diff --git a/examples/pybullet/gym/cartpole_bullet_gym_example.py b/examples/pybullet/gym/cartpole_bullet_gym_example.py deleted file mode 100644 index 52cdab258..000000000 --- a/examples/pybullet/gym/cartpole_bullet_gym_example.py +++ /dev/null @@ -1,31 +0,0 @@ -"""One-line documentation for gym_example module. - -A detailed description of gym_example. -""" - -import gym -from envs.bullet.cartpole_bullet import CartPoleBulletEnv -import setuptools -import time -import numpy as np - - -w = [0.3, 0.02, 0.02, 0.012] - -def main(): - env = gym.make('CartPoleBulletEnv-v0') - for i_episode in range(1): - observation = env.reset() - done = False - t = 0 - while not done: - print(observation) - action = np.array([np.inner(observation, w)]) - print(action) - observation, reward, done, info = env.step(action) - t = t + 1 - if done: - print("Episode finished after {} timesteps".format(t+1)) - break - -main() diff --git a/examples/pybullet/gym/enjoy_TF_AntBulletEnv_v0_2017may.py b/examples/pybullet/gym/enjoy_TF_AntBulletEnv_v0_2017may.py index 6683a2337..76006f141 100644 --- a/examples/pybullet/gym/enjoy_TF_AntBulletEnv_v0_2017may.py +++ b/examples/pybullet/gym/enjoy_TF_AntBulletEnv_v0_2017may.py @@ -1,7 +1,7 @@ import gym import numpy as np import pybullet as p -from .. import pybullet_envs +import pybullet_envs import time def relu(x): diff --git a/examples/pybullet/gym/minitaurGymEnvTest.py b/examples/pybullet/gym/minitaurGymEnvTest.py deleted file mode 100644 index 78fe0c3b4..000000000 --- a/examples/pybullet/gym/minitaurGymEnvTest.py +++ /dev/null @@ -1,88 +0,0 @@ -''' -A test for minitaurGymEnv -''' - -import gym -import numpy as np -import math - -import numpy as np -import tensorflow as tf - -from pybullet_envs.bullet.minitaurGymEnv import MinitaurGymEnv - -try: - import sonnet - from agents import simpleAgentWithSonnet as agent_lib -except ImportError: - from agents import simpleAgent as agent_lib - - -def testSinePolicy(): - """Tests sine policy - """ - np.random.seed(47) - - environment = MinitaurGymEnv(render=True) - sum_reward = 0 - steps = 1000 - amplitude1Bound = 0.5 - amplitude2Bound = 0.15 - speed = 40 - - for stepCounter in range(steps): - t = float(stepCounter) * environment._timeStep - - if (t < 1): - amplitude1 = 0 - amplitude2 = 0 - else: - amplitude1 = amplitude1Bound - amplitude2 = amplitude2Bound - a1 = math.sin(t*speed)*amplitude1 - a2 = math.sin(t*speed+3.14)*amplitude1 - a3 = math.sin(t*speed)*amplitude2 - a4 = math.sin(t*speed+3.14)*amplitude2 - - action = [a1, a2, a2, a1, a3, a4, a4, a3] - - state, reward, done, info = environment.step(action) - sum_reward += reward - if done: - environment.reset() - print("sum reward: ", sum_reward) - - -def testDDPGPolicy(): - """Tests sine policy - """ - environment = MinitaurGymEnv(render=True) - sum_reward = 0 - steps = 1000 - ckpt_path = 'data/agent/tf_graph_data/tf_graph_data_converted.ckpt-0' - observation_shape = (28,) - action_size = 8 - actor_layer_size = (297, 158) - n_steps = 0 - tf.reset_default_graph() - with tf.Session() as session: - agent = agent_lib.SimpleAgent(session=session, ckpt_path=ckpt_path, actor_layer_size=actor_layer_size) - state = environment.reset() - action = agent(state) - for _ in range(steps): - n_steps += 1 - state, reward, done, info = environment.step(action) - action = agent(state) - sum_reward += reward - if done: - environment.reset() - n_steps += 1 - print("total reward: ", sum_reward) - print("total steps: ", n_steps) - sum_reward = 0 - n_steps = 0 - return - - -testDDPGPolicy() -#testSinePolicy()