refactor pybullet/gym to allow instantiating environments directly from a pybullet install:
work-in-progress (need to add missing data files, fix paths etc)
example:
pip install pybullet
pip install gym
python
import gym
import pybullet
import pybullet_envs
env = gym.make("HumanoidBulletEnv-v0")
This commit is contained in:
87
examples/pybullet/gym/pybullet_envs/robot_pendula.py
Normal file
87
examples/pybullet/gym/pybullet_envs/robot_pendula.py
Normal file
@@ -0,0 +1,87 @@
|
||||
from robot_bases import MujocoXmlBasedRobot
|
||||
import numpy as np
|
||||
|
||||
class InvertedPendulum(MujocoXmlBasedRobot):
|
||||
swingup = False
|
||||
force_gain = 12 # TODO: Try to find out why we need to scale the force
|
||||
def __init__(self):
|
||||
MujocoXmlBasedRobot.__init__(self, 'inverted_pendulum.xml', 'cart', action_dim=1, obs_dim=5)
|
||||
|
||||
def robot_specific_reset(self):
|
||||
self.pole = self.parts["pole"]
|
||||
self.slider = self.jdict["slider"]
|
||||
self.j1 = self.jdict["hinge"]
|
||||
u = self.np_random.uniform(low=-.1, high=.1)
|
||||
self.j1.reset_current_position( u if not self.swingup else 3.1415+u , 0)
|
||||
self.j1.set_motor_torque(0)
|
||||
|
||||
def apply_action(self, a):
|
||||
#assert( np.isfinite(a).all() )
|
||||
if not np.isfinite(a).all():
|
||||
print("a is inf")
|
||||
a[0] = 0
|
||||
self.slider.set_motor_torque( self.force_gain * 100*float(np.clip(a[0], -1, +1)) )
|
||||
|
||||
def calc_state(self):
|
||||
self.theta, theta_dot = self.j1.current_position()
|
||||
x, vx = self.slider.current_position()
|
||||
#assert( np.isfinite(x) )
|
||||
|
||||
if not np.isfinite(x):
|
||||
print("x is inf")
|
||||
x = 0
|
||||
|
||||
if not np.isfinite(vx):
|
||||
print("vx is inf")
|
||||
vx = 0
|
||||
|
||||
if not np.isfinite(self.theta):
|
||||
print("theta is inf")
|
||||
self.theta = 0
|
||||
|
||||
if not np.isfinite(theta_dot):
|
||||
print("theta_dot is inf")
|
||||
theta_dot = 0
|
||||
|
||||
return np.array([
|
||||
x, vx,
|
||||
np.cos(self.theta), np.sin(self.theta), theta_dot
|
||||
])
|
||||
|
||||
class InvertedPendulumSwingup(InvertedPendulum):
|
||||
swingup = True
|
||||
force_gain = 2.2 # TODO: Try to find out why we need to scale the force
|
||||
|
||||
|
||||
class InvertedDoublePendulum(MujocoXmlBasedRobot):
|
||||
def __init__(self):
|
||||
MujocoXmlBasedRobot.__init__(self, 'inverted_double_pendulum.xml', 'cart', action_dim=1, obs_dim=9)
|
||||
|
||||
def robot_specific_reset(self):
|
||||
self.pole2 = self.parts["pole2"]
|
||||
self.slider = self.jdict["slider"]
|
||||
self.j1 = self.jdict["hinge"]
|
||||
self.j2 = self.jdict["hinge2"]
|
||||
u = self.np_random.uniform(low=-.1, high=.1, size=[2])
|
||||
self.j1.reset_current_position(float(u[0]), 0)
|
||||
self.j2.reset_current_position(float(u[1]), 0)
|
||||
self.j1.set_motor_torque(0)
|
||||
self.j2.set_motor_torque(0)
|
||||
|
||||
def apply_action(self, a):
|
||||
assert( np.isfinite(a).all() )
|
||||
force_gain = 0.78 # TODO: Try to find out why we need to scale the force
|
||||
self.slider.set_motor_torque( force_gain *200*float(np.clip(a[0], -1, +1)) )
|
||||
|
||||
def calc_state(self):
|
||||
theta, theta_dot = self.j1.current_position()
|
||||
gamma, gamma_dot = self.j2.current_position()
|
||||
x, vx = self.slider.current_position()
|
||||
self.pos_x, _, self.pos_y = self.pole2.pose().xyz()
|
||||
assert( np.isfinite(x) )
|
||||
return np.array([
|
||||
x, vx,
|
||||
self.pos_x,
|
||||
np.cos(theta), np.sin(theta), theta_dot,
|
||||
np.cos(gamma), np.sin(gamma), gamma_dot,
|
||||
])
|
||||
Reference in New Issue
Block a user