enable pybullet.calculateInverseDynamics for floating bodies

Using calculateInverseDynamics with zero target acceleration allows to compute the non-linear dynamics forces (coriolis/gyroscopic) and/or gravity force.
This commit is contained in:
erwincoumans
2018-11-27 08:49:56 -08:00
parent 2e30a9565b
commit 192d27743a
6 changed files with 117 additions and 31 deletions

View File

@@ -8493,23 +8493,55 @@ bool PhysicsServerCommandProcessor::processInverseDynamicsCommand(const struct S
BT_PROFILE("CMD_CALCULATE_INVERSE_DYNAMICS");
SharedMemoryStatus& serverCmd = serverStatusOut;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId);
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_FAILED;
if (bodyHandle && bodyHandle->m_multiBody)
{
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_FAILED;
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
if (tree)
int baseDofQ = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 7;
int baseDofQdot = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
if (tree && clientCmd.m_calculateInverseDynamicsArguments.m_dofCountQ == baseDofQ &&
clientCmd.m_calculateInverseDynamicsArguments.m_dofCountQdot == baseDofQdot)
{
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
const int num_dofs = bodyHandle->m_multiBody->getNumDofs();
btInverseDynamics::vecx nu(num_dofs + baseDofs), qdot(num_dofs + baseDofs), q(num_dofs + baseDofs), joint_force(num_dofs + baseDofs);
for (int i = 0; i < num_dofs; i++)
btInverseDynamics::vecx nu(num_dofs + baseDofQdot), qdot(num_dofs + baseDofQdot), q(num_dofs + baseDofQdot), joint_force(num_dofs + baseDofQdot);
//for floating base, inverse dynamics expects euler angle x,y,z and position x,y,z in that order
//PyBullet expects quaternion, so convert and swap to have a more consistent PyBullet API
if (baseDofQ)
{
q[i + baseDofs] = clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[i];
qdot[i + baseDofs] = clientCmd.m_calculateInverseDynamicsArguments.m_jointVelocitiesQdot[i];
nu[i + baseDofs] = clientCmd.m_calculateInverseDynamicsArguments.m_jointAccelerations[i];
btVector3 pos(clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[0],
clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[1],
clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[2]);
btQuaternion orn(clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[0],
clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[1],
clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[2],
clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[3]);
btScalar yawZ, pitchY, rollX;
orn.getEulerZYX(yawZ, pitchY, rollX);
q[0] = rollX;
q[1] = pitchY;
q[2] = yawZ;
q[3] = pos[0];
q[4] = pos[1];
q[5] = pos[2];
}
else
{
for (int i = 0; i < num_dofs; i++)
{
q[i] = clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[i];
}
}
for (int i = 0; i < num_dofs + baseDofQdot; i++)
{
qdot[i] = clientCmd.m_calculateInverseDynamicsArguments.m_jointVelocitiesQdot[i];
nu[i] = clientCmd.m_calculateInverseDynamicsArguments.m_jointAccelerations[i];
}
// Set the gravity to correspond to the world gravity
btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity());
@@ -8517,10 +8549,22 @@ bool PhysicsServerCommandProcessor::processInverseDynamicsCommand(const struct S
-1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force))
{
serverCmd.m_inverseDynamicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
serverCmd.m_inverseDynamicsResultArgs.m_dofCount = num_dofs;
for (int i = 0; i < num_dofs; i++)
serverCmd.m_inverseDynamicsResultArgs.m_dofCount = num_dofs+ baseDofQdot;
//inverse dynamics stores angular before linear, swap it to have a consistent PyBullet API.
if (baseDofQdot)
{
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[i] = joint_force[i + baseDofs];
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[0] = joint_force[3];
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[1] = joint_force[4];
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[2] = joint_force[5];
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[3] = joint_force[0];
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[4] = joint_force[1];
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[5] = joint_force[2];
}
for (int i = baseDofQdot; i < num_dofs+ baseDofQdot; i++)
{
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[i] = joint_force[i];
}
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_COMPLETED;
}