void VoronoiSimplexSolver::removeVertex(int index)
|
||||
{
|
||||
|
||||
assert(m_numVertices>0);
|
||||
m_numVertices--;
|
||||
m_simplexVectorW[index] = m_simplexVectorW[m_numVertices];
|
||||
m_simplexPointsP[index] = m_simplexPointsP[m_numVertices];
|
||||
m_simplexPointsQ[index] = m_simplexPointsQ[m_numVertices];
|
||||
}
|
||||
|
||||
void VoronoiSimplexSolver::ReduceVertices (const UsageBitfield& usedVerts)
|
||||
{
|
||||
if ((numVertices() >= 4) && (!usedVerts.usedVertexD))
|
||||
removeVertex(3);
|
||||
|
||||
if ((numVertices() >= 3) && (!usedVerts.usedVertexC))
|
||||
removeVertex(2);
|
||||
|
||||
if ((numVertices() >= 2) && (!usedVerts.usedVertexB))
|
||||
removeVertex(1);
|
||||
|
||||
if ((numVertices() >= 1) && (!usedVerts.usedVertexA))
|
||||
removeVertex(0);
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//clear the simplex, remove all the vertices
|
||||
void VoronoiSimplexSolver::reset()
|
||||
{
|
||||
m_cachedValidClosest = false;
|
||||
m_numVertices = 0;
|
||||
m_needsUpdate = true;
|
||||
m_lastW = SimdVector3(1e30f,1e30f,1e30f);
|
||||
m_cachedBC.Reset();
|
||||
}
|
||||
|
||||
|
||||
|
||||
//add a vertex
|
||||
void VoronoiSimplexSolver::addVertex(const SimdVector3& w, const SimdPoint3& p, const SimdPoint3& q)
|
||||
{
|
||||
m_lastW = w;
|
||||
m_needsUpdate = true;
|
||||
|
||||
m_simplexVectorW[m_numVertices] = w;
|
||||
m_simplexPointsP[m_numVertices] = p;
|
||||
m_simplexPointsQ[m_numVertices] = q;
|
||||
|
||||
m_numVertices++;
|
||||
}
|
||||
|
||||
bool VoronoiSimplexSolver::UpdateClosestVectorAndPoints()
|
||||
{
|
||||
|
||||
if (m_needsUpdate)
|
||||
{
|
||||
m_cachedBC.Reset();
|
||||
|
||||
m_needsUpdate = false;
|
||||
|
||||
switch (numVertices())
|
||||
{
|
||||
case 0:
|
||||
m_cachedValidClosest = false;
|
||||
break;
|
||||
case 1:
|
||||
{
|
||||
m_cachedP1 = m_simplexPointsP[0];
|
||||
m_cachedP2 = m_simplexPointsQ[0];
|
||||
m_cachedV = m_cachedP1-m_cachedP2; //== m_simplexVectorW[0]
|
||||
m_cachedBC.Reset();
|
||||
m_cachedBC.SetBarycentricCoordinates(1.f,0.f,0.f,0.f);
|
||||
m_cachedValidClosest = m_cachedBC.IsValid();
|
||||
break;
|
||||
};
|
||||
case 2:
|
||||
{
|
||||
//closest point origin from line segment
|
||||
const SimdVector3& from = m_simplexVectorW[0];
|
||||
const SimdVector3& to = m_simplexVectorW[1];
|
||||
SimdVector3 nearest;
|
||||
|
||||
SimdVector3 p (0.f,0.f,0.f);
|
||||
SimdVector3 diff = p - from;
|
||||
SimdVector3 v = to - from;
|
||||
float t = v.dot(diff);
|
||||
|
||||
if (t > 0) {
|
||||
float dotVV = v.dot(v);
|
||||
if (t < dotVV) {
|
||||
t /= dotVV;
|
||||
diff -= t*v;
|
||||
m_cachedBC.m_usedVertices.usedVertexA = true;
|
||||
m_cachedBC.m_usedVertices.usedVertexB = true;
|
||||
} else {
|
||||
t = 1;
|
||||
diff -= v;
|
||||
//reduce to 1 point
|
||||
m_cachedBC.m_usedVertices.usedVertexB = true;
|
||||
}
|
||||
} else
|
||||
{
|
||||
t = 0;
|
||||
//reduce to 1 point
|
||||
m_cachedBC.m_usedVertices.usedVertexA = true;
|
||||
}
|
||||
m_cachedBC.SetBarycentricCoordinates(1-t,t);
|
||||
nearest = from + t*v;
|
||||
|
||||
m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]);
|
||||
m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]);
|
||||
m_cachedV = m_cachedP1 - m_cachedP2;
|
||||
|
||||
ReduceVertices(m_cachedBC.m_usedVertices);
|
||||
|
||||
m_cachedValidClosest = m_cachedBC.IsValid();
|
||||
break;
|
||||
}
|
||||
case 3:
|
||||
{
|
||||
//closest point origin from triangle
|
||||
SimdVector3 p (0.f,0.f,0.f);
|
||||
|
||||
const SimdVector3& a = m_simplexVectorW[0];
|
||||
const SimdVector3& b = m_simplexVectorW[1];
|
||||
const SimdVector3& c = m_simplexVectorW[2];
|
||||
|
||||
ClosestPtPointTriangle(p,a,b,c,m_cachedBC);
|
||||
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
|
||||
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
|
||||
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] +
|
||||
m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3];
|
||||
|
||||
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
|
||||
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
|
||||
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] +
|
||||
m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3];
|
||||
|
||||
m_cachedV = m_cachedP1-m_cachedP2;
|
||||
|
||||
ReduceVertices (m_cachedBC.m_usedVertices);
|
||||
m_cachedValidClosest = m_cachedBC.IsValid();
|
||||
|
||||
break;
|
||||
}
|
||||
case 4:
|
||||
{
|
||||
|
||||
|
||||
SimdVector3 p (0.f,0.f,0.f);
|
||||
|
||||
const SimdVector3& a = m_simplexVectorW[0];
|
||||
const SimdVector3& b = m_simplexVectorW[1];
|
||||
const SimdVector3& c = m_simplexVectorW[2];
|
||||
const SimdVector3& d = m_simplexVectorW[3];
|
||||
|
||||
bool hasSeperation = ClosestPtPointTetrahedron(p,a,b,c,d,m_cachedBC);
|
||||
|
||||
if (hasSeperation)
|
||||
{
|
||||
|
||||
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
|
||||
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
|
||||
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] +
|
||||
m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3];
|
||||
|
||||
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
|
||||
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
|
||||
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] +
|
||||
m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3];
|
||||
|
||||
m_cachedV = m_cachedP1-m_cachedP2;
|
||||
ReduceVertices (m_cachedBC.m_usedVertices);
|
||||
} else
|
||||
{
|
||||
// printf("sub distance got penetration\n");
|
||||
|
||||
if (m_cachedBC.m_degenerate)
|
||||
{
|
||||
m_cachedValidClosest = false;
|
||||
} else
|
||||
{
|
||||
m_cachedValidClosest = true;
|
||||
//degenerate case == false, penetration = true + zero
|
||||
m_cachedV.setValue(0.f,0.f,0.f);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
m_cachedValidClosest = m_cachedBC.IsValid();
|
||||
|
||||
//closest point origin from tetrahedron
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
m_cachedValidClosest = false;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
return m_cachedValidClosest;
|
||||
|
||||
}
|
||||
|
||||
//return/calculate the closest vertex
|
||||
bool VoronoiSimplexSolver::closest(SimdVector3& v)
|
||||
{
|
||||
bool succes = UpdateClosestVectorAndPoints();
|
||||
v = m_cachedV;
|
||||
return succes;
|
||||
}
|
||||
|
||||
|
||||
|
||||
SimdScalar VoronoiSimplexSolver::maxVertex()
|
||||
{
|
||||
int i, numverts = numVertices();
|
||||
SimdScalar maxV = 0.f;
|
||||
for (i=0;i<numverts;i++)
|
||||
{
|
||||
SimdScalar curLen2 = m_simplexVectorW[i].length2();
|
||||
if (maxV < curLen2)
|
||||
maxV = curLen2;
|
||||
}
|
||||
return maxV;
|
||||
}
|
||||
|
||||
|
||||
|
||||
//return the current simplex
|
||||
int VoronoiSimplexSolver::getSimplex(SimdPoint3 *pBuf, SimdPoint3 *qBuf, SimdVector3 *yBuf) const
|
||||
{
|
||||
int i;
|
||||
for (i=0;i<numVertices();i++)
|
||||
{
|
||||
yBuf[i] = m_simplexVectorW[i];
|
||||
pBuf[i] = m_simplexPointsP[i];
|
||||
qBuf[i] = m_simplexPointsQ[i];
|
||||
}
|
||||
return numVertices();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
bool VoronoiSimplexSolver::inSimplex(const SimdVector3& w)
|
||||
{
|
||||
bool found = false;
|
||||
int i, numverts = numVertices();
|
||||
//SimdScalar maxV = 0.f;
|
||||
|
||||
//w is in the current (reduced) simplex
|
||||
for (i=0;i<numverts;i++)
|
||||
{
|
||||
if (m_simplexVectorW[i] == w)
|
||||
found = true;
|
||||
}
|
||||
|
||||
//check in case lastW is already removed
|
||||
if (w == m_lastW)
|
||||
return true;
|
||||
|
||||
return found;
|
||||
}
|
||||
|
||||
void VoronoiSimplexSolver::backup_closest(SimdVector3& v)
|
||||
{
|
||||
v = m_cachedV;
|
||||
}
|
||||
|
||||
|
||||
bool VoronoiSimplexSolver::emptySimplex() const
|
||||
{
|
||||
return (numVertices() == 0);
|
||||
|
||||
}
|
||||
|
||||
void VoronoiSimplexSolver::compute_points(SimdPoint3& p1, SimdPoint3& p2)
|
||||
{
|
||||
UpdateClosestVectorAndPoints();
|
||||
p1 = m_cachedP1;
|
||||
p2 = m_cachedP2;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
bool VoronoiSimplexSolver::ClosestPtPointTriangle(const SimdPoint3& p, const SimdPoint3& a, const SimdPoint3& b, const SimdPoint3& c,SubSimplexClosestResult& result)
|
||||
{
|
||||
result.m_usedVertices.reset();
|
||||
|
||||
// Check if P in vertex region outside A
|
||||
SimdVector3 ab = b - a;
|
||||
SimdVector3 ac = c - a;
|
||||
SimdVector3 ap = p - a;
|
||||
float d1 = ab.dot(ap);
|
||||
float d2 = ac.dot(ap);
|
||||
if (d1 <= 0.0f && d2 <= 0.0f)
|
||||
{
|
||||
result.m_closestPointOnSimplex = a;
|
||||
result.m_usedVertices.usedVertexA = true;
|
||||
result.SetBarycentricCoordinates(1,0,0);
|
||||
return true;// a; // barycentric coordinates (1,0,0)
|
||||
}
|
||||
|
||||
// Check if P in vertex region outside B
|
||||
SimdVector3 bp = p - b;
|
||||
float d3 = ab.dot(bp);
|
||||
float d4 = ac.dot(bp);
|
||||
if (d3 >= 0.0f && d4 <= d3)
|
||||
{
|
||||
result.m_closestPointOnSimplex = b;
|
||||
result.m_usedVertices.usedVertexB = true;
|
||||
result.SetBarycentricCoordinates(0,1,0);
|
||||
|
||||
return true; // b; // barycentric coordinates (0,1,0)
|
||||
}
|
||||
// Check if P in edge region of AB, if so return projection of P onto AB
|
||||
float vc = d1*d4 - d3*d2;
|
||||
if (vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f) {
|
||||
float v = d1 / (d1 - d3);
|
||||
result.m_closestPointOnSimplex = a + v * ab;
|
||||
result.m_usedVertices.usedVertexA = true;
|
||||
result.m_usedVertices.usedVertexB = true;
|
||||
result.SetBarycentricCoordinates(1-v,v,0);
|
||||
return true;
|
||||
//return a + v * ab; // barycentric coordinates (1-v,v,0)
|
||||
}
|
||||
|
||||
// Check if P in vertex region outside C
|
||||
SimdVector3 cp = p - c;
|
||||
float d5 = ab.dot(cp);
|
||||
float d6 = ac.dot(cp);
|
||||
if (d6 >= 0.0f && d5 <= d6)
|
||||
{
|
||||
result.m_closestPointOnSimplex = c;
|
||||
result.m_usedVertices.usedVertexC = true;
|
||||
result.SetBarycentricCoordinates(0,0,1);
|
||||
return true;//c; // barycentric coordinates (0,0,1)
|
||||
}
|
||||
|
||||
// Check if P in edge region of AC, if so return projection of P onto AC
|
||||
float vb = d5*d2 - d1*d6;
|
||||
if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f) {
|
||||
float w = d2 / (d2 - d6);
|
||||
result.m_closestPointOnSimplex = a + w * ac;
|
||||
result.m_usedVertices.usedVertexA = true;
|
||||
result.m_usedVertices.usedVertexC = true;
|
||||
result.SetBarycentricCoordinates(1-w,0,w);
|
||||
return true;
|
||||
//return a + w * ac; // barycentric coordinates (1-w,0,w)
|
||||
}
|
||||
|
||||
// Check if P in edge region of BC, if so return projection of P onto BC
|
||||
float va = d3*d6 - d5*d4;
|
||||
if (va <= 0.0f && (d4 - d3) >= 0.0f && (d5 - d6) >= 0.0f) {
|
||||
float w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
|
||||
|
||||
result.m_closestPointOnSimplex = b + w * (c - b);
|
||||
result.m_usedVertices.usedVertexB = true;
|
||||
result.m_usedVertices.usedVertexC = true;
|
||||
result.SetBarycentricCoordinates(0,1-w,w);
|
||||
return true;
|
||||
// return b + w * (c - b); // barycentric coordinates (0,1-w,w)
|
||||
}
|
||||
|
||||
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
|
||||
float denom = 1.0f / (va + vb + vc);
|
||||
float v = vb * denom;
|
||||
float w = vc * denom;
|
||||
|
||||
result.m_closestPointOnSimplex = a + ab * v + ac * w;
|
||||
result.m_usedVertices.usedVertexA = true;
|
||||
result.m_usedVertices.usedVertexB = true;
|
||||
result.m_usedVertices.usedVertexC = true;
|
||||
result.SetBarycentricCoordinates(1-v-w,v,w);
|
||||
|
||||
return true;
|
||||
// return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = 1.0f - v - w
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/// Test if point p and d lie on opposite sides of plane through abc
|
||||
int VoronoiSimplexSolver::PointOutsideOfPlane(const SimdPoint3& p, const SimdPoint3& a, const SimdPoint3& b, const SimdPoint3& c, const SimdPoint3& d)
|
||||
{
|
||||
SimdVector3 normal = (b-a).cross(c-a);
|
||||
|
||||
float signp = (p - a).dot(normal); // [AP AB AC]
|
||||
float signd = (d - a).dot( normal); // [AD AB AC]
|
||||
|
||||
#ifdef CATCH_DEGENERATE_TETRAHEDRON
|
||||
if (signd * signd < (1e-4f * 1e-4f))
|
||||
{
|
||||
// printf("affine dependent/degenerate\n");//
|
||||
return -1;
|
||||
}
|
||||
#endif
|
||||
// Points on opposite sides if expression signs are opposite
|
||||
return signp * signd < 0.f;
|
||||
}
|
||||
|
||||
|
||||
bool VoronoiSimplexSolver::ClosestPtPointTetrahedron(const SimdPoint3& p, const SimdPoint3& a, const SimdPoint3& b, const SimdPoint3& c, const SimdPoint3& d, SubSimplexClosestResult& finalResult)
|
||||
{
|
||||
SubSimplexClosestResult tempResult;
|
||||
|
||||
// Start out assuming point inside all halfspaces, so closest to itself
|
||||
finalResult.m_closestPointOnSimplex = p;
|
||||
finalResult.m_usedVertices.reset();
|
||||
finalResult.m_usedVertices.usedVertexA = true;
|
||||
finalResult.m_usedVertices.usedVertexB = true;
|
||||
finalResult.m_usedVertices.usedVertexC = true;
|
||||
finalResult.m_usedVertices.usedVertexD = true;
|
||||
|
||||
int pointOutsideABC = PointOutsideOfPlane(p, a, b, c, d);
|
||||
int pointOutsideACD = PointOutsideOfPlane(p, a, c, d, b);
|
||||
int pointOutsideADB = PointOutsideOfPlane(p, a, d, b, c);
|
||||
int pointOutsideBDC = PointOutsideOfPlane(p, b, d, c, a);
|
||||
|
||||
if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0)
|
||||
{
|
||||
finalResult.m_degenerate = true;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!pointOutsideABC && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
float bestSqDist = FLT_MAX;
|
||||
// If point outside face abc then compute closest point on abc
|
||||
if (pointOutsideABC)
|
||||
{
|
||||
ClosestPtPointTriangle(p, a, b, c,tempResult);
|
||||
SimdPoint3 q = tempResult.m_closestPointOnSimplex;
|
||||
|
||||
float sqDist = (q - p).dot( q - p);
|
||||
// Update best closest point if (squared) distance is less than current best
|
||||
if (sqDist < bestSqDist) {
|
||||
bestSqDist = sqDist;
|
||||
finalResult.m_closestPointOnSimplex = q;
|
||||
//convert result bitmask!
|
||||
finalResult.m_usedVertices.reset();
|
||||
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
|
||||
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexB;
|
||||
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
|
||||
finalResult.SetBarycentricCoordinates(
|
||||
tempResult.m_barycentricCoords[VERTA],
|
||||
tempResult.m_barycentricCoords[VERTB],
|
||||
tempResult.m_barycentricCoords[VERTC],
|
||||
0
|
||||
);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Repeat test for face acd
|
||||
if (pointOutsideACD)
|
||||
{
|
||||
ClosestPtPointTriangle(p, a, c, d,tempResult);
|
||||
SimdPoint3 q = tempResult.m_closestPointOnSimplex;
|
||||
//convert result bitmask!
|
||||
|
||||
float sqDist = (q - p).dot( q - p);
|
||||
if (sqDist < bestSqDist)
|
||||
{
|
||||
bestSqDist = sqDist;
|
||||
finalResult.m_closestPointOnSimplex = q;
|
||||
finalResult.m_usedVertices.reset();
|
||||
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
|
||||
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexB;
|
||||
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexC;
|
||||
finalResult.SetBarycentricCoordinates(
|
||||
tempResult.m_barycentricCoords[VERTA],
|
||||
0,
|
||||
tempResult.m_barycentricCoords[VERTB],
|
||||
tempResult.m_barycentricCoords[VERTC]
|
||||
);
|
||||
|
||||
}
|
||||
}
|
||||
// Repeat test for face adb
|
||||
|
||||
|
||||
if (pointOutsideADB)
|
||||
{
|
||||
ClosestPtPointTriangle(p, a, d, b,tempResult);
|
||||
SimdPoint3 q = tempResult.m_closestPointOnSimplex;
|
||||
//convert result bitmask!
|
||||
|
||||
float sqDist = (q - p).dot( q - p);
|
||||
if (sqDist < bestSqDist)
|
||||
{
|
||||
bestSqDist = sqDist;
|
||||
finalResult.m_closestPointOnSimplex = q;
|
||||
finalResult.m_usedVertices.reset();
|
||||
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
|
||||
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
|
||||
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexC;
|
||||
finalResult.SetBarycentricCoordinates(
|
||||
tempResult.m_barycentricCoords[VERTA],
|
||||
tempResult.m_barycentricCoords[VERTC],
|
||||
0,
|
||||
tempResult.m_barycentricCoords[VERTB]
|
||||
);
|
||||
|
||||
}
|
||||
}
|
||||
// Repeat test for face bdc
|
||||
|
||||
|
||||
if (pointOutsideBDC)
|
||||
{
|
||||
ClosestPtPointTriangle(p, b, d, c,tempResult);
|
||||
SimdPoint3 q = tempResult.m_closestPointOnSimplex;
|
||||
//convert result bitmask!
|
||||
float sqDist = (q - p).dot( q - p);
|
||||
if (sqDist < bestSqDist)
|
||||
{
|
||||
bestSqDist = sqDist;
|
||||
finalResult.m_closestPointOnSimplex = q;
|
||||
finalResult.m_usedVertices.reset();
|
||||
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexA;
|
||||
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
|
||||
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
|
||||
|
||||
finalResult.SetBarycentricCoordinates(
|
||||
0,
|
||||
tempResult.m_barycentricCoords[VERTA],
|
||||
tempResult.m_barycentricCoords[VERTC],
|
||||
tempResult.m_barycentricCoords[VERTB]
|
||||
);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
//help! we ended up full !
|
||||
|
||||
if (finalResult.m_usedVertices.usedVertexA &&
|
||||
finalResult.m_usedVertices.usedVertexB &&
|
||||
finalResult.m_usedVertices.usedVertexC &&
|
||||
finalResult.m_usedVertices.usedVertexD)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user