improve rolling friction using anisotropic direction, to avoid resting in an instable position
(for implicit capsule, cylinder and cone shape) See Bullet/Demos/RollingFrictionDemo for an example
This commit is contained in:
@@ -324,12 +324,12 @@ btScalar btSequentialImpulseConstraintSolver::restitutionCurve(btScalar rel_vel,
|
||||
|
||||
|
||||
|
||||
static void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection);
|
||||
static void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection)
|
||||
static void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection, int frictionMode);
|
||||
static void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection, int frictionMode)
|
||||
{
|
||||
|
||||
|
||||
if (colObj && colObj->hasAnisotropicFriction())
|
||||
if (colObj && colObj->hasAnisotropicFriction(frictionMode))
|
||||
{
|
||||
// transform to local coordinates
|
||||
btVector3 loc_lateral = frictionDirection * colObj->getWorldTransform().getBasis();
|
||||
@@ -807,15 +807,24 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
|
||||
if (relAngVel.length()>infoGlobal.m_singleAxisRollingFrictionThreshold)
|
||||
{
|
||||
relAngVel.normalize();
|
||||
addRollingFrictionConstraint(relAngVel,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||||
applyAnisotropicFriction(colObj0,relAngVel,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||||
applyAnisotropicFriction(colObj1,relAngVel,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||||
if (relAngVel.length()>0.001)
|
||||
addRollingFrictionConstraint(relAngVel,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||||
|
||||
} else
|
||||
{
|
||||
addRollingFrictionConstraint(cp.m_normalWorldOnB,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||||
btVector3 axis0,axis1;
|
||||
btPlaneSpace1(cp.m_normalWorldOnB,axis0,axis1);
|
||||
addRollingFrictionConstraint(axis0,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||||
addRollingFrictionConstraint(axis1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||||
applyAnisotropicFriction(colObj0,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||||
applyAnisotropicFriction(colObj1,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||||
applyAnisotropicFriction(colObj0,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||||
applyAnisotropicFriction(colObj1,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||||
if (axis0.length()>0.001)
|
||||
addRollingFrictionConstraint(axis0,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||||
if (axis1.length()>0.001)
|
||||
addRollingFrictionConstraint(axis1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||||
|
||||
}
|
||||
}
|
||||
@@ -834,14 +843,14 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
|
||||
{
|
||||
cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
|
||||
cp.m_lateralFrictionDir2.normalize();//??
|
||||
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2);
|
||||
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2);
|
||||
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||||
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||||
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||||
|
||||
}
|
||||
|
||||
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1);
|
||||
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1);
|
||||
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||||
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||||
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||||
|
||||
|
||||
@@ -853,13 +862,13 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
|
||||
|
||||
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
|
||||
{
|
||||
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2);
|
||||
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2);
|
||||
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||||
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||||
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||||
}
|
||||
|
||||
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1);
|
||||
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1);
|
||||
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||||
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||||
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user