add relative tolerance for linear solver and newton with line search

This commit is contained in:
Xuchen Han
2019-09-09 16:35:37 -07:00
committed by Xuchen Han
parent 36278edc00
commit 1bc75cc833
6 changed files with 167 additions and 15 deletions

View File

@@ -23,6 +23,11 @@ btDeformableBodySolver::btDeformableBodySolver()
, m_cg(20)
, m_maxNewtonIterations(5)
, m_newtonTolerance(1e-4)
//, m_lineSearch(false)
//, m_cg(10)
//, m_maxNewtonIterations(5)
//, m_newtonTolerance(1e-3)
, m_lineSearch(true)
{
m_objective = new btDeformableBackwardEulerObjective(m_softBodySet, m_backupVelocity);
}
@@ -63,13 +68,37 @@ void btDeformableBodySolver::solveDeformableConstraints(btScalar solverdt)
}
m_objective->computeResidual(solverdt, m_residual);
if (m_objective->computeNorm(m_residual) < m_newtonTolerance)
if (m_objective->computeNorm(m_residual) < m_newtonTolerance && i > 0)
{
break;
}
m_objective->applyDynamicFriction(m_residual);
computeStep(m_ddv, m_residual);
updateDv();
if (m_lineSearch)
{
btScalar inner_product = computeDescentStep(m_ddv,m_residual);
btScalar alpha = 0.01, beta = 0.5; // Boyd & Vandenberghe suggested alpha between 0.01 and 0.3, beta between 0.1 to 0.8
btScalar scale = 2;
btScalar f0 = m_objective->totalEnergy()+kineticEnergy(), f1, f2;
backupDv();
do {
scale *= beta;
if (scale < 1e-8) {
//std::cout << "Could not find sufficient descent!" << std::endl;
return;
}
updateEnergy(scale);
f1 = m_objective->totalEnergy()+kineticEnergy();
f2 = f0 - alpha * scale * inner_product;
} while (!(f1 < f2)); // if anything here is nan then the search continues
revertDv();
updateDv(scale);
}
else
{
computeStep(m_ddv, m_residual);
updateDv();
}
for (int j = 0; j < m_numNodes; ++j)
{
m_ddv[j].setZero();
@@ -79,26 +108,99 @@ void btDeformableBodySolver::solveDeformableConstraints(btScalar solverdt)
}
}
btScalar btDeformableBodySolver::kineticEnergy()
{
btScalar ke = 0;
for (int i = 0; i < m_softBodySet.size();++i)
{
btSoftBody* psb = m_softBodySet[i];
for (int j = 0; j < psb->m_nodes.size();++j)
{
btSoftBody::Node& node = psb->m_nodes[j];
if (node.m_im > 0)
{
ke += m_dv[node.index].length2() * 0.5 / node.m_im;
}
}
}
return ke;
}
void btDeformableBodySolver::backupDv()
{
m_backup_dv.resize(m_dv.size());
for (int i = 0; i<m_backup_dv.size(); ++i)
{
m_backup_dv[i] = m_dv[i];
}
}
void btDeformableBodySolver::revertDv()
{
for (int i = 0; i<m_backup_dv.size(); ++i)
{
m_dv[i] = m_backup_dv[i];
}
}
void btDeformableBodySolver::updateEnergy(btScalar scale)
{
for (int i = 0; i<m_dv.size(); ++i)
{
m_dv[i] = m_backup_dv[i] + scale * m_ddv[i];
}
updateState();
}
btScalar btDeformableBodySolver::computeDescentStep(TVStack& ddv, const TVStack& residual)
{
btScalar relative_tolerance = btMin(0.5, std::sqrt(btMax(m_objective->computeNorm(residual), m_newtonTolerance)));
m_cg.solve(*m_objective, ddv, residual, relative_tolerance, false);
btScalar inner_product = m_cg.dot(residual, m_ddv);
btScalar tol = 1e-5 * m_objective->computeNorm(residual) * m_objective->computeNorm(m_ddv);
if (inner_product < -tol)
{
std::cout << "Looking backwards!" << std::endl;
for (int i = 0; i < m_ddv.size();++i)
{
m_ddv[i] = -m_ddv[i];
}
inner_product = -inner_product;
}
else if (std::abs(inner_product) < tol)
{
std::cout << "Gradient Descent!" << std::endl;
btScalar res_norm = m_objective->computeNorm(residual);
btScalar scale = m_objective->computeNorm(m_ddv) / res_norm;
for (int i = 0; i < m_ddv.size();++i)
{
m_ddv[i] = scale * residual[i];
}
inner_product = scale * res_norm * res_norm;
}
return inner_product;
}
void btDeformableBodySolver::updateState()
{
updateVelocity();
updateTempPosition();
}
void btDeformableBodySolver::updateDv()
void btDeformableBodySolver::updateDv(btScalar scale)
{
for (int i = 0; i < m_numNodes; ++i)
{
m_dv[i] += m_ddv[i];
m_dv[i] += scale * m_ddv[i];
}
}
void btDeformableBodySolver::computeStep(TVStack& ddv, const TVStack& residual)
{
//btScalar tolerance = std::numeric_limits<btScalar>::epsilon() * m_objective->computeNorm(residual);
btScalar tolerance = std::numeric_limits<btScalar>::epsilon();
m_cg.solve(*m_objective, ddv, residual, tolerance);
btScalar relative_tolerance = btMin(0.5, std::sqrt(btMax(m_objective->computeNorm(residual), m_newtonTolerance)));
m_cg.solve(*m_objective, ddv, residual, relative_tolerance, false);
}
void btDeformableBodySolver::reinitialize(const btAlignedObjectArray<btSoftBody *>& softBodies, btScalar dt)