MultiThreaded Demo:
- fixing various race conditions throughout (usage of static vars, etc)
- addition of a few lightweight mutexes (which are compiled out by default)
- slight code rearrangement in discreteDynamicsWorld to facilitate multithreading
- PoolAllocator::allocate() can now be called when pool is full without
crashing (null pointer returned)
- PoolAllocator allocate and freeMemory, are OPTIONALLY threadsafe
(default is un-threadsafe)
- CollisionDispatcher no longer checks if the pool allocator is full
before calling allocate(), instead it just calls allocate() and
checks if the return is null -- this avoids a race condition
- SequentialImpulseConstraintSolver OPTIONALLY uses different logic in
getOrInitSolverBody() to avoid a race condition with kinematic bodies
- addition of 2 classes which together allow simulation islands to be run
in parallel:
- btSimulationIslandManagerMt
- btDiscreteDynamicsWorldMt
- MultiThreadedDemo example in the example browser demonstrating use of
OpenMP, Microsoft PPL, and Intel TBB
- use multithreading for other demos
- benchmark demo: add parallel raycasting
This commit is contained in:
@@ -60,8 +60,7 @@ protected:
|
||||
btPoolAllocator* m_collisionAlgorithmPool;
|
||||
bool m_ownsCollisionAlgorithmPool;
|
||||
|
||||
//default simplex/penetration depth solvers
|
||||
btVoronoiSimplexSolver* m_simplexSolver;
|
||||
//default penetration depth solver
|
||||
btConvexPenetrationDepthSolver* m_pdSolver;
|
||||
|
||||
//default CreationFunctions, filling the m_doubleDispatch table
|
||||
@@ -102,12 +101,6 @@ public:
|
||||
}
|
||||
|
||||
|
||||
virtual btVoronoiSimplexSolver* getSimplexSolver()
|
||||
{
|
||||
return m_simplexSolver;
|
||||
}
|
||||
|
||||
|
||||
virtual btCollisionAlgorithmCreateFunc* getCollisionAlgorithmCreateFunc(int proxyType0,int proxyType1);
|
||||
|
||||
///Use this method to allow to generate multiple contact points between at once, between two objects using the generic convex-convex algorithm.
|
||||
|
||||
Reference in New Issue
Block a user