add relative tolerance for linear solver and newton with line search

This commit is contained in:
Xuchen Han
2019-09-09 16:35:37 -07:00
committed by Xuchen Han
parent 36278edc00
commit 1bc75cc833
6 changed files with 167 additions and 15 deletions

View File

@@ -26,16 +26,18 @@ class btConjugateGradient
typedef btAlignedObjectArray<btVector3> TVStack; typedef btAlignedObjectArray<btVector3> TVStack;
TVStack r,p,z,temp; TVStack r,p,z,temp;
int max_iterations; int max_iterations;
btScalar tolerance;
public: public:
btConjugateGradient(const int max_it_in) btConjugateGradient(const int max_it_in)
: max_iterations(max_it_in) : max_iterations(max_it_in)
{ {
tolerance = 1024 * std::numeric_limits<btScalar>::epsilon();
} }
virtual ~btConjugateGradient(){} virtual ~btConjugateGradient(){}
// return the number of iterations taken // return the number of iterations taken
int solve(MatrixX& A, TVStack& x, const TVStack& b, btScalar tolerance, bool verbose = false) int solve(MatrixX& A, TVStack& x, const TVStack& b, btScalar relative_tolerance, bool verbose = false)
{ {
BT_PROFILE("CGSolve"); BT_PROFILE("CGSolve");
btAssert(x.size() == b.size()); btAssert(x.size() == b.size());
@@ -48,7 +50,8 @@ public:
A.precondition(r, z); A.precondition(r, z);
A.project(z); A.project(z);
btScalar r_dot_z = dot(z,r); btScalar r_dot_z = dot(z,r);
if (dot(z,z) < tolerance) { btScalar local_tolerance = btMin(relative_tolerance * std::sqrt(r_dot_z), tolerance);
if (std::sqrt(r_dot_z) < local_tolerance) {
if (verbose) if (verbose)
{ {
std::cout << "Iteration = 0" << std::endl; std::cout << "Iteration = 0" << std::endl;
@@ -58,11 +61,21 @@ public:
} }
p = z; p = z;
btScalar r_dot_z_new = r_dot_z; btScalar r_dot_z_new = r_dot_z;
for (int k = 1; k < max_iterations; k++) { for (int k = 1; k <= max_iterations; k++) {
// temp = A*p // temp = A*p
A.multiply(p, temp); A.multiply(p, temp);
A.project(temp); A.project(temp);
// alpha = r^T * z / (p^T * A * p) // alpha = r^T * z / (p^T * A * p)
if (dot(p,temp) < 0)
{
if (verbose)
std::cout << "Encountered negative direction in CG!"<<std::endl;
if (k == 1)
{
x = b;
}
return k;
}
btScalar alpha = r_dot_z_new / dot(p, temp); btScalar alpha = r_dot_z_new / dot(p, temp);
// x += alpha * p; // x += alpha * p;
multAndAddTo(alpha, p, x); multAndAddTo(alpha, p, x);
@@ -72,7 +85,7 @@ public:
A.precondition(r, z); A.precondition(r, z);
r_dot_z = r_dot_z_new; r_dot_z = r_dot_z_new;
r_dot_z_new = dot(r,z); r_dot_z_new = dot(r,z);
if (r_dot_z_new < tolerance) { if (std::sqrt(r_dot_z_new) < local_tolerance) {
if (verbose) if (verbose)
{ {
std::cout << "ConjugateGradient iterations " << k << std::endl; std::cout << "ConjugateGradient iterations " << k << std::endl;

View File

@@ -134,9 +134,19 @@ btScalar btDeformableBackwardEulerObjective::computeNorm(const TVStack& residual
btScalar mag = 0; btScalar mag = 0;
for (int i = 0; i < residual.size(); ++i) for (int i = 0; i < residual.size(); ++i)
{ {
mag += residual[i].length(); mag += residual[i].length2();
} }
return mag; return std::sqrt(mag);
}
btScalar btDeformableBackwardEulerObjective::totalEnergy()
{
btScalar e = 0;
for (int i = 0; i < m_lf.size(); ++i)
{
e += m_lf[i]->totalElasticEnergy();
}
return e;
} }
void btDeformableBackwardEulerObjective::applyExplicitForce(TVStack& force) void btDeformableBackwardEulerObjective::applyExplicitForce(TVStack& force)

View File

@@ -124,6 +124,8 @@ public:
{ {
m_implicit = implicit; m_implicit = implicit;
} }
btScalar totalEnergy();
}; };
#endif /* btBackwardEulerObjective_h */ #endif /* btBackwardEulerObjective_h */

View File

@@ -23,6 +23,11 @@ btDeformableBodySolver::btDeformableBodySolver()
, m_cg(20) , m_cg(20)
, m_maxNewtonIterations(5) , m_maxNewtonIterations(5)
, m_newtonTolerance(1e-4) , m_newtonTolerance(1e-4)
//, m_lineSearch(false)
//, m_cg(10)
//, m_maxNewtonIterations(5)
//, m_newtonTolerance(1e-3)
, m_lineSearch(true)
{ {
m_objective = new btDeformableBackwardEulerObjective(m_softBodySet, m_backupVelocity); m_objective = new btDeformableBackwardEulerObjective(m_softBodySet, m_backupVelocity);
} }
@@ -63,13 +68,37 @@ void btDeformableBodySolver::solveDeformableConstraints(btScalar solverdt)
} }
m_objective->computeResidual(solverdt, m_residual); m_objective->computeResidual(solverdt, m_residual);
if (m_objective->computeNorm(m_residual) < m_newtonTolerance) if (m_objective->computeNorm(m_residual) < m_newtonTolerance && i > 0)
{ {
break; break;
} }
m_objective->applyDynamicFriction(m_residual); m_objective->applyDynamicFriction(m_residual);
if (m_lineSearch)
{
btScalar inner_product = computeDescentStep(m_ddv,m_residual);
btScalar alpha = 0.01, beta = 0.5; // Boyd & Vandenberghe suggested alpha between 0.01 and 0.3, beta between 0.1 to 0.8
btScalar scale = 2;
btScalar f0 = m_objective->totalEnergy()+kineticEnergy(), f1, f2;
backupDv();
do {
scale *= beta;
if (scale < 1e-8) {
//std::cout << "Could not find sufficient descent!" << std::endl;
return;
}
updateEnergy(scale);
f1 = m_objective->totalEnergy()+kineticEnergy();
f2 = f0 - alpha * scale * inner_product;
} while (!(f1 < f2)); // if anything here is nan then the search continues
revertDv();
updateDv(scale);
}
else
{
computeStep(m_ddv, m_residual); computeStep(m_ddv, m_residual);
updateDv(); updateDv();
}
for (int j = 0; j < m_numNodes; ++j) for (int j = 0; j < m_numNodes; ++j)
{ {
m_ddv[j].setZero(); m_ddv[j].setZero();
@@ -79,26 +108,99 @@ void btDeformableBodySolver::solveDeformableConstraints(btScalar solverdt)
} }
} }
btScalar btDeformableBodySolver::kineticEnergy()
{
btScalar ke = 0;
for (int i = 0; i < m_softBodySet.size();++i)
{
btSoftBody* psb = m_softBodySet[i];
for (int j = 0; j < psb->m_nodes.size();++j)
{
btSoftBody::Node& node = psb->m_nodes[j];
if (node.m_im > 0)
{
ke += m_dv[node.index].length2() * 0.5 / node.m_im;
}
}
}
return ke;
}
void btDeformableBodySolver::backupDv()
{
m_backup_dv.resize(m_dv.size());
for (int i = 0; i<m_backup_dv.size(); ++i)
{
m_backup_dv[i] = m_dv[i];
}
}
void btDeformableBodySolver::revertDv()
{
for (int i = 0; i<m_backup_dv.size(); ++i)
{
m_dv[i] = m_backup_dv[i];
}
}
void btDeformableBodySolver::updateEnergy(btScalar scale)
{
for (int i = 0; i<m_dv.size(); ++i)
{
m_dv[i] = m_backup_dv[i] + scale * m_ddv[i];
}
updateState();
}
btScalar btDeformableBodySolver::computeDescentStep(TVStack& ddv, const TVStack& residual)
{
btScalar relative_tolerance = btMin(0.5, std::sqrt(btMax(m_objective->computeNorm(residual), m_newtonTolerance)));
m_cg.solve(*m_objective, ddv, residual, relative_tolerance, false);
btScalar inner_product = m_cg.dot(residual, m_ddv);
btScalar tol = 1e-5 * m_objective->computeNorm(residual) * m_objective->computeNorm(m_ddv);
if (inner_product < -tol)
{
std::cout << "Looking backwards!" << std::endl;
for (int i = 0; i < m_ddv.size();++i)
{
m_ddv[i] = -m_ddv[i];
}
inner_product = -inner_product;
}
else if (std::abs(inner_product) < tol)
{
std::cout << "Gradient Descent!" << std::endl;
btScalar res_norm = m_objective->computeNorm(residual);
btScalar scale = m_objective->computeNorm(m_ddv) / res_norm;
for (int i = 0; i < m_ddv.size();++i)
{
m_ddv[i] = scale * residual[i];
}
inner_product = scale * res_norm * res_norm;
}
return inner_product;
}
void btDeformableBodySolver::updateState() void btDeformableBodySolver::updateState()
{ {
updateVelocity(); updateVelocity();
updateTempPosition(); updateTempPosition();
} }
void btDeformableBodySolver::updateDv() void btDeformableBodySolver::updateDv(btScalar scale)
{ {
for (int i = 0; i < m_numNodes; ++i) for (int i = 0; i < m_numNodes; ++i)
{ {
m_dv[i] += m_ddv[i]; m_dv[i] += scale * m_ddv[i];
} }
} }
void btDeformableBodySolver::computeStep(TVStack& ddv, const TVStack& residual) void btDeformableBodySolver::computeStep(TVStack& ddv, const TVStack& residual)
{ {
//btScalar tolerance = std::numeric_limits<btScalar>::epsilon() * m_objective->computeNorm(residual); //btScalar tolerance = std::numeric_limits<btScalar>::epsilon() * m_objective->computeNorm(residual);
btScalar tolerance = std::numeric_limits<btScalar>::epsilon(); btScalar relative_tolerance = btMin(0.5, std::sqrt(btMax(m_objective->computeNorm(residual), m_newtonTolerance)));
m_cg.solve(*m_objective, ddv, residual, tolerance); m_cg.solve(*m_objective, ddv, residual, relative_tolerance, false);
} }
void btDeformableBodySolver::reinitialize(const btAlignedObjectArray<btSoftBody *>& softBodies, btScalar dt) void btDeformableBodySolver::reinitialize(const btAlignedObjectArray<btSoftBody *>& softBodies, btScalar dt)

View File

@@ -34,6 +34,7 @@ class btDeformableBodySolver : public btSoftBodySolver
protected: protected:
int m_numNodes; int m_numNodes;
TVStack m_dv; TVStack m_dv;
TVStack m_backup_dv;
TVStack m_ddv; TVStack m_ddv;
TVStack m_residual; TVStack m_residual;
btAlignedObjectArray<btSoftBody *> m_softBodySet; btAlignedObjectArray<btSoftBody *> m_softBodySet;
@@ -45,6 +46,7 @@ protected:
bool m_implicit; bool m_implicit;
int m_maxNewtonIterations; int m_maxNewtonIterations;
btScalar m_newtonTolerance; btScalar m_newtonTolerance;
bool m_lineSearch;
public: public:
btDeformableBackwardEulerObjective* m_objective; btDeformableBackwardEulerObjective* m_objective;
@@ -82,6 +84,7 @@ public:
bool updateNodes(); bool updateNodes();
void computeStep(TVStack& dv, const TVStack& residual); void computeStep(TVStack& dv, const TVStack& residual);
btScalar computeDescentStep(TVStack& ddv, const TVStack& residual);
virtual void predictMotion(btScalar solverdt); virtual void predictMotion(btScalar solverdt);
@@ -103,9 +106,13 @@ public:
void updateState(); void updateState();
void updateDv(); void updateDv(btScalar scale = 1);
void updateTempPosition(); void updateTempPosition();
void backupDv();
void revertDv();
void updateEnergy(btScalar scale);
btScalar kineticEnergy();
}; };
#endif /* btDeformableBodySolver_h */ #endif /* btDeformableBodySolver_h */

View File

@@ -73,6 +73,24 @@ public:
return BT_GRAVITY_FORCE; return BT_GRAVITY_FORCE;
} }
virtual double totalElasticEnergy()
{
double e = 0;
for (int i = 0; i<m_softBodies.size();++i)
{
btSoftBody* psb = m_softBodies[i];
for (int j = 0; j < psb->m_nodes.size(); ++j)
{
const btSoftBody::Node& node = psb->m_nodes[j];
if (node.m_im > 0)
{
e -= m_gravity.dot(node.m_q)/node.m_im;
}
}
}
return e;
}
}; };
#endif /* BT_DEFORMABLE_GRAVITY_FORCE_H */ #endif /* BT_DEFORMABLE_GRAVITY_FORCE_H */