Merge pull request #2098 from erwincoumans/master

bit more work on deep_mimic env and physx backend
This commit is contained in:
erwincoumans
2019-02-05 15:19:17 -08:00
committed by GitHub
43 changed files with 4992 additions and 361 deletions

View File

@@ -2831,6 +2831,18 @@ B3_SHARED_API int b3ChangeDynamicsInfoSetAngularDamping(b3SharedMemoryCommandHan
return 0; return 0;
} }
B3_SHARED_API int b3ChangeDynamicsInfoSetJointDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double jointDamping)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO);
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex;
command->m_changeDynamicsInfoArgs.m_jointDamping = jointDamping;
command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_JOINT_DAMPING;
return 0;
}
B3_SHARED_API int b3ChangeDynamicsInfoSetContactStiffnessAndDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double contactStiffness, double contactDamping) B3_SHARED_API int b3ChangeDynamicsInfoSetContactStiffnessAndDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double contactStiffness, double contactDamping)
{ {
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle; struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;

View File

@@ -155,6 +155,8 @@ extern "C"
B3_SHARED_API int b3ChangeDynamicsInfoSetRestitution(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double restitution); B3_SHARED_API int b3ChangeDynamicsInfoSetRestitution(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double restitution);
B3_SHARED_API int b3ChangeDynamicsInfoSetLinearDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, double linearDamping); B3_SHARED_API int b3ChangeDynamicsInfoSetLinearDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, double linearDamping);
B3_SHARED_API int b3ChangeDynamicsInfoSetAngularDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, double angularDamping); B3_SHARED_API int b3ChangeDynamicsInfoSetAngularDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, double angularDamping);
B3_SHARED_API int b3ChangeDynamicsInfoSetJointDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double jointDamping);
B3_SHARED_API int b3ChangeDynamicsInfoSetContactStiffnessAndDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double contactStiffness, double contactDamping); B3_SHARED_API int b3ChangeDynamicsInfoSetContactStiffnessAndDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double contactStiffness, double contactDamping);
B3_SHARED_API int b3ChangeDynamicsInfoSetFrictionAnchor(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, int frictionAnchor); B3_SHARED_API int b3ChangeDynamicsInfoSetFrictionAnchor(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, int frictionAnchor);
B3_SHARED_API int b3ChangeDynamicsInfoSetCcdSweptSphereRadius(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double ccdSweptSphereRadius); B3_SHARED_API int b3ChangeDynamicsInfoSetCcdSweptSphereRadius(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double ccdSweptSphereRadius);

View File

@@ -7737,6 +7737,12 @@ bool PhysicsServerCommandProcessor::processChangeDynamicsInfoCommand(const struc
mb->getLinkCollider(linkIndex)->setContactStiffnessAndDamping(clientCmd.m_changeDynamicsInfoArgs.m_contactStiffness, clientCmd.m_changeDynamicsInfoArgs.m_contactDamping); mb->getLinkCollider(linkIndex)->setContactStiffnessAndDamping(clientCmd.m_changeDynamicsInfoArgs.m_contactStiffness, clientCmd.m_changeDynamicsInfoArgs.m_contactDamping);
} }
} }
if (clientCmd.m_updateFlags &CHANGE_DYNAMICS_INFO_SET_JOINT_DAMPING)
{
mb->getLink(linkIndex).m_jointDamping = clientCmd.m_changeDynamicsInfoArgs.m_jointDamping;
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_MASS) if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_MASS)
{ {
mb->getLink(linkIndex).m_mass = mass; mb->getLink(linkIndex).m_mass = mass;
@@ -8057,6 +8063,7 @@ bool PhysicsServerCommandProcessor::processSendPhysicsParametersCommand(const st
BT_PROFILE("CMD_SEND_PHYSICS_SIMULATION_PARAMETERS"); BT_PROFILE("CMD_SEND_PHYSICS_SIMULATION_PARAMETERS");
if (clientCmd.m_updateFlags & SIM_PARAM_ENABLE_CONE_FRICTION) if (clientCmd.m_updateFlags & SIM_PARAM_ENABLE_CONE_FRICTION)
{ {
if (clientCmd.m_physSimParamArgs.m_enableConeFriction) if (clientCmd.m_physSimParamArgs.m_enableConeFriction)

View File

@@ -164,6 +164,7 @@ enum EnumChangeDynamicsInfoFlags
CHANGE_DYNAMICS_INFO_SET_CCD_SWEPT_SPHERE_RADIUS = 2048, CHANGE_DYNAMICS_INFO_SET_CCD_SWEPT_SPHERE_RADIUS = 2048,
CHANGE_DYNAMICS_INFO_SET_CONTACT_PROCESSING_THRESHOLD = 4096, CHANGE_DYNAMICS_INFO_SET_CONTACT_PROCESSING_THRESHOLD = 4096,
CHANGE_DYNAMICS_INFO_SET_ACTIVATION_STATE = 8192, CHANGE_DYNAMICS_INFO_SET_ACTIVATION_STATE = 8192,
CHANGE_DYNAMICS_INFO_SET_JOINT_DAMPING = 16384,
}; };
struct ChangeDynamicsInfoArgs struct ChangeDynamicsInfoArgs
@@ -185,6 +186,7 @@ struct ChangeDynamicsInfoArgs
double m_ccdSweptSphereRadius; double m_ccdSweptSphereRadius;
double m_contactProcessingThreshold; double m_contactProcessingThreshold;
int m_activationState; int m_activationState;
double m_jointDamping;
}; };
struct GetDynamicsInfoArgs struct GetDynamicsInfoArgs

File diff suppressed because it is too large Load Diff

View File

@@ -16,6 +16,11 @@ class PhysXServerCommandProcessor : public PhysicsCommandProcessorInterface
bool processSendPhysicsParametersCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes); bool processSendPhysicsParametersCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes);
bool processRequestActualStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes); bool processRequestActualStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes);
bool processResetSimulationCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes); bool processResetSimulationCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes);
bool processInitPoseCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes);
bool processSendDesiredStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes);
bool processChangeDynamicsInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes);
bool processRequestPhysicsSimulationParametersCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes);
bool processCustomCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes); bool processCustomCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes);

View File

@@ -16,11 +16,15 @@
#include "PxMaterial.h" #include "PxMaterial.h"
#include "PxCooking.h" #include "PxCooking.h"
#include "PxScene.h" #include "PxScene.h"
#include "PxRigidStatic.h"
#include "PxRigidDynamic.h"
#include "PxActor.h"
#include "PxAggregate.h" #include "PxAggregate.h"
#include "Bullet3Common/b3FileUtils.h"
#include "PhysXUserData.h" #include "PhysXUserData.h"
#include "../../CommonInterfaces/CommonFileIOInterface.h" #include "../../CommonInterfaces/CommonFileIOInterface.h"
#include "../../Importers/ImportObjDemo/LoadMeshFromObj.h"
#include "../../Importers/ImportSTLDemo/LoadMeshFromSTL.h"
#include "Importers/ImportURDFDemo/UrdfParser.h" #include "Importers/ImportURDFDemo/UrdfParser.h"
@@ -31,6 +35,8 @@ struct URDF2PhysXCachedData
URDF2PhysXCachedData() URDF2PhysXCachedData()
: m_currentMultiBodyLinkIndex(-1), : m_currentMultiBodyLinkIndex(-1),
m_articulation(0), m_articulation(0),
m_rigidStatic(0),
m_rigidDynamic(0),
m_totalNumJoints1(0) m_totalNumJoints1(0)
{ {
} }
@@ -44,6 +50,8 @@ struct URDF2PhysXCachedData
int m_currentMultiBodyLinkIndex; int m_currentMultiBodyLinkIndex;
physx::PxArticulationReducedCoordinate* m_articulation; physx::PxArticulationReducedCoordinate* m_articulation;
physx::PxRigidStatic* m_rigidStatic;
physx::PxRigidDynamic* m_rigidDynamic;
btAlignedObjectArray<physx::PxTransform> m_linkTransWorldSpace; btAlignedObjectArray<physx::PxTransform> m_linkTransWorldSpace;
btAlignedObjectArray<int> m_urdfLinkIndex; btAlignedObjectArray<int> m_urdfLinkIndex;
@@ -237,7 +245,7 @@ static physx::PxConvexMesh* createPhysXConvex(physx::PxU32 numVerts, const physx
int convertLinkPhysXShapes(const URDFImporterInterface& u2b, URDF2PhysXCachedData& cache, ArticulationCreationInterface& creation, int urdfLinkIndex, const char* pathPrefix, const btTransform& localInertiaFrame, int convertLinkPhysXShapes(const URDFImporterInterface& u2b, URDF2PhysXCachedData& cache, ArticulationCreationInterface& creation, int urdfLinkIndex, const char* pathPrefix, const btTransform& localInertiaFrame,
physx::PxArticulationReducedCoordinate* articulation, int mbLinkIndex, physx::PxArticulationLink* linkPtr) physx::PxArticulationReducedCoordinate* articulation, int mbLinkIndex, physx::PxRigidActor* linkPtr)
{ {
int numShapes = 0; int numShapes = 0;
@@ -362,9 +370,61 @@ int convertLinkPhysXShapes(const URDFImporterInterface& u2b, URDF2PhysXCachedDat
numShapes++; numShapes++;
break; break;
} }
case URDF_GEOM_MESH:
{
btAlignedObjectArray<physx::PxVec3> vertices;
GLInstanceGraphicsShape* glmesh = 0;
switch (collision->m_geometry.m_meshFileType)
{
case UrdfGeometry::FILE_OBJ:
{
char relativeFileName[1024];
char pathPrefix[1024];
pathPrefix[0] = 0;
if (creation.m_fileIO->findResourcePath(collision->m_geometry.m_meshFileName.c_str(), relativeFileName, 1024))
{
b3FileUtils::extractPath(relativeFileName, pathPrefix, 1024);
}
glmesh = LoadMeshFromObj(collision->m_geometry.m_meshFileName.c_str(), pathPrefix, creation.m_fileIO);
break;
}
case UrdfGeometry::FILE_STL:
{
glmesh = LoadMeshFromSTL(collision->m_geometry.m_meshFileName.c_str(), creation.m_fileIO);
break;
}
default:
{
}
}
if (glmesh && glmesh->m_numvertices)
{
for (int i = 0; i < glmesh->m_numvertices; i++)
{
physx::PxVec3 vert(
glmesh->m_vertices->at(i).xyzw[0] * collision->m_geometry.m_meshScale[0],
glmesh->m_vertices->at(i).xyzw[1] * collision->m_geometry.m_meshScale[1],
glmesh->m_vertices->at(i).xyzw[2] * collision->m_geometry.m_meshScale[2]);
vertices.push_back(vert);
}
physx::PxConvexMesh* convexMesh = createPhysXConvex(vertices.size(), &vertices[0], creation);
shape = physx::PxRigidActorExt::createExclusiveShape(*linkPtr,
physx::PxConvexMeshGeometry(convexMesh), *material);
shape->setLocalPose(tr);
cache.m_geomLocalPoses.push_back(tr);
numShapes++;
}
break;
}
default: default:
{ {
printf("unknown physx shape\n");
} }
} }
@@ -390,7 +450,7 @@ btTransform ConvertURDF2PhysXInternal(
ArticulationCreationInterface& creation, ArticulationCreationInterface& creation,
URDF2PhysXCachedData& cache, int urdfLinkIndex, URDF2PhysXCachedData& cache, int urdfLinkIndex,
const btTransform& parentTransformInWorldSpace, const btTransform& parentTransformInWorldSpace,
bool createMultiBody, const char* pathPrefix, bool createActiculation, const char* pathPrefix,
int flags, int flags,
UrdfVisualShapeCache2* cachedLinkGraphicsShapesIn, UrdfVisualShapeCache2* cachedLinkGraphicsShapesIn,
UrdfVisualShapeCache2* cachedLinkGraphicsShapesOut, UrdfVisualShapeCache2* cachedLinkGraphicsShapesOut,
@@ -562,17 +622,44 @@ btTransform ConvertURDF2PhysXInternal(
btTransform inertialFrameInWorldSpace = linkTransformInWorldSpace * localInertialFrame; btTransform inertialFrameInWorldSpace = linkTransformInWorldSpace * localInertialFrame;
bool canSleep = (flags & CUF_ENABLE_SLEEPING) != 0; bool canSleep = (flags & CUF_ENABLE_SLEEPING) != 0;
physx::PxArticulationLink* linkPtr = 0; physx::PxRigidActor* linkPtr = 0;
if (!createMultiBody) physx::PxRigidBody* rbLinkPtr = 0;
physx::PxTransform tr;
tr.p = physx::PxVec3(linkTransformInWorldSpace.getOrigin().x(), linkTransformInWorldSpace.getOrigin().y(), linkTransformInWorldSpace.getOrigin().z());
tr.q = physx::PxQuat(linkTransformInWorldSpace.getRotation().x(), linkTransformInWorldSpace.getRotation().y(), linkTransformInWorldSpace.getRotation().z(), linkTransformInWorldSpace.getRotation().w());
bool isFixedBase = (mass == 0); //todo: figure out when base is fixed
if (!createActiculation)
{ {
if (isFixedBase)
{
physx::PxRigidStatic* s = creation.m_physics->createRigidStatic(tr);
if ((cache.m_rigidStatic == 0) && (cache.m_rigidDynamic == 0))
{
cache.m_rigidStatic = s;
}
linkPtr = s;
}
else
{
physx::PxRigidDynamic* d = creation.m_physics->createRigidDynamic(tr);
linkPtr = d;
if ((cache.m_rigidStatic == 0) && (cache.m_rigidDynamic == 0))
{
cache.m_rigidDynamic = d;
}
rbLinkPtr = d;
}
} }
else else
{ {
physx::PxTransform tr;
tr.p = physx::PxVec3(linkTransformInWorldSpace.getOrigin().x(), linkTransformInWorldSpace.getOrigin().y(), linkTransformInWorldSpace.getOrigin().z());
tr.q = physx::PxQuat(linkTransformInWorldSpace.getRotation().x(), linkTransformInWorldSpace.getRotation().y(), linkTransformInWorldSpace.getRotation().z(), linkTransformInWorldSpace.getRotation().w());
cache.m_linkTransWorldSpace.push_back(tr); cache.m_linkTransWorldSpace.push_back(tr);
cache.m_urdfLinkIndex.push_back(urdfLinkIndex); cache.m_urdfLinkIndex.push_back(urdfLinkIndex);
@@ -582,7 +669,7 @@ btTransform ConvertURDF2PhysXInternal(
if (cache.m_articulation == 0) if (cache.m_articulation == 0)
{ {
bool isFixedBase = (mass == 0); //todo: figure out when base is fixed
cache.m_articulation = creation.m_physics->createArticulationReducedCoordinate(); cache.m_articulation = creation.m_physics->createArticulationReducedCoordinate();
@@ -596,6 +683,7 @@ btTransform ConvertURDF2PhysXInternal(
physx::PxArticulationLink* base = cache.m_articulation->createLink(NULL,tr); physx::PxArticulationLink* base = cache.m_articulation->createLink(NULL,tr);
linkPtr = base; linkPtr = base;
rbLinkPtr = base;
//physx::PxRigidActorExt::createExclusiveShape(*base, PxBoxGeometry(0.5f, 0.25f, 1.5f), *gMaterial); //physx::PxRigidActorExt::createExclusiveShape(*base, PxBoxGeometry(0.5f, 0.25f, 1.5f), *gMaterial);
@@ -628,14 +716,19 @@ btTransform ConvertURDF2PhysXInternal(
#endif #endif
cache.registerMultiBody(urdfLinkIndex, base, inertialFrameInWorldSpace, mass, localInertiaDiagonal, localInertialFrame);
} }
else else
{ {
physx::PxArticulationLink* parentLink = cache.getPhysxLinkFromLink(urdfParentIndex); physx::PxArticulationLink* parentLink = cache.getPhysxLinkFromLink(urdfParentIndex);
linkPtr = cache.m_articulation->createLink(parentLink, tr);
physx::PxArticulationJointReducedCoordinate* joint = static_cast<physx::PxArticulationJointReducedCoordinate*>(linkPtr->getInboundJoint()); physx::PxArticulationLink* childLink = cache.m_articulation->createLink(parentLink, tr);
linkPtr = childLink;
rbLinkPtr = childLink;
physx::PxArticulationJointReducedCoordinate* joint = static_cast<physx::PxArticulationJointReducedCoordinate*>(childLink->getInboundJoint());
switch (jointType) switch (jointType)
{ {
@@ -691,25 +784,28 @@ btTransform ConvertURDF2PhysXInternal(
joint->setParentPose(parentPose); joint->setParentPose(parentPose);
joint->setChildPose(childPose); joint->setChildPose(childPose);
cache.registerMultiBody(urdfLinkIndex, childLink, inertialFrameInWorldSpace, mass, localInertiaDiagonal, localInertialFrame);
} }
cache.registerMultiBody(urdfLinkIndex, linkPtr, inertialFrameInWorldSpace, mass, localInertiaDiagonal, localInertialFrame);
if (linkPtr)
{
//todo: mem leaks
MyPhysXUserData* userData = new MyPhysXUserData();
userData->m_graphicsUniqueId = graphicsIndex;
linkPtr->userData = userData;
}
} }
if (linkPtr)
{
//todo: mem leaks
MyPhysXUserData* userData = new MyPhysXUserData();
userData->m_graphicsUniqueId = graphicsIndex;
linkPtr->userData = userData;
}
//create collision shapes //create collision shapes
//physx::PxRigidActorExt::createExclusiveShape //physx::PxRigidActorExt::createExclusiveShape
convertLinkPhysXShapes(u2b, cache, creation, urdfLinkIndex, pathPrefix, localInertialFrame, cache.m_articulation, mbLinkIndex, linkPtr); convertLinkPhysXShapes(u2b, cache, creation, urdfLinkIndex, pathPrefix, localInertialFrame, cache.m_articulation, mbLinkIndex, linkPtr);
physx::PxRigidBodyExt::updateMassAndInertia(*linkPtr, mass); physx::PxRigidBodyExt::updateMassAndInertia(*rbLinkPtr, mass);
//base->setMass(massOut); //base->setMass(massOut);
@@ -727,7 +823,7 @@ btTransform ConvertURDF2PhysXInternal(
bool disableParentCollision = true; bool disableParentCollision = true;
if (createMultiBody && cache.m_articulation) if (createActiculation && cache.m_articulation)
{ {
#if 0 #if 0
cache.m_bulletMultiBody->getLink(mbLinkIndex).m_jointDamping = jointDamping; cache.m_bulletMultiBody->getLink(mbLinkIndex).m_jointDamping = jointDamping;
@@ -741,7 +837,7 @@ btTransform ConvertURDF2PhysXInternal(
} }
if (createMultiBody) if (createActiculation)
{ {
} }
@@ -762,7 +858,7 @@ btTransform ConvertURDF2PhysXInternal(
{ {
int urdfChildLinkIndex = urdfChildIndices[i]; int urdfChildLinkIndex = urdfChildIndices[i];
ConvertURDF2PhysXInternal(u2b, creation, cache, urdfChildLinkIndex, linkTransformInWorldSpace, createMultiBody, pathPrefix, flags, cachedLinkGraphicsShapesIn, cachedLinkGraphicsShapesOut, recursive); ConvertURDF2PhysXInternal(u2b, creation, cache, urdfChildLinkIndex, linkTransformInWorldSpace, createActiculation, pathPrefix, flags, cachedLinkGraphicsShapesIn, cachedLinkGraphicsShapesOut, recursive);
} }
} }
return linkTransformInWorldSpace; return linkTransformInWorldSpace;
@@ -774,7 +870,7 @@ btTransform ConvertURDF2PhysXInternal(
physx::PxArticulationReducedCoordinate* URDF2PhysX(physx::PxFoundation* foundation, physx::PxPhysics* physics, physx::PxCooking* cooking, physx::PxScene* scene, class PhysXURDFImporter& u2p, int flags, const char* pathPrefix, const btTransform& rootTransformInWorldSpace, struct CommonFileIOInterface* fileIO) physx::PxBase* URDF2PhysX(physx::PxFoundation* foundation, physx::PxPhysics* physics, physx::PxCooking* cooking, physx::PxScene* scene, class PhysXURDFImporter& u2p, int flags, const char* pathPrefix, const btTransform& rootTransformInWorldSpace, struct CommonFileIOInterface* fileIO, bool createActiculation)
{ {
URDF2PhysXCachedData cache; URDF2PhysXCachedData cache;
InitURDF2BulletCache(u2p, cache, flags); InitURDF2BulletCache(u2p, cache, flags);
@@ -792,13 +888,13 @@ physx::PxArticulationReducedCoordinate* URDF2PhysX(physx::PxFoundation* foundati
creation.m_scene = scene; creation.m_scene = scene;
creation.m_fileIO = fileIO; creation.m_fileIO = fileIO;
bool createMultiBody = true;
bool recursive = (flags & CUF_MAINTAIN_LINK_ORDER) == 0; bool recursive = (flags & CUF_MAINTAIN_LINK_ORDER) == 0;
if (recursive) if (recursive)
{ {
ConvertURDF2PhysXInternal(u2p, creation, cache, urdfLinkIndex, rootTransformInWorldSpace, createMultiBody, pathPrefix, flags, &cachedLinkGraphicsShapes, &cachedLinkGraphicsShapesOut, recursive); ConvertURDF2PhysXInternal(u2p, creation, cache, urdfLinkIndex, rootTransformInWorldSpace, createActiculation, pathPrefix, flags, &cachedLinkGraphicsShapes, &cachedLinkGraphicsShapesOut, recursive);
} }
else else
@@ -820,7 +916,7 @@ physx::PxArticulationReducedCoordinate* URDF2PhysX(physx::PxFoundation* foundati
int urdfLinkIndex = allIndices[i].m_index; int urdfLinkIndex = allIndices[i].m_index;
int parentIndex = allIndices[i].m_parentIndex; int parentIndex = allIndices[i].m_parentIndex;
btTransform parentTr = parentIndex >= 0 ? parentTransforms[parentIndex] : rootTransformInWorldSpace; btTransform parentTr = parentIndex >= 0 ? parentTransforms[parentIndex] : rootTransformInWorldSpace;
btTransform tr = ConvertURDF2BulletInternal(u2b, creation, cache, urdfLinkIndex, parentTr, world1, createMultiBody, pathPrefix, flags, cachedLinkGraphicsShapes, &cachedLinkGraphicsShapesOut, recursive); btTransform tr = ConvertURDF2BulletInternal(u2b, creation, cache, urdfLinkIndex, parentTr, world1, createActiculation, pathPrefix, flags, cachedLinkGraphicsShapes, &cachedLinkGraphicsShapesOut, recursive);
if ((urdfLinkIndex + 1) >= parentTransforms.size()) if ((urdfLinkIndex + 1) >= parentTransforms.size())
{ {
parentTransforms.resize(urdfLinkIndex + 1); parentTransforms.resize(urdfLinkIndex + 1);
@@ -838,7 +934,7 @@ physx::PxArticulationReducedCoordinate* URDF2PhysX(physx::PxFoundation* foundati
#endif #endif
if (scene && cache.m_articulation) if (cache.m_articulation)
{ {
#ifdef DEBUG_ARTICULATIONS #ifdef DEBUG_ARTICULATIONS
printf("\n-----------------\n"); printf("\n-----------------\n");
@@ -902,7 +998,19 @@ physx::PxArticulationReducedCoordinate* URDF2PhysX(physx::PxFoundation* foundati
scene->addArticulation(*cache.m_articulation); scene->addArticulation(*cache.m_articulation);
} }
return cache.m_articulation;
} }
return cache.m_articulation; if (cache.m_rigidStatic)
{
scene->addActor(*cache.m_rigidStatic);
return cache.m_rigidStatic;
}
if (cache.m_rigidDynamic)
{
scene->addActor(*cache.m_rigidDynamic);
return cache.m_rigidDynamic;
}
return NULL;
} }

View File

@@ -6,6 +6,7 @@
namespace physx namespace physx
{ {
class PxBase;
class PxFoundation; class PxFoundation;
class PxPhysics; class PxPhysics;
class PxDefaultCpuDispatcher; class PxDefaultCpuDispatcher;
@@ -20,6 +21,6 @@ struct UrdfVisualShapeCache2
b3AlignedObjectArray<int> m_cachedUrdfLinkVisualShapeIndices; b3AlignedObjectArray<int> m_cachedUrdfLinkVisualShapeIndices;
}; };
physx::PxArticulationReducedCoordinate* URDF2PhysX(physx::PxFoundation* foundation, physx::PxPhysics* physics, physx::PxCooking* cooking, physx::PxScene* scene, class PhysXURDFImporter& u2p, int flags, const char* pathPrefix, const class btTransform& rootTransformInWorldSpace,struct CommonFileIOInterface* fileIO); physx::PxBase* URDF2PhysX(physx::PxFoundation* foundation, physx::PxPhysics* physics, physx::PxCooking* cooking, physx::PxScene* scene, class PhysXURDFImporter& u2p, int flags, const char* pathPrefix, const class btTransform& rootTransformInWorldSpace,struct CommonFileIOInterface* fileIO, bool createActiculation);
#endif //URDF2PHYSX_H #endif //URDF2PHYSX_H

View File

@@ -1,14 +1,49 @@
import pybullet as p import pybullet as p
import time import time
import math
p.connect(p.PhysX) usePhysX = True
p.loadPlugin("eglRendererPlugin") if usePhysX:
p.connect(p.PhysX)
p.loadPlugin("eglRendererPlugin")
else:
p.connect(p.GUI)
p.loadURDF("plane.urdf") p.loadURDF("plane.urdf")
for i in range (50):
p.loadURDF("r2d2.urdf",[0,0,1+i*2]) for i in range (10):
sphere = p.loadURDF("marble_cube.urdf",[0,-1,1+i*1], useMaximalCoordinates=False)
p.changeDynamics(sphere ,-1, mass=1000)
door = p.loadURDF("door.urdf",[0,0,1])
p.changeDynamics(door ,1, linearDamping=0, angularDamping=0, jointDamping=0, mass=1)
print("numJoints = ", p.getNumJoints(door))
p.setGravity(0,0,-10) p.setGravity(0,0,-10)
position_control = True
angle = math.pi*0.25
p.resetJointState(door,1,angle)
angleread = p.getJointState(door,1)
print("angleread = ",angleread)
prevTime = time.time()
angle = math.pi*0.5
while (1): while (1):
p.stepSimulation()
time.sleep(1./240.) curTime = time.time()
diff = curTime - prevTime
#every second, swap target angle
if (diff>1):
angle = - angle
prevTime = curTime
if position_control:
p.setJointMotorControl2(door,1,p.POSITION_CONTROL, targetPosition = angle, positionGain=10.1, velocityGain=1, force=11.001)
else:
p.setJointMotorControl2(door,1,p.VELOCITY_CONTROL, targetVelocity=1, force=1011)
p.stepSimulation()
time.sleep(1./240.)

View File

@@ -0,0 +1,52 @@
{
"AgentType": "PPO",
"ActorNet": "fc_2layers_1024units",
"ActorStepsize": 0.0000025,
"ActorMomentum": 0.9,
"ActorWeightDecay": 0.0005,
"ActorInitOutputScale": 0.01,
"CriticNet": "fc_2layers_1024units",
"CriticStepsize": 0.01,
"CriticMomentum": 0.9,
"CriticWeightDecay": 0,
"UpdatePeriod": 1,
"ItersPerUpdate": 1,
"Discount": 0.95,
"BatchSize": 4096,
"MiniBatchSize": 256,
"Epochs": 1,
"ReplayBufferSize": 500000,
"InitSamples": 1,
"NormalizerSamples": 1000000,
"RatioClip": 0.2,
"NormAdvClip": 4,
"TDLambda": 0.95,
"OutputIters": 10,
"IntOutputIters": 400,
"TestEpisodes": 32,
"ExpAnnealSamples": 64000000,
"ExpParamsBeg":
{
"Rate": 1,
"InitActionRate": 1,
"Noise": 0.05,
"NoiseInternal": 0,
"Temp": 0.1
},
"ExpParamsEnd":
{
"Rate": 0.2,
"InitActionRate": 0.01,
"Noise": 0.05,
"NoiseInternal": 0,
"Temp": 0.001
}
}

View File

@@ -0,0 +1,52 @@
import numpy as np
import sys
import os
import inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
print("parentdir=",parentdir)
from pybullet_envs.deep_mimic.env.pybullet_deep_mimic_env import PyBulletDeepMimicEnv
from pybullet_envs.deep_mimic.learning.rl_world import RLWorld
from pybullet_utils.logger import Logger
from testrl import update_world, update_timestep, build_world
import pybullet_utils.mpi_util as MPIUtil
args = []
world = None
def run():
global update_timestep
global world
done = False
while not (done):
update_world(world, update_timestep)
return
def shutdown():
global world
Logger.print2('Shutting down...')
world.shutdown()
return
def main():
global args
global world
# Command line arguments
args = sys.argv[1:]
enable_draw = False
world = build_world(args, enable_draw)
run()
shutdown()
return
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,6 @@
from enum import Enum
class ActionSpace(Enum):
Null = 0
Continuous = 1
Discrete = 2

View File

@@ -0,0 +1,13 @@
from abc import ABC, abstractmethod
import numpy as np
from enum import Enum
class Env(ABC):
class Terminate(Enum):
Null = 0
Fail = 1
Succ = 2
def __init__(self, args, enable_draw):
self.enable_draw = enable_draw
return

View File

@@ -0,0 +1,249 @@
from pybullet_envs.minitaur.envs import bullet_client
import math
class HumanoidPoseInterpolator(object):
def __init__(self):
pass
def Reset(self):
self._basePos = [0,0,0]
self._baseLinVel = [0,0,0]
self._baseOrn = [0,0,0,1]
self._baseAngVel = [0,0,0]
self._chestRot = [0,0,0,1]
self._chestVel = [0,0,0]
self._neckRot = [0,0,0,1]
self._neckVel = [0,0,0]
self._rightHipRot = [0,0,0,1]
self._rightHipVel = [0,0,0]
self._rightKneeRot = [0]
self._rightKneeVel = [0]
self._rightAnkleRot = [0,0,0,1]
self._rightAnkleVel = [0,0,0]
self._rightShoulderRot = [0,0,0,1]
self._rightShoulderVel = [0,0,0]
self._rightElbowRot = [0]
self._rightElbowVel = [0]
self._leftHipRot = [0,0,0,1]
self._leftHipVel = [0,0,0]
self._leftKneeRot = [0]
self._leftKneeVel = [0]
self._leftAnkleRot = [0,0,0,1]
self._leftAnkleVel = [0,0,0]
self._leftShoulderRot = [0,0,0,1]
self._leftShoulderVel = [0,0,0]
self._leftElbowRot = [0]
self._leftElbowVel = [0]
def ComputeLinVel(self,posStart, posEnd, deltaTime):
vel = [(posEnd[0]-posStart[0])/deltaTime,(posEnd[1]-posStart[1])/deltaTime,(posEnd[2]-posStart[2])/deltaTime]
return vel
def ComputeAngVel(self,ornStart, ornEnd, deltaTime, bullet_client):
dorn = bullet_client.getDifferenceQuaternion(ornStart,ornEnd)
axis,angle = bullet_client.getAxisAngleFromQuaternion(dorn)
angVel = [(axis[0]*angle)/deltaTime,(axis[1]*angle)/deltaTime,(axis[2]*angle)/deltaTime]
return angVel
def NormalizeVector(self, vec):
length2 = orn[0]*orn[0]+orn[1]*orn[1]+orn[2]*orn[2]
if (length2>0):
length = math.sqrt(length2)
def NormalizeQuaternion(self, orn):
length2 = orn[0]*orn[0]+orn[1]*orn[1]+orn[2]*orn[2]+orn[3]*orn[3]
if (length2>0):
length = math.sqrt(length2)
orn[0]/=length
orn[1]/=length
orn[2]/=length
orn[3]/=length
return orn
#print("Normalize? length=",length)
def PostProcessMotionData(self, frameData):
baseOrn1Start = [frameData[5],frameData[6], frameData[7],frameData[4]]
chestRotStart = [frameData[9],frameData[10],frameData[11],frameData[8]]
neckRotStart = [frameData[13],frameData[14],frameData[15],frameData[12]]
rightHipRotStart = [frameData[17],frameData[18],frameData[19],frameData[16]]
rightAnkleRotStart = [frameData[22],frameData[23],frameData[24],frameData[21]]
rightShoulderRotStart = [frameData[26],frameData[27],frameData[28],frameData[25]]
leftHipRotStart = [frameData[31],frameData[32],frameData[33],frameData[30]]
leftAnkleRotStart = [frameData[36],frameData[37],frameData[38],frameData[35]]
leftShoulderRotStart = [frameData[40],frameData[41],frameData[42],frameData[39]]
def GetPose(self):
pose = [ self._basePos[0],self._basePos[1],self._basePos[2],
self._baseOrn[0],self._baseOrn[1],self._baseOrn[2],self._baseOrn[3],
self._chestRot[0],self._chestRot[1],self._chestRot[2],self._chestRot[3],
self._neckRot[0],self._neckRot[1],self._neckRot[2],self._neckRot[3],
self._rightHipRot[0],self._rightHipRot[1],self._rightHipRot[2],self._rightHipRot[3],
self._rightKneeRot[0],
self._rightAnkleRot[0],self._rightAnkleRot[1],self._rightAnkleRot[2],self._rightAnkleRot[3],
self._rightShoulderRot[0],self._rightShoulderRot[1],self._rightShoulderRot[2],self._rightShoulderRot[3],
self._rightElbowRot[0],
self._leftHipRot[0],self._leftHipRot[1],self._leftHipRot[2],self._leftHipRot[3],
self._leftKneeRot[0],
self._leftAnkleRot[0],self._leftAnkleRot[1],self._leftAnkleRot[2],self._leftAnkleRot[3],
self._leftShoulderRot[0],self._leftShoulderRot[1],self._leftShoulderRot[2],self._leftShoulderRot[3],
self._leftElbowRot[0] ]
return pose
def Slerp(self, frameFraction, frameData, frameDataNext,bullet_client ):
keyFrameDuration = frameData[0]
basePos1Start = [frameData[1],frameData[2],frameData[3]]
basePos1End = [frameDataNext[1],frameDataNext[2],frameDataNext[3]]
self._basePos = [basePos1Start[0]+frameFraction*(basePos1End[0]-basePos1Start[0]),
basePos1Start[1]+frameFraction*(basePos1End[1]-basePos1Start[1]),
basePos1Start[2]+frameFraction*(basePos1End[2]-basePos1Start[2])]
self._baseLinVel = self.ComputeLinVel(basePos1Start,basePos1End, keyFrameDuration)
baseOrn1Start = [frameData[5],frameData[6], frameData[7],frameData[4]]
baseOrn1Next = [frameDataNext[5],frameDataNext[6], frameDataNext[7],frameDataNext[4]]
self._baseOrn = bullet_client.getQuaternionSlerp(baseOrn1Start,baseOrn1Next,frameFraction)
self._baseAngVel = self.ComputeAngVel(baseOrn1Start,baseOrn1Next, keyFrameDuration, bullet_client)
##pre-rotate to make z-up
#y2zPos=[0,0,0.0]
#y2zOrn = p.getQuaternionFromEuler([1.57,0,0])
#basePos,baseOrn = p.multiplyTransforms(y2zPos, y2zOrn,basePos1,baseOrn1)
chestRotStart = [frameData[9],frameData[10],frameData[11],frameData[8]]
chestRotEnd = [frameDataNext[9],frameDataNext[10],frameDataNext[11],frameDataNext[8]]
self._chestRot = bullet_client.getQuaternionSlerp(chestRotStart,chestRotEnd,frameFraction)
self._chestVel = self.ComputeAngVel(chestRotStart,chestRotEnd,keyFrameDuration,bullet_client)
neckRotStart = [frameData[13],frameData[14],frameData[15],frameData[12]]
neckRotEnd= [frameDataNext[13],frameDataNext[14],frameDataNext[15],frameDataNext[12]]
self._neckRot = bullet_client.getQuaternionSlerp(neckRotStart,neckRotEnd,frameFraction)
self._neckVel = self.ComputeAngVel(neckRotStart,neckRotEnd,keyFrameDuration,bullet_client)
rightHipRotStart = [frameData[17],frameData[18],frameData[19],frameData[16]]
rightHipRotEnd = [frameDataNext[17],frameDataNext[18],frameDataNext[19],frameDataNext[16]]
self._rightHipRot = bullet_client.getQuaternionSlerp(rightHipRotStart,rightHipRotEnd,frameFraction)
self._rightHipVel = self.ComputeAngVel(rightHipRotStart,rightHipRotEnd,keyFrameDuration,bullet_client)
rightKneeRotStart = [frameData[20]]
rightKneeRotEnd = [frameDataNext[20]]
self._rightKneeRot = [rightKneeRotStart[0]+frameFraction*(rightKneeRotEnd[0]-rightKneeRotStart[0])]
self._rightKneeVel = [(rightKneeRotEnd[0]-rightKneeRotStart[0])/keyFrameDuration]
rightAnkleRotStart = [frameData[22],frameData[23],frameData[24],frameData[21]]
rightAnkleRotEnd = [frameDataNext[22],frameDataNext[23],frameDataNext[24],frameDataNext[21]]
self._rightAnkleRot = bullet_client.getQuaternionSlerp(rightAnkleRotStart,rightAnkleRotEnd,frameFraction)
self._rightAnkleVel = self.ComputeAngVel(rightAnkleRotStart,rightAnkleRotEnd,keyFrameDuration,bullet_client)
rightShoulderRotStart = [frameData[26],frameData[27],frameData[28],frameData[25]]
rightShoulderRotEnd = [frameDataNext[26],frameDataNext[27],frameDataNext[28],frameDataNext[25]]
self._rightShoulderRot = bullet_client.getQuaternionSlerp(rightShoulderRotStart,rightShoulderRotEnd,frameFraction)
self._rightShoulderVel = self.ComputeAngVel(rightShoulderRotStart,rightShoulderRotEnd, keyFrameDuration,bullet_client)
rightElbowRotStart = [frameData[29]]
rightElbowRotEnd = [frameDataNext[29]]
self._rightElbowRot = [rightElbowRotStart[0]+frameFraction*(rightElbowRotEnd[0]-rightElbowRotStart[0])]
self._rightElbowVel = [(rightElbowRotEnd[0]-rightElbowRotStart[0])/keyFrameDuration]
leftHipRotStart = [frameData[31],frameData[32],frameData[33],frameData[30]]
leftHipRotEnd = [frameDataNext[31],frameDataNext[32],frameDataNext[33],frameDataNext[30]]
self._leftHipRot = bullet_client.getQuaternionSlerp(leftHipRotStart,leftHipRotEnd,frameFraction)
self._leftHipVel = self.ComputeAngVel(leftHipRotStart, leftHipRotEnd,keyFrameDuration,bullet_client)
leftKneeRotStart = [frameData[34]]
leftKneeRotEnd = [frameDataNext[34]]
self._leftKneeRot = [leftKneeRotStart[0] +frameFraction*(leftKneeRotEnd[0]-leftKneeRotStart[0]) ]
self._leftKneeVel = [(leftKneeRotEnd[0]-leftKneeRotStart[0])/keyFrameDuration]
leftAnkleRotStart = [frameData[36],frameData[37],frameData[38],frameData[35]]
leftAnkleRotEnd = [frameDataNext[36],frameDataNext[37],frameDataNext[38],frameDataNext[35]]
self._leftAnkleRot = bullet_client.getQuaternionSlerp(leftAnkleRotStart,leftAnkleRotEnd,frameFraction)
self._leftAnkleVel = self.ComputeAngVel(leftAnkleRotStart,leftAnkleRotEnd,keyFrameDuration,bullet_client)
leftShoulderRotStart = [frameData[40],frameData[41],frameData[42],frameData[39]]
leftShoulderRotEnd = [frameDataNext[40],frameDataNext[41],frameDataNext[42],frameDataNext[39]]
self._leftShoulderRot = bullet_client.getQuaternionSlerp(leftShoulderRotStart,leftShoulderRotEnd,frameFraction)
self._leftShoulderVel = self.ComputeAngVel(leftShoulderRotStart,leftShoulderRotEnd,keyFrameDuration,bullet_client)
leftElbowRotStart = [frameData[43]]
leftElbowRotEnd = [frameDataNext[43]]
self._leftElbowRot = [leftElbowRotStart[0]+frameFraction*(leftElbowRotEnd[0]-leftElbowRotStart[0])]
self._leftElbowVel = [(leftElbowRotEnd[0]-leftElbowRotStart[0])/keyFrameDuration]
pose = self.GetPose()
return pose
def ConvertFromAction(self, pybullet_client, action):
#turn action into pose
self.Reset()#?? needed?
index=0
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
self._chestRot = pybullet_client.getQuaternionFromAxisAngle(axis,angle)
#print("pose._chestRot=",pose._chestRot)
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
self._neckRot = pybullet_client.getQuaternionFromAxisAngle(axis,angle)
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
self._rightHipRot = pybullet_client.getQuaternionFromAxisAngle(axis,angle)
angle = action[index]
index+=1
self._rightKneeRot = [angle]
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
self._rightAnkleRot = pybullet_client.getQuaternionFromAxisAngle(axis,angle)
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
self._rightShoulderRot = pybullet_client.getQuaternionFromAxisAngle(axis,angle)
angle = action[index]
index+=1
self._rightElbowRot = [angle]
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
self._leftHipRot = pybullet_client.getQuaternionFromAxisAngle(axis,angle)
angle = action[index]
index+=1
self._leftKneeRot = [angle]
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
self._leftAnkleRot = pybullet_client.getQuaternionFromAxisAngle(axis,angle)
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
self._leftShoulderRot = pybullet_client.getQuaternionFromAxisAngle(axis,angle)
angle = action[index]
index+=1
self._leftElbowRot = [angle]
pose = self.GetPose()
return pose

View File

@@ -0,0 +1,453 @@
from pybullet_envs.deep_mimic.env import pd_controller_stable
from pybullet_envs.deep_mimic.env import humanoid_pose_interpolator
import math
chest=1
neck=2
rightHip=3
rightKnee=4
rightAnkle=5
rightShoulder=6
rightElbow=7
leftHip=9
leftKnee=10
leftAnkle=11
leftShoulder=12
leftElbow=13
jointFrictionForce = 0
class HumanoidStablePD(object):
def __init__(self, pybullet_client, mocap_data, timeStep, useFixedBase=True):
self._pybullet_client = pybullet_client
self._mocap_data = mocap_data
print("LOADING humanoid!")
self._sim_model = self._pybullet_client.loadURDF(
"humanoid/humanoid.urdf", [0,0.85,0],globalScaling=0.25, useFixedBase=useFixedBase, flags=self._pybullet_client.URDF_MAINTAIN_LINK_ORDER)
self._kin_model = self._pybullet_client.loadURDF(
"humanoid/humanoid.urdf", [0,2.85,0],globalScaling=0.25, useFixedBase=True, flags=self._pybullet_client.URDF_MAINTAIN_LINK_ORDER)
self._pybullet_client.changeDynamics(self._sim_model, -1, lateralFriction=0.9)
for j in range (self._pybullet_client.getNumJoints(self._sim_model)):
self._pybullet_client.changeDynamics(self._sim_model, j, lateralFriction=0.9)
self._pybullet_client.changeDynamics(self._sim_model, -1, linearDamping=0, angularDamping=0)
self._pybullet_client.changeDynamics(self._kin_model, -1, linearDamping=0, angularDamping=0)
self._poseInterpolator = humanoid_pose_interpolator.HumanoidPoseInterpolator()
for i in range (self._mocap_data.NumFrames()-1):
frameData = self._mocap_data._motion_data['Frames'][i]
self._poseInterpolator.PostProcessMotionData(frameData)
self._stablePD = pd_controller_stable.PDControllerStableMultiDof(self._pybullet_client)
self._timeStep = timeStep
self._kpOrg = [0,0,0,0,0,0,0,1000,1000,1000,1000,100,100,100,100,500,500,500,500,500,400,400,400,400,400,400,400,400,300,500,500,500,500,500,400,400,400,400,400,400,400,400,300]
self._kdOrg = [0,0,0,0,0,0,0,100,100,100,100,10,10,10,10,50,50,50,50,50,40,40,40,40,40,40,40,40,30,50,50,50,50,50,40,40,40,40,40,40,40,40,30]
self._jointIndicesAll = [chest,neck, rightHip,rightKnee,rightAnkle,rightShoulder,rightElbow,leftHip,leftKnee,leftAnkle,leftShoulder,leftElbow]
for j in self._jointIndicesAll:
#self._pybullet_client.setJointMotorControlMultiDof(self._sim_model, j, self._pybullet_client.POSITION_CONTROL, force=[1,1,1])
self._pybullet_client.setJointMotorControl2(self._sim_model, j, self._pybullet_client.POSITION_CONTROL, targetPosition=0, positionGain=0, targetVelocity=0,force=jointFrictionForce)
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model, j, self._pybullet_client.POSITION_CONTROL,targetPosition=[0,0,0,1], targetVelocity=[0,0,0], positionGain=0,velocityGain=1,force=[jointFrictionForce,jointFrictionForce,jointFrictionForce])
self._pybullet_client.setJointMotorControl2(self._kin_model, j, self._pybullet_client.POSITION_CONTROL, targetPosition=0, positionGain=0, targetVelocity=0,force=0)
self._pybullet_client.setJointMotorControlMultiDof(self._kin_model, j, self._pybullet_client.POSITION_CONTROL,targetPosition=[0,0,0,1], targetVelocity=[0,0,0], positionGain=0,velocityGain=1,force=[jointFrictionForce,jointFrictionForce,0])
self._jointDofCounts=[4,4,4,1,4,4,1,4,1,4,4,1]
#only those body parts/links are allowed to touch the ground, otherwise the episode terminates
self._allowed_body_parts=[5,11]
#[x,y,z] base position and [x,y,z,w] base orientation!
self._totalDofs = 7
for dof in self._jointDofCounts:
self._totalDofs += dof
self.setSimTime(0)
self._maxForce = 6000
self.resetPose()
def resetPose(self):
print("resetPose with self._frame=", self._frame, " and self._frameFraction=",self._frameFraction)
pose = self.computePose(self._frameFraction)
self.initializePose(self._poseInterpolator, self._sim_model, initBase=True)
self.initializePose(self._poseInterpolator, self._kin_model, initBase=False)
def initializePose(self, pose, phys_model,initBase, initializeVelocity = True):
if initializeVelocity:
if initBase:
self._pybullet_client.resetBasePositionAndOrientation(phys_model, pose._basePos, pose._baseOrn)
self._pybullet_client.resetBaseVelocity(phys_model, pose._baseLinVel, pose._baseAngVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,chest,pose._chestRot, pose._chestVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,neck,pose._neckRot, pose._neckVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,rightHip,pose._rightHipRot, pose._rightHipVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,rightKnee,pose._rightKneeRot, pose._rightKneeVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,rightAnkle,pose._rightAnkleRot, pose._rightAnkleVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,rightShoulder,pose._rightShoulderRot, pose._rightShoulderVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,rightElbow, pose._rightElbowRot, pose._rightElbowVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,leftHip, pose._leftHipRot, pose._leftHipVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,leftKnee, pose._leftKneeRot, pose._leftKneeVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,leftAnkle, pose._leftAnkleRot, pose._leftAnkleVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,leftShoulder, pose._leftShoulderRot, pose._leftShoulderVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,leftElbow, pose._leftElbowRot, pose._leftElbowVel)
else:
if initBase:
self._pybullet_client.resetBasePositionAndOrientation(phys_model, pose._basePos, pose._baseOrn)
self._pybullet_client.resetJointStateMultiDof(phys_model,chest,pose._chestRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,neck,pose._neckRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,rightHip,pose._rightHipRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,rightKnee,pose._rightKneeRot, [0])
self._pybullet_client.resetJointStateMultiDof(phys_model,rightAnkle,pose._rightAnkleRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,rightShoulder,pose._rightShoulderRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,rightElbow, pose._rightElbowRot, [0])
self._pybullet_client.resetJointStateMultiDof(phys_model,leftHip, pose._leftHipRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,leftKnee, pose._leftKneeRot, [0])
self._pybullet_client.resetJointStateMultiDof(phys_model,leftAnkle, pose._leftAnkleRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,leftShoulder, pose._leftShoulderRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,leftElbow, pose._leftElbowRot, [0])
def calcCycleCount(self, simTime, cycleTime):
phases = simTime / cycleTime;
count = math.floor(phases)
loop = True
#count = (loop) ? count : cMathUtil::Clamp(count, 0, 1);
return count
def getCycleTime(self):
keyFrameDuration = self._mocap_data.KeyFrameDuraction()
cycleTime = keyFrameDuration*(self._mocap_data.NumFrames()-1)
return cycleTime
def setSimTime(self, t):
self._simTime = t
#print("SetTimeTime time =",t)
keyFrameDuration = self._mocap_data.KeyFrameDuraction()
cycleTime = self.getCycleTime()
#print("self._motion_data.NumFrames()=",self._mocap_data.NumFrames())
cycles = self.calcCycleCount(t, cycleTime)
#print("cycles=",cycles)
frameTime = t - cycles*cycleTime
if (frameTime<0):
frameTime += cycleTime
#print("keyFrameDuration=",keyFrameDuration)
#print("frameTime=",frameTime)
self._frame = int(frameTime/keyFrameDuration)
#print("self._frame=",self._frame)
self._frameNext = self._frame+1
if (self._frameNext >= self._mocap_data.NumFrames()):
self._frameNext = self._frame
self._frameFraction = (frameTime - self._frame*keyFrameDuration)/(keyFrameDuration)
def computePose(self, frameFraction):
frameData = self._mocap_data._motion_data['Frames'][self._frame]
frameDataNext = self._mocap_data._motion_data['Frames'][self._frameNext]
pose = self._poseInterpolator.Slerp(frameFraction, frameData, frameDataNext, self._pybullet_client)
return pose
def convertActionToPose(self, action):
pose = self._poseInterpolator.ConvertFromAction(self._pybullet_client, action)
return pose
def computePDForces(self, desiredPositions, desiredVelocities = None):
if desiredVelocities==None:
desiredVelocities = [0]*self._totalDofs
taus = self._stablePD.computePD(bodyUniqueId=self._sim_model,
jointIndices = self._jointIndicesAll,
desiredPositions = desiredPositions,
desiredVelocities = desiredVelocities,
kps = self._kpOrg,
kds = self._kdOrg,
maxForces = [self._maxForce]*self._totalDofs,
timeStep=self._timeStep)
return taus
def applyPDForces(self, taus):
dofIndex=7
for index in range (len(self._jointIndicesAll)):
jointIndex = self._jointIndicesAll[index]
if self._jointDofCounts[index]==4:
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model,jointIndex,self._pybullet_client.TORQUE_CONTROL,force=[taus[dofIndex+0],taus[dofIndex+1],taus[dofIndex+2]])
if self._jointDofCounts[index]==1:
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model, jointIndex, controlMode=self._pybullet_client.TORQUE_CONTROL, force=[taus[dofIndex]])
dofIndex+=self._jointDofCounts[index]
def getPhase(self):
keyFrameDuration = self._mocap_data.KeyFrameDuraction()
cycleTime = keyFrameDuration*(self._mocap_data.NumFrames()-1)
phase = self._simTime / cycleTime
phase = math.fmod(phase,1.0)
if (phase<0):
phase += 1
return phase
def buildHeadingTrans(self, rootOrn):
#align root transform 'forward' with world-space x axis
eul = self._pybullet_client.getEulerFromQuaternion(rootOrn)
refDir = [1,0,0]
rotVec = self._pybullet_client.rotateVector(rootOrn, refDir)
heading = math.atan2(-rotVec[2], rotVec[0])
heading2=eul[1]
#print("heading=",heading)
headingOrn = self._pybullet_client.getQuaternionFromAxisAngle([0,1,0],-heading)
return headingOrn
def buildOriginTrans(self):
rootPos,rootOrn = self._pybullet_client.getBasePositionAndOrientation(self._sim_model)
#print("rootPos=",rootPos, " rootOrn=",rootOrn)
invRootPos=[-rootPos[0], 0, -rootPos[2]]
#invOrigTransPos, invOrigTransOrn = self._pybullet_client.invertTransform(rootPos,rootOrn)
headingOrn = self.buildHeadingTrans(rootOrn)
#print("headingOrn=",headingOrn)
headingMat = self._pybullet_client.getMatrixFromQuaternion(headingOrn)
#print("headingMat=",headingMat)
#dummy, rootOrnWithoutHeading = self._pybullet_client.multiplyTransforms([0,0,0],headingOrn, [0,0,0], rootOrn)
#dummy, invOrigTransOrn = self._pybullet_client.multiplyTransforms([0,0,0],rootOrnWithoutHeading, invOrigTransPos, invOrigTransOrn)
invOrigTransPos, invOrigTransOrn = self._pybullet_client.multiplyTransforms( [0,0,0],headingOrn, invRootPos,[0,0,0,1])
#print("invOrigTransPos=",invOrigTransPos)
#print("invOrigTransOrn=",invOrigTransOrn)
invOrigTransMat = self._pybullet_client.getMatrixFromQuaternion(invOrigTransOrn)
#print("invOrigTransMat =",invOrigTransMat )
return invOrigTransPos, invOrigTransOrn
def getState(self):
stateVector = []
phase = self.getPhase()
#print("phase=",phase)
stateVector.append(phase)
rootTransPos, rootTransOrn=self.buildOriginTrans()
basePos,baseOrn = self._pybullet_client.getBasePositionAndOrientation(self._sim_model)
rootPosRel, dummy = self._pybullet_client.multiplyTransforms(rootTransPos, rootTransOrn, basePos,[0,0,0,1])
#print("!!!rootPosRel =",rootPosRel )
#print("rootTransPos=",rootTransPos)
#print("basePos=",basePos)
localPos,localOrn = self._pybullet_client.multiplyTransforms( rootTransPos, rootTransOrn , basePos,baseOrn )
localPos=[localPos[0]-rootPosRel[0],localPos[1]-rootPosRel[1],localPos[2]-rootPosRel[2]]
#print("localPos=",localPos)
stateVector.append(rootPosRel[1])
#self.pb2dmJoints=[0,1,2,9,10,11,3,4,5,12,13,14,6,7,8]
self.pb2dmJoints=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]
for pbJoint in range (self._pybullet_client.getNumJoints(self._sim_model)):
j = self.pb2dmJoints[pbJoint]
#print("joint order:",j)
ls = self._pybullet_client.getLinkState(self._sim_model, j, computeForwardKinematics=True)
linkPos = ls[0]
linkOrn = ls[1]
linkPosLocal, linkOrnLocal = self._pybullet_client.multiplyTransforms(rootTransPos, rootTransOrn, linkPos,linkOrn)
if (linkOrnLocal[3]<0):
linkOrnLocal=[-linkOrnLocal[0],-linkOrnLocal[1],-linkOrnLocal[2],-linkOrnLocal[3]]
linkPosLocal=[linkPosLocal[0]-rootPosRel[0],linkPosLocal[1]-rootPosRel[1],linkPosLocal[2]-rootPosRel[2]]
for l in linkPosLocal:
stateVector.append(l)
#re-order the quaternion, DeepMimic uses w,x,y,z
stateVector.append(linkOrnLocal[3])
stateVector.append(linkOrnLocal[0])
stateVector.append(linkOrnLocal[1])
stateVector.append(linkOrnLocal[2])
for pbJoint in range (self._pybullet_client.getNumJoints(self._sim_model)):
j = self.pb2dmJoints[pbJoint]
ls = self._pybullet_client.getLinkState(self._sim_model, j, computeLinkVelocity=True)
linkLinVel = ls[6]
linkAngVel = ls[7]
for l in linkLinVel:
stateVector.append(l)
for l in linkAngVel:
stateVector.append(l)
#print("stateVector len=",len(stateVector))
#for st in range (len(stateVector)):
# print("state[",st,"]=",stateVector[st])
return stateVector
def terminates(self):
#check if any non-allowed body part hits the ground
terminates=False
pts = self._pybullet_client.getContactPoints()
for p in pts:
part = -1
if (p[1]==self._sim_model):
part=p[3]
if (p[2]==self._sim_model):
part=p[4]
if (part >=0 and part not in self._allowed_body_parts):
#print("terminating part:", part)
terminates=True
return terminates
def getReward(self, pose):
#from DeepMimic double cSceneImitate::CalcRewardImitate
pose_w = 0.5
vel_w = 0.05
end_eff_w = 0 #0.15
root_w = 0#0.2
com_w = 0#0.1
total_w = pose_w + vel_w + end_eff_w + root_w + com_w
pose_w /= total_w
vel_w /= total_w
end_eff_w /= total_w
root_w /= total_w
com_w /= total_w
pose_scale = 2
vel_scale = 0.1
end_eff_scale = 40
root_scale = 5
com_scale = 10
err_scale = 1
reward = 0
pose_err = 0
vel_err = 0
end_eff_err = 0
root_err = 0
com_err = 0
heading_err = 0
#create a mimic reward, comparing the dynamics humanoid with a kinematic one
#pose = self.InitializePoseFromMotionData()
#print("self._kin_model=",self._kin_model)
#print("kinematicHumanoid #joints=",self._pybullet_client.getNumJoints(self._kin_model))
#self.ApplyPose(pose, True, True, self._kin_model, self._pybullet_client)
#const Eigen::VectorXd& pose0 = sim_char.GetPose();
#const Eigen::VectorXd& vel0 = sim_char.GetVel();
#const Eigen::VectorXd& pose1 = kin_char.GetPose();
#const Eigen::VectorXd& vel1 = kin_char.GetVel();
#tMatrix origin_trans = sim_char.BuildOriginTrans();
#tMatrix kin_origin_trans = kin_char.BuildOriginTrans();
#
#tVector com0_world = sim_char.CalcCOM();
#tVector com_vel0_world = sim_char.CalcCOMVel();
#tVector com1_world;
#tVector com_vel1_world;
#cRBDUtil::CalcCoM(joint_mat, body_defs, pose1, vel1, com1_world, com_vel1_world);
#
root_id = 0
#tVector root_pos0 = cKinTree::GetRootPos(joint_mat, pose0);
#tVector root_pos1 = cKinTree::GetRootPos(joint_mat, pose1);
#tQuaternion root_rot0 = cKinTree::GetRootRot(joint_mat, pose0);
#tQuaternion root_rot1 = cKinTree::GetRootRot(joint_mat, pose1);
#tVector root_vel0 = cKinTree::GetRootVel(joint_mat, vel0);
#tVector root_vel1 = cKinTree::GetRootVel(joint_mat, vel1);
#tVector root_ang_vel0 = cKinTree::GetRootAngVel(joint_mat, vel0);
#tVector root_ang_vel1 = cKinTree::GetRootAngVel(joint_mat, vel1);
mJointWeights = [0.20833,0.10416, 0.0625, 0.10416,
0.0625, 0.041666666666666671, 0.0625, 0.0416,
0.00, 0.10416, 0.0625, 0.0416, 0.0625, 0.0416, 0.0000]
num_end_effs = 0
num_joints = 15
root_rot_w = mJointWeights[root_id]
#pose_err += root_rot_w * cKinTree::CalcRootRotErr(joint_mat, pose0, pose1)
#vel_err += root_rot_w * cKinTree::CalcRootAngVelErr(joint_mat, vel0, vel1)
for j in range (num_joints):
curr_pose_err = 0
curr_vel_err = 0
w = mJointWeights[j];
simJointInfo = self._pybullet_client.getJointStateMultiDof(self._sim_model, j)
#print("simJointInfo.pos=",simJointInfo[0])
#print("simJointInfo.vel=",simJointInfo[1])
kinJointInfo = self._pybullet_client.getJointStateMultiDof(self._kin_model,j)
#print("kinJointInfo.pos=",kinJointInfo[0])
#print("kinJointInfo.vel=",kinJointInfo[1])
if (len(simJointInfo[0])==1):
angle = simJointInfo[0][0]-kinJointInfo[0][0]
curr_pose_err = angle*angle
velDiff = simJointInfo[1][0]-kinJointInfo[1][0]
curr_vel_err = velDiff*velDiff
if (len(simJointInfo[0])==4):
#print("quaternion diff")
diffQuat = self._pybullet_client.getDifferenceQuaternion(simJointInfo[0],kinJointInfo[0])
axis,angle = self._pybullet_client.getAxisAngleFromQuaternion(diffQuat)
curr_pose_err = angle*angle
diffVel = [simJointInfo[1][0]-kinJointInfo[1][0],simJointInfo[1][1]-kinJointInfo[1][1],simJointInfo[1][2]-kinJointInfo[1][2]]
curr_vel_err = diffVel[0]*diffVel[0]+diffVel[1]*diffVel[1]+diffVel[2]*diffVel[2]
pose_err += w * curr_pose_err
vel_err += w * curr_vel_err
# bool is_end_eff = sim_char.IsEndEffector(j)
# if (is_end_eff)
# {
# tVector pos0 = sim_char.CalcJointPos(j)
# tVector pos1 = cKinTree::CalcJointWorldPos(joint_mat, pose1, j)
# double ground_h0 = mGround->SampleHeight(pos0)
# double ground_h1 = kin_char.GetOriginPos()[1]
#
# tVector pos_rel0 = pos0 - root_pos0
# tVector pos_rel1 = pos1 - root_pos1
# pos_rel0[1] = pos0[1] - ground_h0
# pos_rel1[1] = pos1[1] - ground_h1
#
# pos_rel0 = origin_trans * pos_rel0
# pos_rel1 = kin_origin_trans * pos_rel1
#
# curr_end_err = (pos_rel1 - pos_rel0).squaredNorm()
# end_eff_err += curr_end_err;
# ++num_end_effs;
# }
#}
#if (num_end_effs > 0):
# end_eff_err /= num_end_effs
#
#double root_ground_h0 = mGround->SampleHeight(sim_char.GetRootPos())
#double root_ground_h1 = kin_char.GetOriginPos()[1]
#root_pos0[1] -= root_ground_h0
#root_pos1[1] -= root_ground_h1
#root_pos_err = (root_pos0 - root_pos1).squaredNorm()
#
#root_rot_err = cMathUtil::QuatDiffTheta(root_rot0, root_rot1)
#root_rot_err *= root_rot_err
#root_vel_err = (root_vel1 - root_vel0).squaredNorm()
#root_ang_vel_err = (root_ang_vel1 - root_ang_vel0).squaredNorm()
#root_err = root_pos_err
# + 0.1 * root_rot_err
# + 0.01 * root_vel_err
# + 0.001 * root_ang_vel_err
#com_err = 0.1 * (com_vel1_world - com_vel0_world).squaredNorm()
#print("pose_err=",pose_err)
#print("vel_err=",vel_err)
pose_reward = math.exp(-err_scale * pose_scale * pose_err)
vel_reward = math.exp(-err_scale * vel_scale * vel_err)
end_eff_reward = math.exp(-err_scale * end_eff_scale * end_eff_err)
root_reward = math.exp(-err_scale * root_scale * root_err)
com_reward = math.exp(-err_scale * com_scale * com_err)
reward = pose_w * pose_reward + vel_w * vel_reward + end_eff_w * end_eff_reward + root_w * root_reward + com_w * com_reward
#print("reward = %f (pose_reward=%f, vel_reward=%f, end_eff_reward=%f, root_reward=%f, com_reward=%f)\n", reward,
# pose_reward,vel_reward,end_eff_reward, root_reward, com_reward);
return reward

View File

@@ -0,0 +1,19 @@
import json
class MotionCaptureData(object):
def __init__(self):
self.Reset()
def Reset(self):
self._motion_data = []
def Load(self, path):
with open(path, 'r') as f:
self._motion_data = json.load(f)
def NumFrames(self):
return len(self._motion_data['Frames'])
def KeyFrameDuraction(self):
return self._motion_data['Frames'][0][0]

View File

@@ -0,0 +1,144 @@
import numpy as np
class PDControllerStableMultiDof(object):
def __init__(self, pb):
self._pb = pb
def computePD(self, bodyUniqueId, jointIndices, desiredPositions, desiredVelocities, kps, kds, maxForces, timeStep):
numJoints = len(jointIndices)#self._pb.getNumJoints(bodyUniqueId)
curPos,curOrn = self._pb.getBasePositionAndOrientation(bodyUniqueId)
#q1 = [desiredPositions[0],desiredPositions[1],desiredPositions[2],desiredPositions[3],desiredPositions[4],desiredPositions[5],desiredPositions[6]]
q1 = [curPos[0],curPos[1],curPos[2],curOrn[0],curOrn[1],curOrn[2],curOrn[3]]
#qdot1 = [0,0,0, 0,0,0,0]
baseLinVel, baseAngVel = self._pb.getBaseVelocity(bodyUniqueId)
qdot1 = [baseLinVel[0],baseLinVel[1],baseLinVel[2],baseAngVel[0],baseAngVel[1],baseAngVel[2],0]
qError = [0,0,0, 0,0,0,0]
qIndex=7
qdotIndex=7
zeroAccelerations=[0,0,0, 0,0,0,0]
for i in range (numJoints):
js = self._pb.getJointStateMultiDof(bodyUniqueId, jointIndices[i])
jointPos=js[0]
jointVel = js[1]
q1+=jointPos
if len(js[0])==1:
desiredPos=desiredPositions[qIndex]
qdiff=desiredPos - jointPos[0]
qError.append(qdiff)
zeroAccelerations.append(0.)
qdot1+=jointVel
qIndex+=1
qdotIndex+=1
if len(js[0])==4:
desiredPos=[desiredPositions[qIndex],desiredPositions[qIndex+1],desiredPositions[qIndex+2],desiredPositions[qIndex+3]]
axis = self._pb.getAxisDifferenceQuaternion(desiredPos,jointPos)
jointVelNew = [jointVel[0],jointVel[1],jointVel[2],0]
qdot1+=jointVelNew
qError.append(axis[0])
qError.append(axis[1])
qError.append(axis[2])
qError.append(0)
desiredVel=[desiredVelocities[qdotIndex],desiredVelocities[qdotIndex+1],desiredVelocities[qdotIndex+2]]
zeroAccelerations+=[0.,0.,0.,0.]
qIndex+=4
qdotIndex+=4
q = np.array(q1)
qdot=np.array(qdot1)
qdotdesired = np.array(desiredVelocities)
qdoterr = qdotdesired-qdot
Kp = np.diagflat(kps)
Kd = np.diagflat(kds)
p = Kp.dot(qError)
#np.savetxt("pb_qError.csv", qError, delimiter=",")
#np.savetxt("pb_p.csv", p, delimiter=",")
d = Kd.dot(qdoterr)
#np.savetxt("pb_d.csv", d, delimiter=",")
#np.savetxt("pbqdoterr.csv", qdoterr, delimiter=",")
M1 = self._pb.calculateMassMatrix(bodyUniqueId,q1, flags=1)
M2 = np.array(M1)
#np.savetxt("M2.csv", M2, delimiter=",")
M = (M2 + Kd * timeStep)
#np.savetxt("pbM_tKd.csv",M, delimiter=",")
c1 = self._pb.calculateInverseDynamics(bodyUniqueId, q1, qdot1, zeroAccelerations, flags=1)
c = np.array(c1)
#np.savetxt("pbC.csv",c, delimiter=",")
A = M
#p = [0]*43
b = p + d -c
#np.savetxt("pb_acc.csv",b, delimiter=",")
qddot = np.linalg.solve(A, b)
tau = p + d - Kd.dot(qddot) * timeStep
#print("len(tau)=",len(tau))
maxF = np.array(maxForces)
forces = np.clip(tau, -maxF , maxF )
return forces
class PDControllerStable(object):
def __init__(self, pb):
self._pb = pb
def computePD(self, bodyUniqueId, jointIndices, desiredPositions, desiredVelocities, kps, kds, maxForces, timeStep):
numJoints = self._pb.getNumJoints(bodyUniqueId)
jointStates = self._pb.getJointStates(bodyUniqueId, jointIndices)
q1 = []
qdot1 = []
zeroAccelerations = []
for i in range (numJoints):
q1.append(jointStates[i][0])
qdot1.append(jointStates[i][1])
zeroAccelerations.append(0)
q = np.array(q1)
qdot=np.array(qdot1)
qdes = np.array(desiredPositions)
qdotdes = np.array(desiredVelocities)
qError = qdes - q
qdotError = qdotdes - qdot
Kp = np.diagflat(kps)
Kd = np.diagflat(kds)
p = Kp.dot(qError)
d = Kd.dot(qdotError)
forces = p + d
M1 = self._pb.calculateMassMatrix(bodyUniqueId,q1)
M2 = np.array(M1)
M = (M2 + Kd * timeStep)
c1 = self._pb.calculateInverseDynamics(bodyUniqueId, q1, qdot1, zeroAccelerations)
c = np.array(c1)
A = M
b = -c + p + d
qddot = np.linalg.solve(A, b)
tau = p + d - Kd.dot(qddot) * timeStep
maxF = np.array(maxForces)
forces = np.clip(tau, -maxF , maxF )
#print("c=",c)
return tau

View File

@@ -0,0 +1,257 @@
import numpy as np
import math
from pybullet_envs.deep_mimic.env.env import Env
from pybullet_envs.deep_mimic.env.action_space import ActionSpace
from pybullet_envs.minitaur.envs import bullet_client
import time
import motion_capture_data
from pybullet_envs.deep_mimic.env import humanoid_stable_pd
import pybullet_data
import pybullet as p1
import random
class PyBulletDeepMimicEnv(Env):
def __init__(self, args=None, enable_draw=False, pybullet_client=None):
super().__init__(args, enable_draw)
self._num_agents = 1
self._pybullet_client = pybullet_client
self._isInitialized = False
self.reset()
def reset(self):
self.t = 0
if not self._isInitialized:
if self.enable_draw:
self._pybullet_client = bullet_client.BulletClient(connection_mode=p1.GUI)
else:
self._pybullet_client = bullet_client.BulletClient()
self._pybullet_client.setAdditionalSearchPath(pybullet_data.getDataPath())
z2y = self._pybullet_client.getQuaternionFromEuler([-math.pi*0.5,0,0])
self._planeId = self._pybullet_client.loadURDF("plane.urdf",[0,0,0],z2y)
#print("planeId=",self._planeId)
self._pybullet_client.configureDebugVisualizer(self._pybullet_client.COV_ENABLE_Y_AXIS_UP,1)
self._pybullet_client.setGravity(0,-9.8,0)
self._pybullet_client.setPhysicsEngineParameter(numSolverIterations=10)
self._pybullet_client.changeDynamics(self._planeId, linkIndex=-1, lateralFriction=0.9)
self._mocapData = motion_capture_data.MotionCaptureData()
motionPath = pybullet_data.getDataPath()+"/motions/humanoid3d_walk.txt"
#motionPath = pybullet_data.getDataPath()+"/motions/humanoid3d_backflip.txt"
self._mocapData.Load(motionPath)
timeStep = 1./600
useFixedBase=False
self._humanoid = humanoid_stable_pd.HumanoidStablePD(self._pybullet_client, self._mocapData, timeStep, useFixedBase)
self._isInitialized = True
self._pybullet_client.setTimeStep(timeStep)
self._pybullet_client.setPhysicsEngineParameter(numSubSteps=2)
selfCheck = False
if (selfCheck):
curTime = 0
while self._pybullet_client.isConnected():
self._humanoid.setSimTime(curTime)
state = self._humanoid.getState()
#print("state=",state)
pose = self._humanoid.computePose(self._humanoid._frameFraction)
for i in range (10):
curTime+=timeStep
#taus = self._humanoid.computePDForces(pose)
#self._humanoid.applyPDForces(taus)
#self._pybullet_client.stepSimulation()
time.sleep(timeStep)
#print("numframes = ", self._humanoid._mocap_data.NumFrames())
startTime = random.randint(0,self._humanoid._mocap_data.NumFrames()-2)
rnrange = 1000
rn = random.randint(0,rnrange)
startTime = float(rn)/rnrange * self._humanoid.getCycleTime()
self._humanoid.setSimTime(startTime)
self._humanoid.resetPose()
#this clears the contact points. Todo: add API to explicitly clear all contact points?
self._pybullet_client.stepSimulation()
def get_num_agents(self):
return self._num_agents
def get_action_space(self, agent_id):
return ActionSpace(ActionSpace.Continuous)
def get_reward_min(self, agent_id):
return 0
def get_reward_max(self, agent_id):
return 1
def get_reward_fail(self, agent_id):
return self.get_reward_min(agent_id)
def get_reward_succ(self, agent_id):
return self.get_reward_max(agent_id)
#scene_name == "imitate" -> cDrawSceneImitate
def get_state_size(self, agent_id):
#cCtController::GetStateSize()
#int state_size = cDeepMimicCharController::GetStateSize();
# state_size += GetStatePoseSize();#106
# state_size += GetStateVelSize(); #(3+3)*numBodyParts=90
#state_size += GetStatePhaseSize();#1
#197
return 197
def build_state_norm_groups(self, agent_id):
#if (mEnablePhaseInput)
#{
#int phase_group = gNormGroupNone;
#int phase_offset = GetStatePhaseOffset();
#int phase_size = GetStatePhaseSize();
#out_groups.segment(phase_offset, phase_size) = phase_group * Eigen::VectorXi::Ones(phase_size);
groups = [0]*self.get_state_size(agent_id)
groups[0] = -1
return groups
def build_state_offset(self, agent_id):
out_offset = [0]*self.get_state_size(agent_id)
phase_offset = -0.5
out_offset[0] = phase_offset
return np.array(out_offset)
def build_state_scale(self, agent_id):
out_scale = [1]*self.get_state_size(agent_id)
phase_scale = 2
out_scale[0] = phase_scale
return np.array(out_scale)
def get_goal_size(self, agent_id):
return 0
def get_action_size(self, agent_id):
ctrl_size = 43 #numDof
root_size = 7
return ctrl_size - root_size
def build_goal_norm_groups(self, agent_id):
return np.array([])
def build_goal_offset(self, agent_id):
return np.array([])
def build_goal_scale(self, agent_id):
return np.array([])
def build_action_offset(self, agent_id):
out_offset = [0] * self.get_action_size(agent_id)
out_offset = [0.0000000000,0.0000000000,0.0000000000,-0.200000000,0.0000000000,0.0000000000,0.0000000000,
-0.200000000,0.0000000000,0.0000000000, 0.00000000, -0.2000000, 1.57000000, 0.00000000, 0.00000000,
0.00000000, -0.2000000, 0.00000000, 0.00000000, 0.00000000, -0.2000000, -1.5700000, 0.00000000, 0.00000000,
0.00000000, -0.2000000, 1.57000000, 0.00000000, 0.00000000, 0.00000000, -0.2000000, 0.00000000, 0.00000000,
0.00000000, -0.2000000, -1.5700000]
#see cCtCtrlUtil::BuildOffsetScalePDPrismatic and
#see cCtCtrlUtil::BuildOffsetScalePDSpherical
return np.array(out_offset)
def build_action_scale(self, agent_id):
out_scale = [1] * self.get_action_size(agent_id)
#see cCtCtrlUtil::BuildOffsetScalePDPrismatic and
#see cCtCtrlUtil::BuildOffsetScalePDSpherical
out_scale=[ 0.20833333333333,1.00000000000000,1.00000000000000,1.00000000000000,0.25000000000000,
1.00000000000000,1.00000000000000,1.00000000000000,0.12077294685990,1.00000000000000,
1.000000000000, 1.000000000000, 0.159235668789, 0.159235668789, 1.000000000000,
1.000000000000, 1.000000000000, 0.079617834394, 1.000000000000, 1.000000000000,
1.000000000000, 0.159235668789, 0.120772946859, 1.000000000000, 1.000000000000,
1.000000000000, 0.159235668789, 0.159235668789, 1.000000000000, 1.000000000000,
1.000000000000, 0.107758620689, 1.000000000000, 1.000000000000, 1.000000000000,
0.159235668789]
return np.array(out_scale)
def build_action_bound_min(self, agent_id):
#see cCtCtrlUtil::BuildBoundsPDSpherical
out_scale = [-1] * self.get_action_size(agent_id)
out_scale = [-4.79999999999,-1.00000000000,-1.00000000000,-1.00000000000,-4.00000000000,
-1.00000000000,-1.00000000000,-1.00000000000,-7.77999999999,-1.00000000000, -1.000000000,
-1.000000000, -7.850000000, -6.280000000, -1.000000000, -1.000000000, -1.000000000,
-12.56000000, -1.000000000, -1.000000000, -1.000000000, -4.710000000,
-7.779999999, -1.000000000, -1.000000000, -1.000000000, -7.850000000,
-6.280000000, -1.000000000, -1.000000000, -1.000000000, -8.460000000,
-1.000000000, -1.000000000, -1.000000000, -4.710000000]
return out_scale
def build_action_bound_max(self, agent_id):
out_scale = [1] * self.get_action_size(agent_id)
out_scale=[
4.799999999,1.000000000,1.000000000,1.000000000,4.000000000,1.000000000,
1.000000000,1.000000000,8.779999999,1.000000000, 1.0000000, 1.0000000,
4.7100000, 6.2800000, 1.0000000, 1.0000000, 1.0000000,
12.560000, 1.0000000, 1.0000000, 1.0000000, 7.8500000,
8.7799999, 1.0000000, 1.0000000, 1.0000000, 4.7100000,
6.2800000, 1.0000000, 1.0000000, 1.0000000, 10.100000,
1.0000000, 1.0000000, 1.0000000, 7.8500000]
return out_scale
def set_mode(self, mode):
self._mode = mode
def need_new_action(self, agent_id):
return True
def record_state(self, agent_id):
state = self._humanoid.getState()
state[1]=state[1]+0.008
#print("record_state=",state)
return np.array(state)
def record_goal(self, agent_id):
return np.array([])
def calc_reward(self, agent_id):
kinPose = self._humanoid.computePose(self._humanoid._frameFraction)
reward = self._humanoid.getReward(kinPose)
return reward
def set_action(self, agent_id, action):
self.desiredPose = self._humanoid.convertActionToPose(action)
#print("set_action: desiredPose=", self.desiredPose)
def log_val(self, agent_id, val):
pass
def update(self, timeStep):
for i in range(10):
self.t += timeStep
self._humanoid.setSimTime(self.t)
if self.desiredPose:
kinPose = self._humanoid.computePose(self._humanoid._frameFraction)
self._humanoid.initializePose(self._humanoid._poseInterpolator, self._humanoid._kin_model, initBase=False)
pos,orn=self._pybullet_client.getBasePositionAndOrientation(self._humanoid._sim_model)
self._pybullet_client.resetBasePositionAndOrientation(self._humanoid._kin_model, [pos[0],pos[1]+2,pos[2]],orn)
#print("desiredPositions=",self.desiredPose)
taus = self._humanoid.computePDForces(self.desiredPose)
self._humanoid.applyPDForces(taus)
self._pybullet_client.stepSimulation()
def set_sample_count(self, count):
return
def check_terminate(self, agent_id):
return Env.Terminate(self.is_episode_end())
def is_episode_end(self):
isEnded = self._humanoid.terminates()
#also check maximum time, 20 seconds (todo get from file)
#print("self.t=",self.t)
if (self.t>20):
isEnded = True
return isEnded
def check_valid_episode(self):
#could check if limbs exceed velocity threshold
return true

View File

@@ -0,0 +1,21 @@
import json
import numpy as np
from learning.ppo_agent import PPOAgent
import pybullet_data
AGENT_TYPE_KEY = "AgentType"
def build_agent(world, id, file):
agent = None
with open(pybullet_data.getDataPath()+"/"+file) as data_file:
json_data = json.load(data_file)
assert AGENT_TYPE_KEY in json_data
agent_type = json_data[AGENT_TYPE_KEY]
if (agent_type == PPOAgent.NAME):
agent = PPOAgent(world, id, json_data)
else:
assert False, 'Unsupported agent type: ' + agent_type
return agent

View File

@@ -0,0 +1,54 @@
import json
import numpy as np
import pybullet_utils.math_util as MathUtil
class ExpParams(object):
RATE_KEY = 'Rate'
INIT_ACTION_RATE_KEY = 'InitActionRate'
NOISE_KEY = 'Noise'
NOISE_INTERNAL_KEY = 'NoiseInternal'
TEMP_KEY = 'Temp'
def __init__(self):
self.rate = 0.2
self.init_action_rate = 0
self.noise = 0.1
self.noise_internal = 0
self.temp = 0.1
return
def __str__(self):
str = ''
str += '{}: {:.2f}\n'.format(self.RATE_KEY, self.rate)
str += '{}: {:.2f}\n'.format(self.INIT_ACTION_RATE_KEY, self.init_action_rate)
str += '{}: {:.2f}\n'.format(self.NOISE_KEY, self.noise)
str += '{}: {:.2f}\n'.format(self.NOISE_INTERNAL_KEY, self.noise_internal)
str += '{}: {:.2f}\n'.format(self.TEMP_KEY, self.temp)
return str
def load(self, json_data):
if (self.RATE_KEY in json_data):
self.rate = json_data[self.RATE_KEY]
if (self.INIT_ACTION_RATE_KEY in json_data):
self.init_action_rate = json_data[self.INIT_ACTION_RATE_KEY]
if (self.NOISE_KEY in json_data):
self.noise = json_data[self.NOISE_KEY]
if (self.NOISE_INTERNAL_KEY in json_data):
self.noise_internal = json_data[self.NOISE_INTERNAL_KEY]
if (self.TEMP_KEY in json_data):
self.temp = json_data[self.TEMP_KEY]
return
def lerp(self, other, t):
lerp_params = ExpParams()
lerp_params.rate = MathUtil.lerp(self.rate, other.rate, t)
lerp_params.init_action_rate = MathUtil.lerp(self.init_action_rate, other.init_action_rate, t)
lerp_params.noise = MathUtil.lerp(self.noise, other.noise, t)
lerp_params.noise_internal = MathUtil.lerp(self.noise_internal, other.noise_internal, t)
lerp_params.temp = MathUtil.log_lerp(self.temp, other.temp, t)
return lerp_params

View File

@@ -0,0 +1 @@
from . import *

View File

@@ -0,0 +1,13 @@
import tensorflow as tf
import learning.tf_util as TFUtil
NAME = "fc_2layers_1024units"
def build_net(input_tfs, reuse=False):
layers = [1024, 512]
activation = tf.nn.relu
input_tf = tf.concat(axis=-1, values=input_tfs)
h = TFUtil.fc_net(input_tf, layers, activation=activation, reuse=reuse)
h = activation(h)
return h

View File

@@ -0,0 +1,11 @@
import learning.nets.fc_2layers_1024units as fc_2layers_1024units
def build_net(net_name, input_tfs, reuse=False):
net = None
if (net_name == fc_2layers_1024units.NAME):
net = fc_2layers_1024units.build_net(input_tfs, reuse)
else:
assert False, 'Unsupported net: ' + net_name
return net

View File

@@ -0,0 +1,149 @@
import numpy as np
import copy
import pybullet_utils.mpi_util as MPIUtil
from pybullet_utils.logger import Logger
class Normalizer(object):
CHECK_SYNC_COUNT = 50000 # check synchronization after a certain number of entries
# these group IDs must be the same as those in CharController.h
NORM_GROUP_SINGLE = 0
NORM_GROUP_NONE = -1
class Group(object):
def __init__(self, id, indices):
self.id = id
self.indices = indices
return
def __init__(self, size, groups_ids=None, eps=0.02, clip=np.inf):
self.eps = eps
self.clip = clip
self.mean = np.zeros(size)
self.mean_sq = np.zeros(size)
self.std = np.ones(size)
self.count = 0
self.groups = self._build_groups(groups_ids)
self.new_count = 0
self.new_sum = np.zeros_like(self.mean)
self.new_sum_sq = np.zeros_like(self.mean_sq)
return
def record(self, x):
size = self.get_size()
is_array = isinstance(x, np.ndarray)
if not is_array:
assert(size == 1)
x = np.array([[x]])
assert x.shape[-1] == size, \
Logger.print2('Normalizer shape mismatch, expecting size {:d}, but got {:d}'.format(size, x.shape[-1]))
x = np.reshape(x, [-1, size])
self.new_count += x.shape[0]
self.new_sum += np.sum(x, axis=0)
self.new_sum_sq += np.sum(np.square(x), axis=0)
return
def update(self):
new_count = MPIUtil.reduce_sum(self.new_count)
new_sum = MPIUtil.reduce_sum(self.new_sum)
new_sum_sq = MPIUtil.reduce_sum(self.new_sum_sq)
new_total = self.count + new_count
if (self.count // self.CHECK_SYNC_COUNT != new_total // self.CHECK_SYNC_COUNT):
assert self.check_synced(), Logger.print2('Normalizer parameters desynchronized')
if new_count > 0:
new_mean = self._process_group_data(new_sum / new_count, self.mean)
new_mean_sq = self._process_group_data(new_sum_sq / new_count, self.mean_sq)
w_old = float(self.count) / new_total
w_new = float(new_count) / new_total
self.mean = w_old * self.mean + w_new * new_mean
self.mean_sq = w_old * self.mean_sq + w_new * new_mean_sq
self.count = new_total
self.std = self.calc_std(self.mean, self.mean_sq)
self.new_count = 0
self.new_sum.fill(0)
self.new_sum_sq.fill(0)
return
def get_size(self):
return self.mean.size
def set_mean_std(self, mean, std):
size = self.get_size()
is_array = isinstance(mean, np.ndarray) and isinstance(std, np.ndarray)
if not is_array:
assert(size == 1)
mean = np.array([mean])
std = np.array([std])
assert len(mean) == size and len(std) == size, \
Logger.print2('Normalizer shape mismatch, expecting size {:d}, but got {:d} and {:d}'.format(size, len(mean), len(std)))
self.mean = mean
self.std = std
self.mean_sq = self.calc_mean_sq(self.mean, self.std)
return
def normalize(self, x):
norm_x = (x - self.mean) / self.std
norm_x = np.clip(norm_x, -self.clip, self.clip)
return norm_x
def unnormalize(self, norm_x):
x = norm_x * self.std + self.mean
return x
def calc_std(self, mean, mean_sq):
var = mean_sq - np.square(mean)
# some time floating point errors can lead to small negative numbers
var = np.maximum(var, 0)
std = np.sqrt(var)
std = np.maximum(std, self.eps)
return std
def calc_mean_sq(self, mean, std):
return np.square(std) + np.square(self.mean)
def check_synced(self):
synced = True
if MPIUtil.is_root_proc():
vars = np.concatenate([self.mean, self.mean_sq])
MPIUtil.bcast(vars)
else:
vars_local = np.concatenate([self.mean, self.mean_sq])
vars_root = np.empty_like(vars_local)
MPIUtil.bcast(vars_root)
synced = (vars_local == vars_root).all()
return synced
def _build_groups(self, groups_ids):
groups = []
if groups_ids is None:
curr_id = self.NORM_GROUP_SINGLE
curr_list = np.arange(self.get_size()).astype(np.int32)
groups.append(self.Group(curr_id, curr_list))
else:
ids = np.unique(groups_ids)
for id in ids:
curr_list = np.nonzero(groups_ids == id)[0].astype(np.int32)
groups.append(self.Group(id, curr_list))
return groups
def _process_group_data(self, new_data, old_data):
proc_data = new_data.copy()
for group in self.groups:
if group.id == self.NORM_GROUP_NONE:
proc_data[group.indices] = old_data[group.indices]
elif group.id != self.NORM_GROUP_SINGLE:
avg = np.mean(new_data[group.indices])
proc_data[group.indices] = avg
return proc_data

View File

@@ -0,0 +1,46 @@
import numpy as np
from pybullet_envs.deep_mimic.env.env import Env
class Path(object):
def __init__(self):
self.clear()
return
def pathlength(self):
return len(self.actions)
def is_valid(self):
valid = True
l = self.pathlength()
valid &= len(self.states) == l + 1
valid &= len(self.goals) == l + 1
valid &= len(self.actions) == l
valid &= len(self.logps) == l
valid &= len(self.rewards) == l
valid &= len(self.flags) == l
return valid
def check_vals(self):
for vals in [self.states, self.goals, self.actions, self.logps,
self.rewards]:
for v in vals:
if not np.isfinite(v).all():
return False
return True
def clear(self):
self.states = []
self.goals = []
self.actions = []
self.logps = []
self.rewards = []
self.flags = []
self.terminate = Env.Terminate.Null
return
def get_pathlen(self):
return len(self.rewards)
def calc_return(self):
return sum(self.rewards)

View File

@@ -0,0 +1,353 @@
import numpy as np
import tensorflow as tf
import copy
from learning.tf_agent import TFAgent
from learning.solvers.mpi_solver import MPISolver
import learning.tf_util as TFUtil
import learning.nets.net_builder as NetBuilder
from learning.tf_normalizer import TFNormalizer
import learning.rl_util as RLUtil
from pybullet_utils.logger import Logger
import pybullet_utils.mpi_util as MPIUtil
import pybullet_utils.math_util as MathUtil
from pybullet_envs.deep_mimic.env.action_space import ActionSpace
from pybullet_envs.deep_mimic.env.env import Env
'''
Policy Gradient Agent
'''
class PGAgent(TFAgent):
NAME = 'PG'
ACTOR_NET_KEY = 'ActorNet'
ACTOR_STEPSIZE_KEY = 'ActorStepsize'
ACTOR_MOMENTUM_KEY = 'ActorMomentum'
ACTOR_WEIGHT_DECAY_KEY = 'ActorWeightDecay'
ACTOR_INIT_OUTPUT_SCALE_KEY = 'ActorInitOutputScale'
CRITIC_NET_KEY = 'CriticNet'
CRITIC_STEPSIZE_KEY = 'CriticStepsize'
CRITIC_MOMENTUM_KEY = 'CriticMomentum'
CRITIC_WEIGHT_DECAY_KEY = 'CriticWeightDecay'
EXP_ACTION_FLAG = 1 << 0
def __init__(self, world, id, json_data):
self._exp_action = False
super().__init__(world, id, json_data)
return
def reset(self):
super().reset()
self._exp_action = False
return
def _check_action_space(self):
action_space = self.get_action_space()
return action_space == ActionSpace.Continuous
def _load_params(self, json_data):
super()._load_params(json_data)
self.val_min, self.val_max = self._calc_val_bounds(self.discount)
self.val_fail, self.val_succ = self._calc_term_vals(self.discount)
return
def _build_nets(self, json_data):
assert self.ACTOR_NET_KEY in json_data
assert self.CRITIC_NET_KEY in json_data
actor_net_name = json_data[self.ACTOR_NET_KEY]
critic_net_name = json_data[self.CRITIC_NET_KEY]
actor_init_output_scale = 1 if (self.ACTOR_INIT_OUTPUT_SCALE_KEY not in json_data) else json_data[self.ACTOR_INIT_OUTPUT_SCALE_KEY]
s_size = self.get_state_size()
g_size = self.get_goal_size()
a_size = self.get_action_size()
# setup input tensors
self.s_tf = tf.placeholder(tf.float32, shape=[None, s_size], name="s") # observations
self.tar_val_tf = tf.placeholder(tf.float32, shape=[None], name="tar_val") # target value s
self.adv_tf = tf.placeholder(tf.float32, shape=[None], name="adv") # advantage
self.a_tf = tf.placeholder(tf.float32, shape=[None, a_size], name="a") # target actions
self.g_tf = tf.placeholder(tf.float32, shape=([None, g_size] if self.has_goal() else None), name="g") # goals
with tf.variable_scope('main'):
with tf.variable_scope('actor'):
self.actor_tf = self._build_net_actor(actor_net_name, actor_init_output_scale)
with tf.variable_scope('critic'):
self.critic_tf = self._build_net_critic(critic_net_name)
if (self.actor_tf != None):
Logger.print2('Built actor net: ' + actor_net_name)
if (self.critic_tf != None):
Logger.print2('Built critic net: ' + critic_net_name)
return
def _build_normalizers(self):
super()._build_normalizers()
with self.sess.as_default(), self.graph.as_default(), tf.variable_scope(self.tf_scope):
with tf.variable_scope(self.RESOURCE_SCOPE):
val_offset, val_scale = self._calc_val_offset_scale(self.discount)
self.val_norm = TFNormalizer(self.sess, 'val_norm', 1)
self.val_norm.set_mean_std(-val_offset, 1.0 / val_scale)
return
def _init_normalizers(self):
super()._init_normalizers()
with self.sess.as_default(), self.graph.as_default():
self.val_norm.update()
return
def _load_normalizers(self):
super()._load_normalizers()
self.val_norm.load()
return
def _build_losses(self, json_data):
actor_weight_decay = 0 if (self.ACTOR_WEIGHT_DECAY_KEY not in json_data) else json_data[self.ACTOR_WEIGHT_DECAY_KEY]
critic_weight_decay = 0 if (self.CRITIC_WEIGHT_DECAY_KEY not in json_data) else json_data[self.CRITIC_WEIGHT_DECAY_KEY]
norm_val_diff = self.val_norm.normalize_tf(self.tar_val_tf) - self.val_norm.normalize_tf(self.critic_tf)
self.critic_loss_tf = 0.5 * tf.reduce_mean(tf.square(norm_val_diff))
if (critic_weight_decay != 0):
self.critic_loss_tf += critic_weight_decay * self._weight_decay_loss('main/critic')
norm_a_mean_tf = self.a_norm.normalize_tf(self.actor_tf)
norm_a_diff = self.a_norm.normalize_tf(self.a_tf) - norm_a_mean_tf
self.actor_loss_tf = tf.reduce_sum(tf.square(norm_a_diff), axis=-1)
self.actor_loss_tf *= self.adv_tf
self.actor_loss_tf = 0.5 * tf.reduce_mean(self.actor_loss_tf)
norm_a_bound_min = self.a_norm.normalize(self.a_bound_min)
norm_a_bound_max = self.a_norm.normalize(self.a_bound_max)
a_bound_loss = TFUtil.calc_bound_loss(norm_a_mean_tf, norm_a_bound_min, norm_a_bound_max)
a_bound_loss /= self.exp_params_curr.noise
self.actor_loss_tf += a_bound_loss
if (actor_weight_decay != 0):
self.actor_loss_tf += actor_weight_decay * self._weight_decay_loss('main/actor')
return
def _build_solvers(self, json_data):
actor_stepsize = 0.001 if (self.ACTOR_STEPSIZE_KEY not in json_data) else json_data[self.ACTOR_STEPSIZE_KEY]
actor_momentum = 0.9 if (self.ACTOR_MOMENTUM_KEY not in json_data) else json_data[self.ACTOR_MOMENTUM_KEY]
critic_stepsize = 0.01 if (self.CRITIC_STEPSIZE_KEY not in json_data) else json_data[self.CRITIC_STEPSIZE_KEY]
critic_momentum = 0.9 if (self.CRITIC_MOMENTUM_KEY not in json_data) else json_data[self.CRITIC_MOMENTUM_KEY]
critic_vars = self._tf_vars('main/critic')
critic_opt = tf.train.MomentumOptimizer(learning_rate=critic_stepsize, momentum=critic_momentum)
self.critic_grad_tf = tf.gradients(self.critic_loss_tf, critic_vars)
self.critic_solver = MPISolver(self.sess, critic_opt, critic_vars)
actor_vars = self._tf_vars('main/actor')
actor_opt = tf.train.MomentumOptimizer(learning_rate=actor_stepsize, momentum=actor_momentum)
self.actor_grad_tf = tf.gradients(self.actor_loss_tf, actor_vars)
self.actor_solver = MPISolver(self.sess, actor_opt, actor_vars)
return
def _build_net_actor(self, net_name, init_output_scale):
norm_s_tf = self.s_norm.normalize_tf(self.s_tf)
input_tfs = [norm_s_tf]
if (self.has_goal()):
norm_g_tf = self.g_norm.normalize_tf(self.g_tf)
input_tfs += [norm_g_tf]
h = NetBuilder.build_net(net_name, input_tfs)
norm_a_tf = tf.layers.dense(inputs=h, units=self.get_action_size(), activation=None,
kernel_initializer=tf.random_uniform_initializer(minval=-init_output_scale, maxval=init_output_scale))
a_tf = self.a_norm.unnormalize_tf(norm_a_tf)
return a_tf
def _build_net_critic(self, net_name):
norm_s_tf = self.s_norm.normalize_tf(self.s_tf)
input_tfs = [norm_s_tf]
if (self.has_goal()):
norm_g_tf = self.g_norm.normalize_tf(self.g_tf)
input_tfs += [norm_g_tf]
h = NetBuilder.build_net(net_name, input_tfs)
norm_val_tf = tf.layers.dense(inputs=h, units=1, activation=None,
kernel_initializer=TFUtil.xavier_initializer);
norm_val_tf = tf.reshape(norm_val_tf, [-1])
val_tf = self.val_norm.unnormalize_tf(norm_val_tf)
return val_tf
def _initialize_vars(self):
super()._initialize_vars()
self._sync_solvers()
return
def _sync_solvers(self):
self.actor_solver.sync()
self.critic_solver.sync()
return
def _decide_action(self, s, g):
with self.sess.as_default(), self.graph.as_default():
self._exp_action = False
a = self._eval_actor(s, g)[0]
logp = 0
if self._enable_stoch_policy():
# epsilon-greedy
rand_action = MathUtil.flip_coin(self.exp_params_curr.rate)
if rand_action:
norm_exp_noise = np.random.randn(*a.shape)
norm_exp_noise *= self.exp_params_curr.noise
exp_noise = norm_exp_noise * self.a_norm.std
a += exp_noise
logp = self._calc_action_logp(norm_exp_noise)
self._exp_action = True
return a, logp
def _enable_stoch_policy(self):
return self.enable_training and (self._mode == self.Mode.TRAIN or self._mode == self.Mode.TRAIN_END)
def _eval_actor(self, s, g):
s = np.reshape(s, [-1, self.get_state_size()])
g = np.reshape(g, [-1, self.get_goal_size()]) if self.has_goal() else None
feed = {
self.s_tf : s,
self.g_tf : g
}
a = self.actor_tf.eval(feed)
return a
def _eval_critic(self, s, g):
with self.sess.as_default(), self.graph.as_default():
s = np.reshape(s, [-1, self.get_state_size()])
g = np.reshape(g, [-1, self.get_goal_size()]) if self.has_goal() else None
feed = {
self.s_tf : s,
self.g_tf : g
}
val = self.critic_tf.eval(feed)
return val
def _record_flags(self):
flags = int(0)
if (self._exp_action):
flags = flags | self.EXP_ACTION_FLAG
return flags
def _train_step(self):
super()._train_step()
critic_loss = self._update_critic()
actor_loss = self._update_actor()
critic_loss = MPIUtil.reduce_avg(critic_loss)
actor_loss = MPIUtil.reduce_avg(actor_loss)
critic_stepsize = self.critic_solver.get_stepsize()
actor_stepsize = self.actor_solver.get_stepsize()
self.logger.log_tabular('Critic_Loss', critic_loss)
self.logger.log_tabular('Critic_Stepsize', critic_stepsize)
self.logger.log_tabular('Actor_Loss', actor_loss)
self.logger.log_tabular('Actor_Stepsize', actor_stepsize)
return
def _update_critic(self):
idx = self.replay_buffer.sample(self._local_mini_batch_size)
s = self.replay_buffer.get('states', idx)
g = self.replay_buffer.get('goals', idx) if self.has_goal() else None
tar_V = self._calc_updated_vals(idx)
tar_V = np.clip(tar_V, self.val_min, self.val_max)
feed = {
self.s_tf: s,
self.g_tf: g,
self.tar_val_tf: tar_V
}
loss, grads = self.sess.run([self.critic_loss_tf, self.critic_grad_tf], feed)
self.critic_solver.update(grads)
return loss
def _update_actor(self):
key = self.EXP_ACTION_FLAG
idx = self.replay_buffer.sample_filtered(self._local_mini_batch_size, key)
has_goal = self.has_goal()
s = self.replay_buffer.get('states', idx)
g = self.replay_buffer.get('goals', idx) if has_goal else None
a = self.replay_buffer.get('actions', idx)
V_new = self._calc_updated_vals(idx)
V_old = self._eval_critic(s, g)
adv = V_new - V_old
feed = {
self.s_tf: s,
self.g_tf: g,
self.a_tf: a,
self.adv_tf: adv
}
loss, grads = self.sess.run([self.actor_loss_tf, self.actor_grad_tf], feed)
self.actor_solver.update(grads)
return loss
def _calc_updated_vals(self, idx):
r = self.replay_buffer.get('rewards', idx)
if self.discount == 0:
new_V = r
else:
next_idx = self.replay_buffer.get_next_idx(idx)
s_next = self.replay_buffer.get('states', next_idx)
g_next = self.replay_buffer.get('goals', next_idx) if self.has_goal() else None
is_end = self.replay_buffer.is_path_end(idx)
is_fail = self.replay_buffer.check_terminal_flag(idx, Env.Terminate.Fail)
is_succ = self.replay_buffer.check_terminal_flag(idx, Env.Terminate.Succ)
is_fail = np.logical_and(is_end, is_fail)
is_succ = np.logical_and(is_end, is_succ)
V_next = self._eval_critic(s_next, g_next)
V_next[is_fail] = self.val_fail
V_next[is_succ] = self.val_succ
new_V = r + self.discount * V_next
return new_V
def _calc_action_logp(self, norm_action_deltas):
# norm action delta are for the normalized actions (scaled by self.a_norm.std)
stdev = self.exp_params_curr.noise
assert stdev > 0
a_size = self.get_action_size()
logp = -0.5 / (stdev * stdev) * np.sum(np.square(norm_action_deltas), axis=-1)
logp += -0.5 * a_size * np.log(2 * np.pi)
logp += -a_size * np.log(stdev)
return logp
def _log_val(self, s, g):
val = self._eval_critic(s, g)
norm_val = self.val_norm.normalize(val)
self.world.env.log_val(self.id, norm_val[0])
return
def _build_replay_buffer(self, buffer_size):
super()._build_replay_buffer(buffer_size)
self.replay_buffer.add_filter_key(self.EXP_ACTION_FLAG)
return

View File

@@ -0,0 +1,367 @@
import numpy as np
import copy as copy
import tensorflow as tf
from learning.pg_agent import PGAgent
from learning.solvers.mpi_solver import MPISolver
import learning.tf_util as TFUtil
import learning.rl_util as RLUtil
from pybullet_utils.logger import Logger
import pybullet_utils.mpi_util as MPIUtil
import pybullet_utils.math_util as MathUtil
from pybullet_envs.deep_mimic.env.env import Env
'''
Proximal Policy Optimization Agent
'''
class PPOAgent(PGAgent):
NAME = "PPO"
EPOCHS_KEY = "Epochs"
BATCH_SIZE_KEY = "BatchSize"
RATIO_CLIP_KEY = "RatioClip"
NORM_ADV_CLIP_KEY = "NormAdvClip"
TD_LAMBDA_KEY = "TDLambda"
TAR_CLIP_FRAC = "TarClipFrac"
ACTOR_STEPSIZE_DECAY = "ActorStepsizeDecay"
def __init__(self, world, id, json_data):
super().__init__(world, id, json_data)
return
def _load_params(self, json_data):
super()._load_params(json_data)
self.epochs = 1 if (self.EPOCHS_KEY not in json_data) else json_data[self.EPOCHS_KEY]
self.batch_size = 1024 if (self.BATCH_SIZE_KEY not in json_data) else json_data[self.BATCH_SIZE_KEY]
self.ratio_clip = 0.2 if (self.RATIO_CLIP_KEY not in json_data) else json_data[self.RATIO_CLIP_KEY]
self.norm_adv_clip = 5 if (self.NORM_ADV_CLIP_KEY not in json_data) else json_data[self.NORM_ADV_CLIP_KEY]
self.td_lambda = 0.95 if (self.TD_LAMBDA_KEY not in json_data) else json_data[self.TD_LAMBDA_KEY]
self.tar_clip_frac = -1 if (self.TAR_CLIP_FRAC not in json_data) else json_data[self.TAR_CLIP_FRAC]
self.actor_stepsize_decay = 0.5 if (self.ACTOR_STEPSIZE_DECAY not in json_data) else json_data[self.ACTOR_STEPSIZE_DECAY]
num_procs = MPIUtil.get_num_procs()
local_batch_size = int(self.batch_size / num_procs)
min_replay_size = 2 * local_batch_size # needed to prevent buffer overflow
assert(self.replay_buffer_size > min_replay_size)
self.replay_buffer_size = np.maximum(min_replay_size, self.replay_buffer_size)
return
def _build_nets(self, json_data):
assert self.ACTOR_NET_KEY in json_data
assert self.CRITIC_NET_KEY in json_data
actor_net_name = json_data[self.ACTOR_NET_KEY]
critic_net_name = json_data[self.CRITIC_NET_KEY]
actor_init_output_scale = 1 if (self.ACTOR_INIT_OUTPUT_SCALE_KEY not in json_data) else json_data[self.ACTOR_INIT_OUTPUT_SCALE_KEY]
s_size = self.get_state_size()
g_size = self.get_goal_size()
a_size = self.get_action_size()
# setup input tensors
self.s_tf = tf.placeholder(tf.float32, shape=[None, s_size], name="s")
self.a_tf = tf.placeholder(tf.float32, shape=[None, a_size], name="a")
self.tar_val_tf = tf.placeholder(tf.float32, shape=[None], name="tar_val")
self.adv_tf = tf.placeholder(tf.float32, shape=[None], name="adv")
self.g_tf = tf.placeholder(tf.float32, shape=([None, g_size] if self.has_goal() else None), name="g")
self.old_logp_tf = tf.placeholder(tf.float32, shape=[None], name="old_logp")
self.exp_mask_tf = tf.placeholder(tf.float32, shape=[None], name="exp_mask")
with tf.variable_scope('main'):
with tf.variable_scope('actor'):
self.a_mean_tf = self._build_net_actor(actor_net_name, actor_init_output_scale)
with tf.variable_scope('critic'):
self.critic_tf = self._build_net_critic(critic_net_name)
if (self.a_mean_tf != None):
Logger.print2('Built actor net: ' + actor_net_name)
if (self.critic_tf != None):
Logger.print2('Built critic net: ' + critic_net_name)
self.norm_a_std_tf = self.exp_params_curr.noise * tf.ones(a_size)
norm_a_noise_tf = self.norm_a_std_tf * tf.random_normal(shape=tf.shape(self.a_mean_tf))
norm_a_noise_tf *= tf.expand_dims(self.exp_mask_tf, axis=-1)
self.sample_a_tf = self.a_mean_tf + norm_a_noise_tf * self.a_norm.std_tf
self.sample_a_logp_tf = TFUtil.calc_logp_gaussian(x_tf=norm_a_noise_tf, mean_tf=None, std_tf=self.norm_a_std_tf)
return
def _build_losses(self, json_data):
actor_weight_decay = 0 if (self.ACTOR_WEIGHT_DECAY_KEY not in json_data) else json_data[self.ACTOR_WEIGHT_DECAY_KEY]
critic_weight_decay = 0 if (self.CRITIC_WEIGHT_DECAY_KEY not in json_data) else json_data[self.CRITIC_WEIGHT_DECAY_KEY]
norm_val_diff = self.val_norm.normalize_tf(self.tar_val_tf) - self.val_norm.normalize_tf(self.critic_tf)
self.critic_loss_tf = 0.5 * tf.reduce_mean(tf.square(norm_val_diff))
if (critic_weight_decay != 0):
self.critic_loss_tf += critic_weight_decay * self._weight_decay_loss('main/critic')
norm_tar_a_tf = self.a_norm.normalize_tf(self.a_tf)
self._norm_a_mean_tf = self.a_norm.normalize_tf(self.a_mean_tf)
self.logp_tf = TFUtil.calc_logp_gaussian(norm_tar_a_tf, self._norm_a_mean_tf, self.norm_a_std_tf)
ratio_tf = tf.exp(self.logp_tf - self.old_logp_tf)
actor_loss0 = self.adv_tf * ratio_tf
actor_loss1 = self.adv_tf * tf.clip_by_value(ratio_tf, 1.0 - self.ratio_clip, 1 + self.ratio_clip)
self.actor_loss_tf = -tf.reduce_mean(tf.minimum(actor_loss0, actor_loss1))
norm_a_bound_min = self.a_norm.normalize(self.a_bound_min)
norm_a_bound_max = self.a_norm.normalize(self.a_bound_max)
a_bound_loss = TFUtil.calc_bound_loss(self._norm_a_mean_tf, norm_a_bound_min, norm_a_bound_max)
self.actor_loss_tf += a_bound_loss
if (actor_weight_decay != 0):
self.actor_loss_tf += actor_weight_decay * self._weight_decay_loss('main/actor')
# for debugging
self.clip_frac_tf = tf.reduce_mean(tf.to_float(tf.greater(tf.abs(ratio_tf - 1.0), self.ratio_clip)))
return
def _build_solvers(self, json_data):
actor_stepsize = 0.001 if (self.ACTOR_STEPSIZE_KEY not in json_data) else json_data[self.ACTOR_STEPSIZE_KEY]
actor_momentum = 0.9 if (self.ACTOR_MOMENTUM_KEY not in json_data) else json_data[self.ACTOR_MOMENTUM_KEY]
critic_stepsize = 0.01 if (self.CRITIC_STEPSIZE_KEY not in json_data) else json_data[self.CRITIC_STEPSIZE_KEY]
critic_momentum = 0.9 if (self.CRITIC_MOMENTUM_KEY not in json_data) else json_data[self.CRITIC_MOMENTUM_KEY]
critic_vars = self._tf_vars('main/critic')
critic_opt = tf.train.MomentumOptimizer(learning_rate=critic_stepsize, momentum=critic_momentum)
self.critic_grad_tf = tf.gradients(self.critic_loss_tf, critic_vars)
self.critic_solver = MPISolver(self.sess, critic_opt, critic_vars)
self._actor_stepsize_tf = tf.get_variable(dtype=tf.float32, name='actor_stepsize', initializer=actor_stepsize, trainable=False)
self._actor_stepsize_ph = tf.get_variable(dtype=tf.float32, name='actor_stepsize_ph', shape=[])
self._actor_stepsize_update_op = self._actor_stepsize_tf.assign(self._actor_stepsize_ph)
actor_vars = self._tf_vars('main/actor')
actor_opt = tf.train.MomentumOptimizer(learning_rate=self._actor_stepsize_tf, momentum=actor_momentum)
self.actor_grad_tf = tf.gradients(self.actor_loss_tf, actor_vars)
self.actor_solver = MPISolver(self.sess, actor_opt, actor_vars)
return
def _decide_action(self, s, g):
with self.sess.as_default(), self.graph.as_default():
self._exp_action = self._enable_stoch_policy() and MathUtil.flip_coin(self.exp_params_curr.rate)
a, logp = self._eval_actor(s, g, self._exp_action)
return a[0], logp[0]
def _eval_actor(self, s, g, enable_exp):
s = np.reshape(s, [-1, self.get_state_size()])
g = np.reshape(g, [-1, self.get_goal_size()]) if self.has_goal() else None
feed = {
self.s_tf : s,
self.g_tf : g,
self.exp_mask_tf: np.array([1 if enable_exp else 0])
}
a, logp = self.sess.run([self.sample_a_tf, self.sample_a_logp_tf], feed_dict=feed)
return a, logp
def _train_step(self):
adv_eps = 1e-5
start_idx = self.replay_buffer.buffer_tail
end_idx = self.replay_buffer.buffer_head
assert(start_idx == 0)
assert(self.replay_buffer.get_current_size() <= self.replay_buffer.buffer_size) # must avoid overflow
assert(start_idx < end_idx)
idx = np.array(list(range(start_idx, end_idx)))
end_mask = self.replay_buffer.is_path_end(idx)
end_mask = np.logical_not(end_mask)
vals = self._compute_batch_vals(start_idx, end_idx)
new_vals = self._compute_batch_new_vals(start_idx, end_idx, vals)
valid_idx = idx[end_mask]
exp_idx = self.replay_buffer.get_idx_filtered(self.EXP_ACTION_FLAG).copy()
num_valid_idx = valid_idx.shape[0]
num_exp_idx = exp_idx.shape[0]
exp_idx = np.column_stack([exp_idx, np.array(list(range(0, num_exp_idx)), dtype=np.int32)])
local_sample_count = valid_idx.size
global_sample_count = int(MPIUtil.reduce_sum(local_sample_count))
mini_batches = int(np.ceil(global_sample_count / self.mini_batch_size))
adv = new_vals[exp_idx[:,0]] - vals[exp_idx[:,0]]
new_vals = np.clip(new_vals, self.val_min, self.val_max)
adv_mean = np.mean(adv)
adv_std = np.std(adv)
adv = (adv - adv_mean) / (adv_std + adv_eps)
adv = np.clip(adv, -self.norm_adv_clip, self.norm_adv_clip)
critic_loss = 0
actor_loss = 0
actor_clip_frac = 0
for e in range(self.epochs):
np.random.shuffle(valid_idx)
np.random.shuffle(exp_idx)
for b in range(mini_batches):
batch_idx_beg = b * self._local_mini_batch_size
batch_idx_end = batch_idx_beg + self._local_mini_batch_size
critic_batch = np.array(range(batch_idx_beg, batch_idx_end), dtype=np.int32)
actor_batch = critic_batch.copy()
critic_batch = np.mod(critic_batch, num_valid_idx)
actor_batch = np.mod(actor_batch, num_exp_idx)
shuffle_actor = (actor_batch[-1] < actor_batch[0]) or (actor_batch[-1] == num_exp_idx - 1)
critic_batch = valid_idx[critic_batch]
actor_batch = exp_idx[actor_batch]
critic_batch_vals = new_vals[critic_batch]
actor_batch_adv = adv[actor_batch[:,1]]
critic_s = self.replay_buffer.get('states', critic_batch)
critic_g = self.replay_buffer.get('goals', critic_batch) if self.has_goal() else None
curr_critic_loss = self._update_critic(critic_s, critic_g, critic_batch_vals)
actor_s = self.replay_buffer.get("states", actor_batch[:,0])
actor_g = self.replay_buffer.get("goals", actor_batch[:,0]) if self.has_goal() else None
actor_a = self.replay_buffer.get("actions", actor_batch[:,0])
actor_logp = self.replay_buffer.get("logps", actor_batch[:,0])
curr_actor_loss, curr_actor_clip_frac = self._update_actor(actor_s, actor_g, actor_a, actor_logp, actor_batch_adv)
critic_loss += curr_critic_loss
actor_loss += np.abs(curr_actor_loss)
actor_clip_frac += curr_actor_clip_frac
if (shuffle_actor):
np.random.shuffle(exp_idx)
total_batches = mini_batches * self.epochs
critic_loss /= total_batches
actor_loss /= total_batches
actor_clip_frac /= total_batches
critic_loss = MPIUtil.reduce_avg(critic_loss)
actor_loss = MPIUtil.reduce_avg(actor_loss)
actor_clip_frac = MPIUtil.reduce_avg(actor_clip_frac)
critic_stepsize = self.critic_solver.get_stepsize()
actor_stepsize = self.update_actor_stepsize(actor_clip_frac)
self.logger.log_tabular('Critic_Loss', critic_loss)
self.logger.log_tabular('Critic_Stepsize', critic_stepsize)
self.logger.log_tabular('Actor_Loss', actor_loss)
self.logger.log_tabular('Actor_Stepsize', actor_stepsize)
self.logger.log_tabular('Clip_Frac', actor_clip_frac)
self.logger.log_tabular('Adv_Mean', adv_mean)
self.logger.log_tabular('Adv_Std', adv_std)
self.replay_buffer.clear()
return
def _get_iters_per_update(self):
return 1
def _valid_train_step(self):
samples = self.replay_buffer.get_current_size()
exp_samples = self.replay_buffer.count_filtered(self.EXP_ACTION_FLAG)
global_sample_count = int(MPIUtil.reduce_sum(samples))
global_exp_min = int(MPIUtil.reduce_min(exp_samples))
return (global_sample_count > self.batch_size) and (global_exp_min > 0)
def _compute_batch_vals(self, start_idx, end_idx):
states = self.replay_buffer.get_all("states")[start_idx:end_idx]
goals = self.replay_buffer.get_all("goals")[start_idx:end_idx] if self.has_goal() else None
idx = np.array(list(range(start_idx, end_idx)))
is_end = self.replay_buffer.is_path_end(idx)
is_fail = self.replay_buffer.check_terminal_flag(idx, Env.Terminate.Fail)
is_succ = self.replay_buffer.check_terminal_flag(idx, Env.Terminate.Succ)
is_fail = np.logical_and(is_end, is_fail)
is_succ = np.logical_and(is_end, is_succ)
vals = self._eval_critic(states, goals)
vals[is_fail] = self.val_fail
vals[is_succ] = self.val_succ
return vals
def _compute_batch_new_vals(self, start_idx, end_idx, val_buffer):
rewards = self.replay_buffer.get_all("rewards")[start_idx:end_idx]
if self.discount == 0:
new_vals = rewards.copy()
else:
new_vals = np.zeros_like(val_buffer)
curr_idx = start_idx
while curr_idx < end_idx:
idx0 = curr_idx - start_idx
idx1 = self.replay_buffer.get_path_end(curr_idx) - start_idx
r = rewards[idx0:idx1]
v = val_buffer[idx0:(idx1 + 1)]
new_vals[idx0:idx1] = RLUtil.compute_return(r, self.discount, self.td_lambda, v)
curr_idx = idx1 + start_idx + 1
return new_vals
def _update_critic(self, s, g, tar_vals):
feed = {
self.s_tf: s,
self.g_tf: g,
self.tar_val_tf: tar_vals
}
loss, grads = self.sess.run([self.critic_loss_tf, self.critic_grad_tf], feed)
self.critic_solver.update(grads)
return loss
def _update_actor(self, s, g, a, logp, adv):
feed = {
self.s_tf: s,
self.g_tf: g,
self.a_tf: a,
self.adv_tf: adv,
self.old_logp_tf: logp
}
loss, grads, clip_frac = self.sess.run([self.actor_loss_tf, self.actor_grad_tf,
self.clip_frac_tf], feed)
self.actor_solver.update(grads)
return loss, clip_frac
def update_actor_stepsize(self, clip_frac):
clip_tol = 1.5
step_scale = 2
max_stepsize = 1e-2
min_stepsize = 1e-8
warmup_iters = 5
actor_stepsize = self.actor_solver.get_stepsize()
if (self.tar_clip_frac >= 0 and self.iter > warmup_iters):
min_clip = self.tar_clip_frac / clip_tol
max_clip = self.tar_clip_frac * clip_tol
under_tol = clip_frac < min_clip
over_tol = clip_frac > max_clip
if (over_tol or under_tol):
if (over_tol):
actor_stepsize *= self.actor_stepsize_decay
else:
actor_stepsize /= self.actor_stepsize_decay
actor_stepsize = np.clip(actor_stepsize, min_stepsize, max_stepsize)
self.set_actor_stepsize(actor_stepsize)
return actor_stepsize
def set_actor_stepsize(self, stepsize):
feed = {
self._actor_stepsize_ph: stepsize,
}
self.sess.run(self._actor_stepsize_update_op, feed)
return

View File

@@ -0,0 +1,351 @@
import numpy as np
import copy
from pybullet_utils.logger import Logger
import inspect as inspect
from pybullet_envs.deep_mimic.env.env import Env
import pybullet_utils.math_util as MathUtil
class ReplayBuffer(object):
TERMINATE_KEY = 'terminate'
PATH_START_KEY = 'path_start'
PATH_END_KEY = 'path_end'
def __init__(self, buffer_size):
assert buffer_size > 0
self.buffer_size = buffer_size
self.total_count = 0
self.buffer_head = 0
self.buffer_tail = MathUtil.INVALID_IDX
self.num_paths = 0
self._sample_buffers = dict()
self.buffers = None
self.clear()
return
def sample(self, n):
curr_size = self.get_current_size()
assert curr_size > 0
idx = np.empty(n, dtype=int)
# makes sure that the end states are not sampled
for i in range(n):
while True:
curr_idx = np.random.randint(0, curr_size, size=1)[0]
curr_idx += self.buffer_tail
curr_idx = np.mod(curr_idx, self.buffer_size)
if not self.is_path_end(curr_idx):
break
idx[i] = curr_idx
return idx
def sample_filtered(self, n, key):
assert key in self._sample_buffers
curr_buffer = self._sample_buffers[key]
idx = curr_buffer.sample(n)
return idx
def count_filtered(self, key):
curr_buffer = self._sample_buffers[key]
return curr_buffer.count
def get(self, key, idx):
return self.buffers[key][idx]
def get_all(self, key):
return self.buffers[key]
def get_idx_filtered(self, key):
assert key in self._sample_buffers
curr_buffer = self._sample_buffers[key]
idx = curr_buffer.slot_to_idx[:curr_buffer.count]
return idx
def get_path_start(self, idx):
return self.buffers[self.PATH_START_KEY][idx]
def get_path_end(self, idx):
return self.buffers[self.PATH_END_KEY][idx]
def get_pathlen(self, idx):
is_array = isinstance(idx, np.ndarray) or isinstance(idx, list)
if not is_array:
idx = [idx]
n = len(idx)
start_idx = self.get_path_start(idx)
end_idx = self.get_path_end(idx)
pathlen = np.empty(n, dtype=int)
for i in range(n):
curr_start = start_idx[i]
curr_end = end_idx[i]
if curr_start < curr_end:
curr_len = curr_end - curr_start
else:
curr_len = self.buffer_size - curr_start + curr_end
pathlen[i] = curr_len
if not is_array:
pathlen = pathlen[0]
return pathlen
def is_valid_path(self, idx):
start_idx = self.get_path_start(idx)
valid = start_idx != MathUtil.INVALID_IDX
return valid
def store(self, path):
start_idx = MathUtil.INVALID_IDX
n = path.pathlength()
if (n > 0):
assert path.is_valid()
if path.check_vals():
if self.buffers is None:
self._init_buffers(path)
idx = self._request_idx(n + 1)
self._store_path(path, idx)
self._add_sample_buffers(idx)
self.num_paths += 1
self.total_count += n + 1
start_idx = idx[0]
else:
Logger.print2('Invalid path data value detected')
return start_idx
def clear(self):
self.buffer_head = 0
self.buffer_tail = MathUtil.INVALID_IDX
self.num_paths = 0
for key in self._sample_buffers:
self._sample_buffers[key].clear()
return
def get_next_idx(self, idx):
next_idx = np.mod(idx + 1, self.buffer_size)
return next_idx
def is_terminal_state(self, idx):
terminate_flags = self.buffers[self.TERMINATE_KEY][idx]
terminate = terminate_flags != Env.Terminate.Null.value
is_end = self.is_path_end(idx)
terminal_state = np.logical_and(terminate, is_end)
return terminal_state
def check_terminal_flag(self, idx, flag):
terminate_flags = self.buffers[self.TERMINATE_KEY][idx]
terminate = terminate_flags == flag.value
return terminate
def is_path_end(self, idx):
is_end = self.buffers[self.PATH_END_KEY][idx] == idx
return is_end
def add_filter_key(self, key):
assert self.get_current_size() == 0
if key not in self._sample_buffers:
self._sample_buffers[key] = SampleBuffer(self.buffer_size)
return
def get_current_size(self):
if self.buffer_tail == MathUtil.INVALID_IDX:
return 0
elif self.buffer_tail < self.buffer_head:
return self.buffer_head - self.buffer_tail
else:
return self.buffer_size - self.buffer_tail + self.buffer_head
def _check_flags(self, key, flags):
return (flags & key) == key
def _add_sample_buffers(self, idx):
flags = self.buffers['flags']
for key in self._sample_buffers:
curr_buffer = self._sample_buffers[key]
filter_idx = [i for i in idx if (self._check_flags(key, flags[i]) and not self.is_path_end(i))]
curr_buffer.add(filter_idx)
return
def _free_sample_buffers(self, idx):
for key in self._sample_buffers:
curr_buffer = self._sample_buffers[key]
curr_buffer.free(idx)
return
def _init_buffers(self, path):
self.buffers = dict()
self.buffers[self.PATH_START_KEY] = MathUtil.INVALID_IDX * np.ones(self.buffer_size, dtype=int);
self.buffers[self.PATH_END_KEY] = MathUtil.INVALID_IDX * np.ones(self.buffer_size, dtype=int);
for key in dir(path):
val = getattr(path, key)
if not key.startswith('__') and not inspect.ismethod(val):
if key == self.TERMINATE_KEY:
self.buffers[self.TERMINATE_KEY] = np.zeros(shape=[self.buffer_size], dtype=int)
else:
val_type = type(val[0])
is_array = val_type == np.ndarray
if is_array:
shape = [self.buffer_size, val[0].shape[0]]
dtype = val[0].dtype
else:
shape = [self.buffer_size]
dtype = val_type
self.buffers[key] = np.zeros(shape, dtype=dtype)
return
def _request_idx(self, n):
assert n + 1 < self.buffer_size # bad things can happen if path is too long
remainder = n
idx = []
start_idx = self.buffer_head
while remainder > 0:
end_idx = np.minimum(start_idx + remainder, self.buffer_size)
remainder -= (end_idx - start_idx)
free_idx = list(range(start_idx, end_idx))
self._free_idx(free_idx)
idx += free_idx
start_idx = 0
self.buffer_head = (self.buffer_head + n) % self.buffer_size
return idx
def _free_idx(self, idx):
assert(idx[0] <= idx[-1])
n = len(idx)
if self.buffer_tail != MathUtil.INVALID_IDX:
update_tail = idx[0] <= idx[-1] and idx[0] <= self.buffer_tail and idx[-1] >= self.buffer_tail
update_tail |= idx[0] > idx[-1] and (idx[0] <= self.buffer_tail or idx[-1] >= self.buffer_tail)
if update_tail:
i = 0
while i < n:
curr_idx = idx[i]
if self.is_valid_path(curr_idx):
start_idx = self.get_path_start(curr_idx)
end_idx = self.get_path_end(curr_idx)
pathlen = self.get_pathlen(curr_idx)
if start_idx < end_idx:
self.buffers[self.PATH_START_KEY][start_idx:end_idx + 1] = MathUtil.INVALID_IDX
self._free_sample_buffers(list(range(start_idx, end_idx + 1)))
else:
self.buffers[self.PATH_START_KEY][start_idx:self.buffer_size] = MathUtil.INVALID_IDX
self.buffers[self.PATH_START_KEY][0:end_idx + 1] = MathUtil.INVALID_IDX
self._free_sample_buffers(list(range(start_idx, self.buffer_size)))
self._free_sample_buffers(list(range(0, end_idx + 1)))
self.num_paths -= 1
i += pathlen + 1
self.buffer_tail = (end_idx + 1) % self.buffer_size;
else:
i += 1
else:
self.buffer_tail = idx[0]
return
def _store_path(self, path, idx):
n = path.pathlength()
for key, data in self.buffers.items():
if key != self.PATH_START_KEY and key != self.PATH_END_KEY and key != self.TERMINATE_KEY:
val = getattr(path, key)
val_len = len(val)
assert val_len == n or val_len == n + 1
data[idx[:val_len]] = val
self.buffers[self.TERMINATE_KEY][idx] = path.terminate.value
self.buffers[self.PATH_START_KEY][idx] = idx[0]
self.buffers[self.PATH_END_KEY][idx] = idx[-1]
return
class SampleBuffer(object):
def __init__(self, size):
self.idx_to_slot = np.empty(shape=[size], dtype=int)
self.slot_to_idx = np.empty(shape=[size], dtype=int)
self.count = 0
self.clear()
return
def clear(self):
self.idx_to_slot.fill(MathUtil.INVALID_IDX)
self.slot_to_idx.fill(MathUtil.INVALID_IDX)
self.count = 0
return
def is_valid(self, idx):
return self.idx_to_slot[idx] != MathUtil.INVALID_IDX
def get_size(self):
return self.idx_to_slot.shape[0]
def add(self, idx):
for i in idx:
if not self.is_valid(i):
new_slot = self.count
assert new_slot >= 0
self.idx_to_slot[i] = new_slot
self.slot_to_idx[new_slot] = i
self.count += 1
return
def free(self, idx):
for i in idx:
if self.is_valid(i):
slot = self.idx_to_slot[i]
last_slot = self.count - 1
last_idx = self.slot_to_idx[last_slot]
self.idx_to_slot[last_idx] = slot
self.slot_to_idx[slot] = last_idx
self.idx_to_slot[i] = MathUtil.INVALID_IDX
self.slot_to_idx[last_slot] = MathUtil.INVALID_IDX
self.count -= 1
return
def sample(self, n):
if self.count > 0:
slots = np.random.randint(0, self.count, size=n)
idx = self.slot_to_idx[slots]
else:
idx = np.empty(shape=[0], dtype=int)
return idx
def check_consistency(self):
valid = True
if self.count < 0:
valid = False
if valid:
for i in range(self.get_size()):
if self.is_valid(i):
s = self.idx_to_slot[i]
if self.slot_to_idx[s] != i:
valid = False
break
s2i = self.slot_to_idx[i]
if s2i != MathUtil.INVALID_IDX:
i2s = self.idx_to_slot[s2i]
if i2s != i:
valid = False
break
count0 = np.sum(self.idx_to_slot == MathUtil.INVALID_IDX)
count1 = np.sum(self.slot_to_idx == MathUtil.INVALID_IDX)
valid &= count0 == count1
return valid

View File

@@ -0,0 +1,595 @@
import numpy as np
import copy
import os
import time
from abc import ABC, abstractmethod
from enum import Enum
from learning.path import *
from learning.exp_params import ExpParams
from learning.normalizer import Normalizer
from learning.replay_buffer import ReplayBuffer
from pybullet_utils.logger import Logger
import pybullet_utils.mpi_util as MPIUtil
import pybullet_utils.math_util as MathUtil
class RLAgent(ABC):
class Mode(Enum):
TRAIN = 0
TEST = 1
TRAIN_END = 2
NAME = "None"
UPDATE_PERIOD_KEY = "UpdatePeriod"
ITERS_PER_UPDATE = "ItersPerUpdate"
DISCOUNT_KEY = "Discount"
MINI_BATCH_SIZE_KEY = "MiniBatchSize"
REPLAY_BUFFER_SIZE_KEY = "ReplayBufferSize"
INIT_SAMPLES_KEY = "InitSamples"
NORMALIZER_SAMPLES_KEY = "NormalizerSamples"
OUTPUT_ITERS_KEY = "OutputIters"
INT_OUTPUT_ITERS_KEY = "IntOutputIters"
TEST_EPISODES_KEY = "TestEpisodes"
EXP_ANNEAL_SAMPLES_KEY = "ExpAnnealSamples"
EXP_PARAM_BEG_KEY = "ExpParamsBeg"
EXP_PARAM_END_KEY = "ExpParamsEnd"
def __init__(self, world, id, json_data):
self.world = world
self.id = id
self.logger = Logger()
self._mode = self.Mode.TRAIN
assert self._check_action_space(), \
Logger.print2("Invalid action space, got {:s}".format(str(self.get_action_space())))
self._enable_training = True
self.path = Path()
self.iter = int(0)
self.start_time = time.time()
self._update_counter = 0
self.update_period = 1.0 # simulated time (seconds) before each training update
self.iters_per_update = int(1)
self.discount = 0.95
self.mini_batch_size = int(32)
self.replay_buffer_size = int(50000)
self.init_samples = int(1000)
self.normalizer_samples = np.inf
self._local_mini_batch_size = self.mini_batch_size # batch size for each work for multiprocessing
self._need_normalizer_update = True
self._total_sample_count = 0
self._output_dir = ""
self._int_output_dir = ""
self.output_iters = 100
self.int_output_iters = 100
self.train_return = 0.0
self.test_episodes = int(0)
self.test_episode_count = int(0)
self.test_return = 0.0
self.avg_test_return = 0.0
self.exp_anneal_samples = 320000
self.exp_params_beg = ExpParams()
self.exp_params_end = ExpParams()
self.exp_params_curr = ExpParams()
self._load_params(json_data)
self._build_replay_buffer(self.replay_buffer_size)
self._build_normalizers()
self._build_bounds()
self.reset()
return
def __str__(self):
action_space_str = str(self.get_action_space())
info_str = ""
info_str += '"ID": {:d},\n "Type": "{:s}",\n "ActionSpace": "{:s}",\n "StateDim": {:d},\n "GoalDim": {:d},\n "ActionDim": {:d}'.format(
self.id, self.NAME, action_space_str[action_space_str.rfind('.') + 1:], self.get_state_size(), self.get_goal_size(), self.get_action_size())
return "{\n" + info_str + "\n}"
def get_output_dir(self):
return self._output_dir
def set_output_dir(self, out_dir):
self._output_dir = out_dir
if (self._output_dir != ""):
self.logger.configure_output_file(out_dir + "/agent" + str(self.id) + "_log.txt")
return
output_dir = property(get_output_dir, set_output_dir)
def get_int_output_dir(self):
return self._int_output_dir
def set_int_output_dir(self, out_dir):
self._int_output_dir = out_dir
return
int_output_dir = property(get_int_output_dir, set_int_output_dir)
def reset(self):
self.path.clear()
return
def update(self, timestep):
if self.need_new_action():
#print("update_new_action!!!")
self._update_new_action()
else:
print("no action???")
if (self._mode == self.Mode.TRAIN and self.enable_training):
self._update_counter += timestep
while self._update_counter >= self.update_period:
self._train()
self._update_exp_params()
self.world.env.set_sample_count(self._total_sample_count)
self._update_counter -= self.update_period
return
def end_episode(self):
if (self.path.pathlength() > 0):
self._end_path()
if (self._mode == self.Mode.TRAIN or self._mode == self.Mode.TRAIN_END):
if (self.enable_training and self.path.pathlength() > 0):
self._store_path(self.path)
elif (self._mode == self.Mode.TEST):
self._update_test_return(self.path)
else:
assert False, Logger.print2("Unsupported RL agent mode" + str(self._mode))
self._update_mode()
return
def has_goal(self):
return self.get_goal_size() > 0
def predict_val(self):
return 0
def get_enable_training(self):
return self._enable_training
def set_enable_training(self, enable):
print("set_enable_training!=", enable)
self._enable_training = enable
if (self._enable_training):
self.reset()
return
enable_training = property(get_enable_training, set_enable_training)
def enable_testing(self):
return self.test_episodes > 0
def get_name(self):
return self.NAME
@abstractmethod
def save_model(self, out_path):
pass
@abstractmethod
def load_model(self, in_path):
pass
@abstractmethod
def _decide_action(self, s, g):
pass
@abstractmethod
def _get_output_path(self):
pass
@abstractmethod
def _get_int_output_path(self):
pass
@abstractmethod
def _train_step(self):
pass
@abstractmethod
def _check_action_space(self):
pass
def get_action_space(self):
return self.world.env.get_action_space(self.id)
def get_state_size(self):
return self.world.env.get_state_size(self.id)
def get_goal_size(self):
return self.world.env.get_goal_size(self.id)
def get_action_size(self):
return self.world.env.get_action_size(self.id)
def get_num_actions(self):
return self.world.env.get_num_actions(self.id)
def need_new_action(self):
return self.world.env.need_new_action(self.id)
def _build_normalizers(self):
self.s_norm = Normalizer(self.get_state_size(), self.world.env.build_state_norm_groups(self.id))
self.s_norm.set_mean_std(-self.world.env.build_state_offset(self.id),
1 / self.world.env.build_state_scale(self.id))
self.g_norm = Normalizer(self.get_goal_size(), self.world.env.build_goal_norm_groups(self.id))
self.g_norm.set_mean_std(-self.world.env.build_goal_offset(self.id),
1 / self.world.env.build_goal_scale(self.id))
self.a_norm = Normalizer(self.world.env.get_action_size())
self.a_norm.set_mean_std(-self.world.env.build_action_offset(self.id),
1 / self.world.env.build_action_scale(self.id))
return
def _build_bounds(self):
self.a_bound_min = self.world.env.build_action_bound_min(self.id)
self.a_bound_max = self.world.env.build_action_bound_max(self.id)
return
def _load_params(self, json_data):
if (self.UPDATE_PERIOD_KEY in json_data):
self.update_period = int(json_data[self.UPDATE_PERIOD_KEY])
if (self.ITERS_PER_UPDATE in json_data):
self.iters_per_update = int(json_data[self.ITERS_PER_UPDATE])
if (self.DISCOUNT_KEY in json_data):
self.discount = json_data[self.DISCOUNT_KEY]
if (self.MINI_BATCH_SIZE_KEY in json_data):
self.mini_batch_size = int(json_data[self.MINI_BATCH_SIZE_KEY])
if (self.REPLAY_BUFFER_SIZE_KEY in json_data):
self.replay_buffer_size = int(json_data[self.REPLAY_BUFFER_SIZE_KEY])
if (self.INIT_SAMPLES_KEY in json_data):
self.init_samples = int(json_data[self.INIT_SAMPLES_KEY])
if (self.NORMALIZER_SAMPLES_KEY in json_data):
self.normalizer_samples = int(json_data[self.NORMALIZER_SAMPLES_KEY])
if (self.OUTPUT_ITERS_KEY in json_data):
self.output_iters = json_data[self.OUTPUT_ITERS_KEY]
if (self.INT_OUTPUT_ITERS_KEY in json_data):
self.int_output_iters = json_data[self.INT_OUTPUT_ITERS_KEY]
if (self.TEST_EPISODES_KEY in json_data):
self.test_episodes = int(json_data[self.TEST_EPISODES_KEY])
if (self.EXP_ANNEAL_SAMPLES_KEY in json_data):
self.exp_anneal_samples = json_data[self.EXP_ANNEAL_SAMPLES_KEY]
if (self.EXP_PARAM_BEG_KEY in json_data):
self.exp_params_beg.load(json_data[self.EXP_PARAM_BEG_KEY])
if (self.EXP_PARAM_END_KEY in json_data):
self.exp_params_end.load(json_data[self.EXP_PARAM_END_KEY])
num_procs = MPIUtil.get_num_procs()
self._local_mini_batch_size = int(np.ceil(self.mini_batch_size / num_procs))
self._local_mini_batch_size = np.maximum(self._local_mini_batch_size, 1)
self.mini_batch_size = self._local_mini_batch_size * num_procs
assert(self.exp_params_beg.noise == self.exp_params_end.noise) # noise std should not change
self.exp_params_curr = copy.deepcopy(self.exp_params_beg)
self.exp_params_end.noise = self.exp_params_beg.noise
self._need_normalizer_update = self.normalizer_samples > 0
return
def _record_state(self):
s = self.world.env.record_state(self.id)
return s
def _record_goal(self):
g = self.world.env.record_goal(self.id)
return g
def _record_reward(self):
r = self.world.env.calc_reward(self.id)
return r
def _apply_action(self, a):
self.world.env.set_action(self.id, a)
return
def _record_flags(self):
return int(0)
def _is_first_step(self):
return len(self.path.states) == 0
def _end_path(self):
s = self._record_state()
g = self._record_goal()
r = self._record_reward()
self.path.rewards.append(r)
self.path.states.append(s)
self.path.goals.append(g)
self.path.terminate = self.world.env.check_terminate(self.id)
return
def _update_new_action(self):
s = self._record_state()
g = self._record_goal()
if not (self._is_first_step()):
r = self._record_reward()
self.path.rewards.append(r)
a, logp = self._decide_action(s=s, g=g)
assert len(np.shape(a)) == 1
assert len(np.shape(logp)) <= 1
flags = self._record_flags()
self._apply_action(a)
self.path.states.append(s)
self.path.goals.append(g)
self.path.actions.append(a)
self.path.logps.append(logp)
self.path.flags.append(flags)
if self._enable_draw():
self._log_val(s, g)
return
def _update_exp_params(self):
lerp = float(self._total_sample_count) / self.exp_anneal_samples
lerp = np.clip(lerp, 0.0, 1.0)
self.exp_params_curr = self.exp_params_beg.lerp(self.exp_params_end, lerp)
return
def _update_test_return(self, path):
path_reward = path.calc_return()
self.test_return += path_reward
self.test_episode_count += 1
return
def _update_mode(self):
if (self._mode == self.Mode.TRAIN):
self._update_mode_train()
elif (self._mode == self.Mode.TRAIN_END):
self._update_mode_train_end()
elif (self._mode == self.Mode.TEST):
self._update_mode_test()
else:
assert False, Logger.print2("Unsupported RL agent mode" + str(self._mode))
return
def _update_mode_train(self):
return
def _update_mode_train_end(self):
self._init_mode_test()
return
def _update_mode_test(self):
if (self.test_episode_count * MPIUtil.get_num_procs() >= self.test_episodes):
global_return = MPIUtil.reduce_sum(self.test_return)
global_count = MPIUtil.reduce_sum(self.test_episode_count)
avg_return = global_return / global_count
self.avg_test_return = avg_return
if self.enable_training:
self._init_mode_train()
return
def _init_mode_train(self):
self._mode = self.Mode.TRAIN
self.world.env.set_mode(self._mode)
return
def _init_mode_train_end(self):
self._mode = self.Mode.TRAIN_END
return
def _init_mode_test(self):
self._mode = self.Mode.TEST
self.test_return = 0.0
self.test_episode_count = 0
self.world.env.set_mode(self._mode)
return
def _enable_output(self):
return MPIUtil.is_root_proc() and self.output_dir != ""
def _enable_int_output(self):
return MPIUtil.is_root_proc() and self.int_output_dir != ""
def _calc_val_bounds(self, discount):
r_min = self.world.env.get_reward_min(self.id)
r_max = self.world.env.get_reward_max(self.id)
assert(r_min <= r_max)
val_min = r_min / ( 1.0 - discount)
val_max = r_max / ( 1.0 - discount)
return val_min, val_max
def _calc_val_offset_scale(self, discount):
val_min, val_max = self._calc_val_bounds(discount)
val_offset = 0
val_scale = 1
if (np.isfinite(val_min) and np.isfinite(val_max)):
val_offset = -0.5 * (val_max + val_min)
val_scale = 2 / (val_max - val_min)
return val_offset, val_scale
def _calc_term_vals(self, discount):
r_fail = self.world.env.get_reward_fail(self.id)
r_succ = self.world.env.get_reward_succ(self.id)
r_min = self.world.env.get_reward_min(self.id)
r_max = self.world.env.get_reward_max(self.id)
assert(r_fail <= r_max and r_fail >= r_min)
assert(r_succ <= r_max and r_succ >= r_min)
assert(not np.isinf(r_fail))
assert(not np.isinf(r_succ))
if (discount == 0):
val_fail = 0
val_succ = 0
else:
val_fail = r_fail / (1.0 - discount)
val_succ = r_succ / (1.0 - discount)
return val_fail, val_succ
def _update_iter(self, iter):
if (self._enable_output() and self.iter % self.output_iters == 0):
output_path = self._get_output_path()
output_dir = os.path.dirname(output_path)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
self.save_model(output_path)
if (self._enable_int_output() and self.iter % self.int_output_iters == 0):
int_output_path = self._get_int_output_path()
int_output_dir = os.path.dirname(int_output_path)
if not os.path.exists(int_output_dir):
os.makedirs(int_output_dir)
self.save_model(int_output_path)
self.iter = iter
return
def _enable_draw(self):
return self.world.env.enable_draw
def _log_val(self, s, g):
pass
def _build_replay_buffer(self, buffer_size):
num_procs = MPIUtil.get_num_procs()
buffer_size = int(buffer_size / num_procs)
self.replay_buffer = ReplayBuffer(buffer_size=buffer_size)
self.replay_buffer_initialized = False
return
def _store_path(self, path):
path_id = self.replay_buffer.store(path)
valid_path = path_id != MathUtil.INVALID_IDX
if valid_path:
self.train_return = path.calc_return()
if self._need_normalizer_update:
self._record_normalizers(path)
return path_id
def _record_normalizers(self, path):
states = np.array(path.states)
self.s_norm.record(states)
if self.has_goal():
goals = np.array(path.goals)
self.g_norm.record(goals)
return
def _update_normalizers(self):
self.s_norm.update()
if self.has_goal():
self.g_norm.update()
return
def _train(self):
samples = self.replay_buffer.total_count
self._total_sample_count = int(MPIUtil.reduce_sum(samples))
end_training = False
if (self.replay_buffer_initialized):
if (self._valid_train_step()):
prev_iter = self.iter
iters = self._get_iters_per_update()
avg_train_return = MPIUtil.reduce_avg(self.train_return)
for i in range(iters):
curr_iter = self.iter
wall_time = time.time() - self.start_time
wall_time /= 60 * 60 # store time in hours
has_goal = self.has_goal()
s_mean = np.mean(self.s_norm.mean)
s_std = np.mean(self.s_norm.std)
g_mean = np.mean(self.g_norm.mean) if has_goal else 0
g_std = np.mean(self.g_norm.std) if has_goal else 0
self.logger.log_tabular("Iteration", self.iter)
self.logger.log_tabular("Wall_Time", wall_time)
self.logger.log_tabular("Samples", self._total_sample_count)
self.logger.log_tabular("Train_Return", avg_train_return)
self.logger.log_tabular("Test_Return", self.avg_test_return)
self.logger.log_tabular("State_Mean", s_mean)
self.logger.log_tabular("State_Std", s_std)
self.logger.log_tabular("Goal_Mean", g_mean)
self.logger.log_tabular("Goal_Std", g_std)
self._log_exp_params()
self._update_iter(self.iter + 1)
self._train_step()
Logger.print2("Agent " + str(self.id))
self.logger.print_tabular()
Logger.print2("")
if (self._enable_output() and curr_iter % self.int_output_iters == 0):
self.logger.dump_tabular()
if (prev_iter // self.int_output_iters != self.iter // self.int_output_iters):
end_training = self.enable_testing()
else:
Logger.print2("Agent " + str(self.id))
Logger.print2("Samples: " + str(self._total_sample_count))
Logger.print2("")
if (self._total_sample_count >= self.init_samples):
self.replay_buffer_initialized = True
end_training = self.enable_testing()
if self._need_normalizer_update:
self._update_normalizers()
self._need_normalizer_update = self.normalizer_samples > self._total_sample_count
if end_training:
self._init_mode_train_end()
return
def _get_iters_per_update(self):
return MPIUtil.get_num_procs() * self.iters_per_update
def _valid_train_step(self):
return True
def _log_exp_params(self):
self.logger.log_tabular("Exp_Rate", self.exp_params_curr.rate)
self.logger.log_tabular("Exp_Noise", self.exp_params_curr.noise)
self.logger.log_tabular("Exp_Temp", self.exp_params_curr.temp)
return

View File

@@ -0,0 +1,18 @@
import numpy as np
def compute_return(rewards, gamma, td_lambda, val_t):
# computes td-lambda return of path
path_len = len(rewards)
assert len(val_t) == path_len + 1
return_t = np.zeros(path_len)
last_val = rewards[-1] + gamma * val_t[-1]
return_t[-1] = last_val
for i in reversed(range(0, path_len - 1)):
curr_r = rewards[i]
next_ret = return_t[i + 1]
curr_val = curr_r + gamma * ((1.0 - td_lambda) * val_t[i + 1] + td_lambda * next_ret)
return_t[i] = curr_val
return return_t

View File

@@ -0,0 +1,143 @@
import numpy as np
import learning.agent_builder as AgentBuilder
import learning.tf_util as TFUtil
from learning.rl_agent import RLAgent
from pybullet_utils.logger import Logger
import pybullet_data
class RLWorld(object):
def __init__(self, env, arg_parser):
TFUtil.disable_gpu()
self.env = env
self.arg_parser = arg_parser
self._enable_training = True
self.train_agents = []
self.parse_args(arg_parser)
self.build_agents()
return
def get_enable_training(self):
return self._enable_training
def set_enable_training(self, enable):
self._enable_training = enable
for i in range(len(self.agents)):
curr_agent = self.agents[i]
if curr_agent is not None:
enable_curr_train = self.train_agents[i] if (len(self.train_agents) > 0) else True
curr_agent.enable_training = self.enable_training and enable_curr_train
if (self._enable_training):
self.env.set_mode(RLAgent.Mode.TRAIN)
else:
self.env.set_mode(RLAgent.Mode.TEST)
return
enable_training = property(get_enable_training, set_enable_training)
def parse_args(self, arg_parser):
self.train_agents = self.arg_parser.parse_bools('train_agents')
num_agents = self.env.get_num_agents()
assert(len(self.train_agents) == num_agents or len(self.train_agents) == 0)
return
def shutdown(self):
self.env.shutdown()
return
def build_agents(self):
num_agents = self.env.get_num_agents()
print("num_agents=",num_agents)
self.agents = []
Logger.print2('')
Logger.print2('Num Agents: {:d}'.format(num_agents))
agent_files = self.arg_parser.parse_strings('agent_files')
print("len(agent_files)=",len(agent_files))
assert(len(agent_files) == num_agents or len(agent_files) == 0)
model_files = self.arg_parser.parse_strings('model_files')
assert(len(model_files) == num_agents or len(model_files) == 0)
output_path = self.arg_parser.parse_string('output_path')
int_output_path = self.arg_parser.parse_string('int_output_path')
for i in range(num_agents):
curr_file = agent_files[i]
curr_agent = self._build_agent(i, curr_file)
if curr_agent is not None:
curr_agent.output_dir = output_path
curr_agent.int_output_dir = int_output_path
Logger.print2(str(curr_agent))
if (len(model_files) > 0):
curr_model_file = model_files[i]
if curr_model_file != 'none':
curr_agent.load_model(pybullet_data.getDataPath()+"/"+curr_model_file)
self.agents.append(curr_agent)
Logger.print2('')
self.set_enable_training(self.enable_training)
return
def update(self, timestep):
#print("world update!\n")
self._update_agents(timestep)
self._update_env(timestep)
return
def reset(self):
self._reset_agents()
self._reset_env()
return
def end_episode(self):
self._end_episode_agents();
return
def _update_env(self, timestep):
self.env.update(timestep)
return
def _update_agents(self, timestep):
#print("len(agents)=",len(self.agents))
for agent in self.agents:
if (agent is not None):
agent.update(timestep)
return
def _reset_env(self):
self.env.reset()
return
def _reset_agents(self):
for agent in self.agents:
if (agent != None):
agent.reset()
return
def _end_episode_agents(self):
for agent in self.agents:
if (agent != None):
agent.end_episode()
return
def _build_agent(self, id, agent_file):
Logger.print2('Agent {:d}: {}'.format(id, agent_file))
if (agent_file == 'none'):
agent = None
else:
agent = AgentBuilder.build_agent(self, id, agent_file)
assert (agent != None), 'Failed to build agent {:d} from: {}'.format(id, agent_file)
return agent

View File

@@ -0,0 +1,103 @@
from mpi4py import MPI
import tensorflow as tf
import numpy as np
import learning.tf_util as TFUtil
import pybullet_utils.math_util as MathUtil
import pybullet_utils.mpi_util as MPIUtil
from pybullet_utils.logger import Logger
from learning.solvers.solver import Solver
class MPISolver(Solver):
CHECK_SYNC_ITERS = 1000
def __init__(self, sess, optimizer, vars):
super().__init__(vars)
self.sess = sess
self.optimizer = optimizer
self._build_grad_feed(vars)
self._update = optimizer.apply_gradients(zip(self._grad_tf_list, self.vars))
self._set_flat_vars = TFUtil.SetFromFlat(sess, self.vars)
self._get_flat_vars = TFUtil.GetFlat(sess, self.vars)
self.iter = 0
grad_dim = self._calc_grad_dim()
self._flat_grad = np.zeros(grad_dim, dtype=np.float32)
self._global_flat_grad = np.zeros(grad_dim, dtype=np.float32)
return
def get_stepsize(self):
return self.optimizer._learning_rate_tensor.eval()
def update(self, grads=None, grad_scale=1.0):
if grads is not None:
self._flat_grad = MathUtil.flatten(grads)
else:
self._flat_grad.fill(0)
return self.update_flatgrad(self._flat_grad, grad_scale)
def update_flatgrad(self, flat_grad, grad_scale=1.0):
if self.iter % self.CHECK_SYNC_ITERS == 0:
assert self.check_synced(), Logger.print2('Network parameters desynchronized')
if grad_scale != 1.0:
flat_grad *= grad_scale
MPI.COMM_WORLD.Allreduce(flat_grad, self._global_flat_grad, op=MPI.SUM)
self._global_flat_grad /= MPIUtil.get_num_procs()
self._load_flat_grad(self._global_flat_grad)
self.sess.run([self._update], self._grad_feed)
self.iter += 1
return
def sync(self):
vars = self._get_flat_vars()
MPIUtil.bcast(vars)
self._set_flat_vars(vars)
return
def check_synced(self):
synced = True
if self._is_root():
vars = self._get_flat_vars()
MPIUtil.bcast(vars)
else:
vars_local = self._get_flat_vars()
vars_root = np.empty_like(vars_local)
MPIUtil.bcast(vars_root)
synced = (vars_local == vars_root).all()
return synced
def _is_root(self):
return MPIUtil.is_root_proc()
def _build_grad_feed(self, vars):
self._grad_tf_list = []
self._grad_buffers = []
for v in self.vars:
shape = v.get_shape()
grad = np.zeros(shape)
grad_tf = tf.placeholder(tf.float32, shape=shape)
self._grad_buffers.append(grad)
self._grad_tf_list.append(grad_tf)
self._grad_feed = dict({g_tf: g for g_tf, g in zip(self._grad_tf_list, self._grad_buffers)})
return
def _calc_grad_dim(self):
grad_dim = 0
for grad in self._grad_buffers:
grad_dim += grad.size
return grad_dim
def _load_flat_grad(self, flat_grad):
start = 0
for g in self._grad_buffers:
size = g.size
np.copyto(g, np.reshape(flat_grad[start:start + size], g.shape))
start += size
return

View File

@@ -0,0 +1,10 @@
from abc import ABC, abstractmethod
class Solver(ABC):
def __init__(self, vars):
self.vars = vars
return
@abstractmethod
def update(self, grads):
pass

View File

@@ -0,0 +1,149 @@
import numpy as np
import tensorflow as tf
from abc import abstractmethod
from learning.rl_agent import RLAgent
from pybullet_utils.logger import Logger
from learning.tf_normalizer import TFNormalizer
class TFAgent(RLAgent):
RESOURCE_SCOPE = 'resource'
SOLVER_SCOPE = 'solvers'
def __init__(self, world, id, json_data):
self.tf_scope = 'agent'
self.graph = tf.Graph()
self.sess = tf.Session(graph=self.graph)
super().__init__(world, id, json_data)
self._build_graph(json_data)
self._init_normalizers()
return
def __del__(self):
self.sess.close()
return
def save_model(self, out_path):
with self.sess.as_default(), self.graph.as_default():
try:
save_path = self.saver.save(self.sess, out_path, write_meta_graph=False, write_state=False)
Logger.print2('Model saved to: ' + save_path)
except:
Logger.print2("Failed to save model to: " + save_path)
return
def load_model(self, in_path):
with self.sess.as_default(), self.graph.as_default():
self.saver.restore(self.sess, in_path)
self._load_normalizers()
Logger.print2('Model loaded from: ' + in_path)
return
def _get_output_path(self):
assert(self.output_dir != '')
file_path = self.output_dir + '/agent' + str(self.id) + '_model.ckpt'
return file_path
def _get_int_output_path(self):
assert(self.int_output_dir != '')
file_path = self.int_output_dir + ('/agent{:d}_models/agent{:d}_int_model_{:010d}.ckpt').format(self.id, self.id, self.iter)
return file_path
def _build_graph(self, json_data):
with self.sess.as_default(), self.graph.as_default():
with tf.variable_scope(self.tf_scope):
self._build_nets(json_data)
with tf.variable_scope(self.SOLVER_SCOPE):
self._build_losses(json_data)
self._build_solvers(json_data)
self._initialize_vars()
self._build_saver()
return
def _init_normalizers(self):
with self.sess.as_default(), self.graph.as_default():
# update normalizers to sync the tensorflow tensors
self.s_norm.update()
self.g_norm.update()
self.a_norm.update()
return
@abstractmethod
def _build_nets(self, json_data):
pass
@abstractmethod
def _build_losses(self, json_data):
pass
@abstractmethod
def _build_solvers(self, json_data):
pass
def _tf_vars(self, scope=''):
with self.sess.as_default(), self.graph.as_default():
res = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.tf_scope + '/' + scope)
assert len(res) > 0
return res
def _build_normalizers(self):
with self.sess.as_default(), self.graph.as_default(), tf.variable_scope(self.tf_scope):
with tf.variable_scope(self.RESOURCE_SCOPE):
self.s_norm = TFNormalizer(self.sess, 's_norm', self.get_state_size(), self.world.env.build_state_norm_groups(self.id))
state_offset = -self.world.env.build_state_offset(self.id)
print("state_offset=",state_offset)
state_scale = 1 / self.world.env.build_state_scale(self.id)
print("state_scale=",state_scale)
self.s_norm.set_mean_std(-self.world.env.build_state_offset(self.id),
1 / self.world.env.build_state_scale(self.id))
self.g_norm = TFNormalizer(self.sess, 'g_norm', self.get_goal_size(), self.world.env.build_goal_norm_groups(self.id))
self.g_norm.set_mean_std(-self.world.env.build_goal_offset(self.id),
1 / self.world.env.build_goal_scale(self.id))
self.a_norm = TFNormalizer(self.sess, 'a_norm', self.get_action_size())
self.a_norm.set_mean_std(-self.world.env.build_action_offset(self.id),
1 / self.world.env.build_action_scale(self.id))
return
def _load_normalizers(self):
self.s_norm.load()
self.g_norm.load()
self.a_norm.load()
return
def _update_normalizers(self):
with self.sess.as_default(), self.graph.as_default():
super()._update_normalizers()
return
def _initialize_vars(self):
self.sess.run(tf.global_variables_initializer())
return
def _build_saver(self):
vars = self._get_saver_vars()
self.saver = tf.train.Saver(vars, max_to_keep=0)
return
def _get_saver_vars(self):
with self.sess.as_default(), self.graph.as_default():
vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.tf_scope)
vars = [v for v in vars if '/' + self.SOLVER_SCOPE + '/' not in v.name]
#vars = [v for v in vars if '/target/' not in v.name]
assert len(vars) > 0
return vars
def _weight_decay_loss(self, scope):
vars = self._tf_vars(scope)
vars_no_bias = [v for v in vars if 'bias' not in v.name]
loss = tf.add_n([tf.nn.l2_loss(v) for v in vars_no_bias])
return loss
def _train(self):
with self.sess.as_default(), self.graph.as_default():
super()._train()
return

View File

@@ -0,0 +1,67 @@
import numpy as np
import copy
import tensorflow as tf
from learning.normalizer import Normalizer
class TFNormalizer(Normalizer):
def __init__(self, sess, scope, size, groups_ids=None, eps=0.02, clip=np.inf):
self.sess = sess
self.scope = scope
super().__init__(size, groups_ids, eps, clip)
with tf.variable_scope(self.scope):
self._build_resource_tf()
return
# initialze count when loading saved values so that things don't change to quickly during updates
def load(self):
self.count = self.count_tf.eval()[0]
self.mean = self.mean_tf.eval()
self.std = self.std_tf.eval()
self.mean_sq = self.calc_mean_sq(self.mean, self.std)
return
def update(self):
super().update()
self._update_resource_tf()
return
def set_mean_std(self, mean, std):
super().set_mean_std(mean, std)
self._update_resource_tf()
return
def normalize_tf(self, x):
norm_x = (x - self.mean_tf) / self.std_tf
norm_x = tf.clip_by_value(norm_x, -self.clip, self.clip)
return norm_x
def unnormalize_tf(self, norm_x):
x = norm_x * self.std_tf + self.mean_tf
return x
def _build_resource_tf(self):
self.count_tf = tf.get_variable(dtype=tf.int32, name='count', initializer=np.array([self.count], dtype=np.int32), trainable=False)
self.mean_tf = tf.get_variable(dtype=tf.float32, name='mean', initializer=self.mean.astype(np.float32), trainable=False)
self.std_tf = tf.get_variable(dtype=tf.float32, name='std', initializer=self.std.astype(np.float32), trainable=False)
self.count_ph = tf.get_variable(dtype=tf.int32, name='count_ph', shape=[1])
self.mean_ph = tf.get_variable(dtype=tf.float32, name='mean_ph', shape=self.mean.shape)
self.std_ph = tf.get_variable(dtype=tf.float32, name='std_ph', shape=self.std.shape)
self._update_op = tf.group(
self.count_tf.assign(self.count_ph),
self.mean_tf.assign(self.mean_ph),
self.std_tf.assign(self.std_ph)
)
return
def _update_resource_tf(self):
feed = {
self.count_ph: np.array([self.count], dtype=np.int32),
self.mean_ph: self.mean,
self.std_ph: self.std
}
self.sess.run(self._update_op, feed_dict=feed)
return

View File

@@ -0,0 +1,104 @@
import tensorflow as tf
import numpy as np
import os
xavier_initializer = tf.contrib.layers.xavier_initializer()
def disable_gpu():
os.environ["CUDA_VISIBLE_DEVICES"] = '-1'
return
def var_shape(x):
out = [k.value for k in x.get_shape()]
assert all(isinstance(a, int) for a in out), "shape function assumes that shape is fully known"
return out
def intprod(x):
return int(np.prod(x))
def numel(x):
n = intprod(var_shape(x))
return n
def flat_grad(loss, var_list, grad_ys=None):
grads = tf.gradients(loss, var_list, grad_ys)
return tf.concat([tf.reshape(grad, [numel(v)]) for (v, grad) in zip(var_list, grads)], axis=0)
def fc_net(input, layers_sizes, activation, reuse=None, flatten=False): # build fully connected network
curr_tf = input
for i, size in enumerate(layers_sizes):
with tf.variable_scope(str(i), reuse=reuse):
curr_tf = tf.layers.dense(inputs=curr_tf,
units=size,
kernel_initializer=xavier_initializer,
activation = activation if i < len(layers_sizes)-1 else None)
if flatten:
assert layers_sizes[-1] == 1
curr_tf = tf.reshape(curr_tf, [-1])
return curr_tf
def copy(sess, src, dst):
assert len(src) == len(dst)
sess.run(list(map(lambda v: v[1].assign(v[0]), zip(src, dst))))
return
def flat_grad(loss, var_list):
grads = tf.gradients(loss, var_list)
return tf.concat(axis=0, values=[tf.reshape(grad, [numel(v)])
for (v, grad) in zip(var_list, grads)])
def calc_logp_gaussian(x_tf, mean_tf, std_tf):
dim = tf.to_float(tf.shape(x_tf)[-1])
if mean_tf is None:
diff_tf = x_tf
else:
diff_tf = x_tf - mean_tf
logp_tf = -0.5 * tf.reduce_sum(tf.square(diff_tf / std_tf), axis=-1)
logp_tf += -0.5 * dim * np.log(2 * np.pi) - tf.reduce_sum(tf.log(std_tf), axis=-1)
return logp_tf
def calc_bound_loss(x_tf, bound_min, bound_max):
# penalty for violating bounds
violation_min = tf.minimum(x_tf - bound_min, 0)
violation_max = tf.maximum(x_tf - bound_max, 0)
violation = tf.reduce_sum(tf.square(violation_min), axis=-1) + tf.reduce_sum(tf.square(violation_max), axis=-1)
loss = 0.5 * tf.reduce_mean(violation)
return loss
class SetFromFlat(object):
def __init__(self, sess, var_list, dtype=tf.float32):
assigns = []
shapes = list(map(var_shape, var_list))
total_size = np.sum([intprod(shape) for shape in shapes])
self.sess = sess
self.theta = tf.placeholder(dtype,[total_size])
start=0
assigns = []
for (shape,v) in zip(shapes,var_list):
size = intprod(shape)
assigns.append(tf.assign(v, tf.reshape(self.theta[start:start+size],shape)))
start += size
self.op = tf.group(*assigns)
return
def __call__(self, theta):
self.sess.run(self.op, feed_dict={self.theta:theta})
return
class GetFlat(object):
def __init__(self, sess, var_list):
self.sess = sess
self.op = tf.concat(axis=0, values=[tf.reshape(v, [numel(v)]) for v in var_list])
return
def __call__(self):
return self.sess.run(self.op)

View File

@@ -0,0 +1,23 @@
import sys
import subprocess
from pybullet_utils.arg_parser import ArgParser
from pybullet_utils.logger import Logger
def main():
# Command line arguments
args = sys.argv[1:]
arg_parser = ArgParser()
arg_parser.load_args(args)
num_workers = arg_parser.parse_int('num_workers', 1)
assert(num_workers > 0)
Logger.print2('Running with {:d} workers'.format(num_workers))
cmd = 'mpiexec -n {:d} python3 DeepMimic_Optimizer.py '.format(num_workers)
cmd += ' '.join(args)
Logger.print2('cmd: ' + cmd)
subprocess.call(cmd, shell=True)
return
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,82 @@
import os
import inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
print("parentdir=",parentdir)
import json
from pybullet_envs.deep_mimic.learning.rl_world import RLWorld
from learning.ppo_agent import PPOAgent
import pybullet_data
from pybullet_utils.arg_parser import ArgParser
from pybullet_utils.logger import Logger
from pybullet_envs.deep_mimic.env.pybullet_deep_mimic_env import PyBulletDeepMimicEnv
import sys
import random
update_timestep = 1./600.
def update_world(world, time_elapsed):
timeStep = 1./600.
world.update(timeStep)
reward = world.env.calc_reward(agent_id=0)
#print("reward=",reward)
end_episode = world.env.is_episode_end()
if (end_episode):
world.end_episode()
world.reset()
return
def build_arg_parser(args):
arg_parser = ArgParser()
arg_parser.load_args(args)
arg_file = arg_parser.parse_string('arg_file', '')
if (arg_file != ''):
path = pybullet_data.getDataPath()+"/args/"+arg_file
succ = arg_parser.load_file(path)
Logger.print2(arg_file)
assert succ, Logger.print2('Failed to load args from: ' + arg_file)
return arg_parser
args = sys.argv[1:]
def build_world(args, enable_draw):
arg_parser = build_arg_parser(args)
print("enable_draw=",enable_draw)
env = PyBulletDeepMimicEnv(args, enable_draw)
world = RLWorld(env, arg_parser)
#world.env.set_playback_speed(playback_speed)
motion_file = arg_parser.parse_string("motion_file")
print("motion_file=",motion_file)
bodies = arg_parser.parse_ints("fall_contact_bodies")
print("bodies=",bodies)
int_output_path = arg_parser.parse_string("int_output_path")
print("int_output_path=",int_output_path)
agent_files = pybullet_data.getDataPath()+"/"+arg_parser.parse_string("agent_files")
AGENT_TYPE_KEY = "AgentType"
print("agent_file=",agent_files)
with open(agent_files) as data_file:
json_data = json.load(data_file)
print("json_data=",json_data)
assert AGENT_TYPE_KEY in json_data
agent_type = json_data[AGENT_TYPE_KEY]
print("agent_type=",agent_type)
agent = PPOAgent(world, id, json_data)
agent.set_enable_training(True)
world.reset()
return world
if __name__ == '__main__':
world = build_world(args, True)
while (world.env._pybullet_client.isConnected()):
timeStep = 1./600.
update_world(world, timeStep)

View File

@@ -17,7 +17,9 @@ project ("pybullet")
includedirs {"../../src", "../../examples", includedirs {"../../src", "../../examples",
"../../examples/ThirdPartyLibs"} "../../examples/ThirdPartyLibs"}
defines {"PHYSICS_IN_PROCESS_EXAMPLE_BROWSER"} defines {"PHYSICS_IN_PROCESS_EXAMPLE_BROWSER", "STATIC_LINK_SPD_PLUGIN"}
hasCL = findOpenCL("clew") hasCL = findOpenCL("clew")
links{ "BulletExampleBrowserLib","gwen", "BulletFileLoader","BulletWorldImporter","OpenGL_Window","BulletSoftBody", "BulletInverseDynamicsUtils", "BulletInverseDynamics", "BulletDynamics","BulletCollision","LinearMath","BussIK", "Bullet3Common"} links{ "BulletExampleBrowserLib","gwen", "BulletFileLoader","BulletWorldImporter","OpenGL_Window","BulletSoftBody", "BulletInverseDynamicsUtils", "BulletInverseDynamics", "BulletDynamics","BulletCollision","LinearMath","BussIK", "Bullet3Common"}
@@ -170,6 +172,20 @@ if not _OPTIONS["no-enet"] then
"../../examples/SharedMemory/plugins/collisionFilterPlugin/collisionFilterPlugin.cpp", "../../examples/SharedMemory/plugins/collisionFilterPlugin/collisionFilterPlugin.cpp",
"../../examples/SharedMemory/plugins/pdControlPlugin/pdControlPlugin.cpp", "../../examples/SharedMemory/plugins/pdControlPlugin/pdControlPlugin.cpp",
"../../examples/SharedMemory/plugins/pdControlPlugin/pdControlPlugin.h", "../../examples/SharedMemory/plugins/pdControlPlugin/pdControlPlugin.h",
"../../examples/SharedMemory/plugins/stablePDPlugin/SpAlg.cpp",
"../../examples/SharedMemory/plugins/stablePDPlugin/SpAlg.h",
"../../examples/SharedMemory/plugins/stablePDPlugin/Shape.cpp",
"../../examples/SharedMemory/plugins/stablePDPlugin/Shape.h",
"../../examples/SharedMemory/plugins/stablePDPlugin/RBDUtil.cpp",
"../../examples/SharedMemory/plugins/stablePDPlugin/RBDUtil.h",
"../../examples/SharedMemory/plugins/stablePDPlugin/RBDModel.cpp",
"../../examples/SharedMemory/plugins/stablePDPlugin/RBDModel.h",
"../../examples/SharedMemory/plugins/stablePDPlugin/MathUtil.cpp",
"../../examples/SharedMemory/plugins/stablePDPlugin/MathUtil.h",
"../../examples/SharedMemory/plugins/stablePDPlugin/KinTree.cpp",
"../../examples/SharedMemory/plugins/stablePDPlugin/KinTree.h",
"../../examples/SharedMemory/plugins/stablePDPlugin/BulletConversion.cpp",
"../../examples/SharedMemory/plugins/stablePDPlugin/BulletConversion.h",
} }
if _OPTIONS["enable_physx"] then if _OPTIONS["enable_physx"] then

View File

@@ -1233,20 +1233,21 @@ static PyObject* pybullet_changeDynamicsInfo(PyObject* self, PyObject* args, PyO
double restitution = -1; double restitution = -1;
double linearDamping = -1; double linearDamping = -1;
double angularDamping = -1; double angularDamping = -1;
double contactStiffness = -1; double contactStiffness = -1;
double contactDamping = -1; double contactDamping = -1;
double ccdSweptSphereRadius = -1; double ccdSweptSphereRadius = -1;
int frictionAnchor = -1; int frictionAnchor = -1;
double contactProcessingThreshold = -1; double contactProcessingThreshold = -1;
int activationState = -1; int activationState = -1;
double jointDamping = -1;
PyObject* localInertiaDiagonalObj = 0; PyObject* localInertiaDiagonalObj = 0;
b3PhysicsClientHandle sm = 0; b3PhysicsClientHandle sm = 0;
int physicsClientId = 0; int physicsClientId = 0;
static char* kwlist[] = {"bodyUniqueId", "linkIndex", "mass", "lateralFriction", "spinningFriction", "rollingFriction", "restitution", "linearDamping", "angularDamping", "contactStiffness", "contactDamping", "frictionAnchor", "localInertiaDiagonal", "ccdSweptSphereRadius", "contactProcessingThreshold", "activationState", "physicsClientId", NULL}; static char* kwlist[] = {"bodyUniqueId", "linkIndex", "mass", "lateralFriction", "spinningFriction", "rollingFriction", "restitution", "linearDamping", "angularDamping", "contactStiffness", "contactDamping", "frictionAnchor", "localInertiaDiagonal", "ccdSweptSphereRadius", "contactProcessingThreshold", "activationState", "jointDamping", "physicsClientId", NULL};
if (!PyArg_ParseTupleAndKeywords(args, keywds, "ii|dddddddddiOddii", kwlist, &bodyUniqueId, &linkIndex, &mass, &lateralFriction, &spinningFriction, &rollingFriction, &restitution, &linearDamping, &angularDamping, &contactStiffness, &contactDamping, &frictionAnchor, &localInertiaDiagonalObj, &ccdSweptSphereRadius, &contactProcessingThreshold, &activationState, &physicsClientId)) if (!PyArg_ParseTupleAndKeywords(args, keywds, "ii|dddddddddiOddidi", kwlist, &bodyUniqueId, &linkIndex, &mass, &lateralFriction, &spinningFriction, &rollingFriction, &restitution, &linearDamping, &angularDamping, &contactStiffness, &contactDamping, &frictionAnchor, &localInertiaDiagonalObj, &ccdSweptSphereRadius, &contactProcessingThreshold, &activationState, &jointDamping, &physicsClientId))
{ {
return NULL; return NULL;
} }
@@ -1300,6 +1301,10 @@ static PyObject* pybullet_changeDynamicsInfo(PyObject* self, PyObject* args, PyO
b3ChangeDynamicsInfoSetAngularDamping(command, bodyUniqueId, angularDamping); b3ChangeDynamicsInfoSetAngularDamping(command, bodyUniqueId, angularDamping);
} }
if (jointDamping >= 0)
{
b3ChangeDynamicsInfoSetJointDamping(command, bodyUniqueId, linkIndex, jointDamping);
}
if (restitution >= 0) if (restitution >= 0)
{ {
b3ChangeDynamicsInfoSetRestitution(command, bodyUniqueId, linkIndex, restitution); b3ChangeDynamicsInfoSetRestitution(command, bodyUniqueId, linkIndex, restitution);

View File

@@ -92,8 +92,11 @@ public:
/**@brief Set the rotation using axis angle notation /**@brief Set the rotation using axis angle notation
* @param axis The axis around which to rotate * @param axis The axis around which to rotate
* @param angle The magnitude of the rotation in Radians */ * @param angle The magnitude of the rotation in Radians */
void setRotation(const b3Vector3& axis, const b3Scalar& _angle) void setRotation(const b3Vector3& axis1, const b3Scalar& _angle)
{ {
b3Vector3 axis = axis1;
axis.safeNormalize();
b3Scalar d = axis.length(); b3Scalar d = axis.length();
b3Assert(d != b3Scalar(0.0)); b3Assert(d != b3Scalar(0.0));
if (d < B3_EPSILON) if (d < B3_EPSILON)