MultiThreaded Demo:

- fixing various race conditions throughout (usage of static vars, etc)
 - addition of a few lightweight mutexes (which are compiled out by default)
 - slight code rearrangement in discreteDynamicsWorld to facilitate multithreading
 - PoolAllocator::allocate() can now be called when pool is full without
     crashing (null pointer returned)
 - PoolAllocator allocate and freeMemory, are OPTIONALLY threadsafe
     (default is un-threadsafe)
 - CollisionDispatcher no longer checks if the pool allocator is full
     before calling allocate(), instead it just calls allocate() and
     checks if the return is null -- this avoids a race condition
 - SequentialImpulseConstraintSolver OPTIONALLY uses different logic in
     getOrInitSolverBody() to avoid a race condition with kinematic bodies
 - addition of 2 classes which together allow simulation islands to be run
   in parallel:
    - btSimulationIslandManagerMt
    - btDiscreteDynamicsWorldMt
 - MultiThreadedDemo example in the example browser demonstrating use of
   OpenMP, Microsoft PPL, and Intel TBB
 - use multithreading for other demos
 - benchmark demo: add parallel raycasting
This commit is contained in:
Lunkhound
2016-09-27 00:01:45 -07:00
parent f01389ded2
commit 1c3686ca51
48 changed files with 3168 additions and 197 deletions

View File

@@ -21,6 +21,8 @@ struct CommonRigidBodyBase : public CommonExampleInterface
btConstraintSolver* m_solver;
btDefaultCollisionConfiguration* m_collisionConfiguration;
btDiscreteDynamicsWorld* m_dynamicsWorld;
bool m_multithreadedWorld;
bool m_multithreadCapable;
//data for picking objects
class btRigidBody* m_pickedBody;
@@ -31,20 +33,8 @@ struct CommonRigidBodyBase : public CommonExampleInterface
btScalar m_oldPickingDist;
struct GUIHelperInterface* m_guiHelper;
CommonRigidBodyBase(struct GUIHelperInterface* helper)
:m_broadphase(0),
m_dispatcher(0),
m_solver(0),
m_collisionConfiguration(0),
m_dynamicsWorld(0),
m_pickedBody(0),
m_pickedConstraint(0),
m_guiHelper(helper)
{
}
virtual ~CommonRigidBodyBase()
{
}
CommonRigidBodyBase(struct GUIHelperInterface* helper);
virtual ~CommonRigidBodyBase();
btDiscreteDynamicsWorld* getDynamicsWorld()
@@ -52,26 +42,8 @@ struct CommonRigidBodyBase : public CommonExampleInterface
return m_dynamicsWorld;
}
virtual void createEmptyDynamicsWorld()
{
///collision configuration contains default setup for memory, collision setup
m_collisionConfiguration = new btDefaultCollisionConfiguration();
//m_collisionConfiguration->setConvexConvexMultipointIterations();
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
m_broadphase = new btDbvtBroadphase();
///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded)
btSequentialImpulseConstraintSolver* sol = new btSequentialImpulseConstraintSolver;
m_solver = sol;
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher, m_broadphase, m_solver, m_collisionConfiguration);
m_dynamicsWorld->setGravity(btVector3(0, -10, 0));
}
virtual void createDefaultParameters();
virtual void createEmptyDynamicsWorld();
virtual void stepSimulation(float deltaTime)
{
@@ -81,14 +53,7 @@ struct CommonRigidBodyBase : public CommonExampleInterface
}
}
virtual void physicsDebugDraw(int debugFlags)
{
if (m_dynamicsWorld && m_dynamicsWorld->getDebugDrawer())
{
m_dynamicsWorld->getDebugDrawer()->setDebugMode(debugFlags);
m_dynamicsWorld->debugDrawWorld();
}
}
virtual void physicsDebugDraw(int debugFlags);
virtual void exitPhysics()
{