add SoftDemo examples
add example description for all examples (with word-wrap) add the VoronoiFractureDemo, note that the collision are disabled after breaking constraints. add optional GwenOpenGLTest, to make it easier to see Gwen user interface features.
This commit is contained in:
819
examples/VoronoiFracture/VoronoiFractureDemo.cpp
Normal file
819
examples/VoronoiFracture/VoronoiFractureDemo.cpp
Normal file
@@ -0,0 +1,819 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
/*
|
||||
Voronoi fracture and shatter code and demo copyright (c) 2011 Alain Ducharme
|
||||
- Reset scene (press spacebar) to generate new random voronoi shattered cuboids
|
||||
- Check console for total time required to: compute and mesh all 3D shards, calculate volumes and centers of mass and create rigid bodies
|
||||
- Modify VORONOIPOINTS define below to change number of potential voronoi shards
|
||||
- Note that demo's visual cracks between voronoi shards are NOT present in the internally generated voronoi mesh!
|
||||
*/
|
||||
|
||||
//Number of random voronoi points to generate for shattering
|
||||
#define VORONOIPOINTS 100
|
||||
|
||||
//maximum number of objects (and allow user to shoot additional boxes)
|
||||
#define MAX_PROXIES (2048)
|
||||
#define BREAKING_THRESHOLD 3
|
||||
#define CONVEX_MARGIN 0.04
|
||||
static int useMpr = 0;
|
||||
|
||||
#include "VoronoiFractureDemo.h"
|
||||
|
||||
///btBulletDynamicsCommon.h is the main Bullet include file, contains most common include files.
|
||||
#include "btBulletDynamicsCommon.h"
|
||||
#include <stdio.h> //printf debugging
|
||||
|
||||
|
||||
static bool useGenericConstraint = false;
|
||||
|
||||
#include "btConvexConvexMprAlgorithm.h"
|
||||
|
||||
|
||||
#include "LinearMath/btAlignedObjectArray.h"
|
||||
#include "LinearMath/btConvexHullComputer.h"
|
||||
#include "LinearMath/btQuaternion.h"
|
||||
#include <set>
|
||||
#include <time.h>
|
||||
|
||||
class btBroadphaseInterface;
|
||||
class btCollisionShape;
|
||||
class btOverlappingPairCache;
|
||||
class btCollisionDispatcher;
|
||||
class btConstraintSolver;
|
||||
struct btCollisionAlgorithmCreateFunc;
|
||||
class btDefaultCollisionConfiguration;
|
||||
|
||||
#include "../CommonInterfaces/CommonRigidBodyBase.h"
|
||||
|
||||
|
||||
class VoronoiFractureDemo : public CommonRigidBodyBase
|
||||
{
|
||||
//keep the collision shapes, for deletion/cleanup
|
||||
btAlignedObjectArray<btCollisionShape*> m_collisionShapes;
|
||||
|
||||
btBroadphaseInterface* m_broadphase;
|
||||
|
||||
btCollisionDispatcher* m_dispatcher;
|
||||
|
||||
btConstraintSolver* m_solver;
|
||||
|
||||
btDefaultCollisionConfiguration* m_collisionConfiguration;
|
||||
|
||||
btClock m_perfmTimer;
|
||||
|
||||
public:
|
||||
|
||||
VoronoiFractureDemo(struct GUIHelperInterface* helper)
|
||||
:CommonRigidBodyBase(helper)
|
||||
{
|
||||
srand((unsigned)time(NULL)); // Seed it...
|
||||
}
|
||||
virtual ~VoronoiFractureDemo()
|
||||
{
|
||||
btAssert(m_dynamicsWorld==0);
|
||||
}
|
||||
void initPhysics();
|
||||
|
||||
void exitPhysics();
|
||||
|
||||
//virtual void renderme();
|
||||
|
||||
void getVerticesInsidePlanes(const btAlignedObjectArray<btVector3>& planes, btAlignedObjectArray<btVector3>& verticesOut, std::set<int>& planeIndicesOut);
|
||||
void voronoiBBShatter(const btAlignedObjectArray<btVector3>& points, const btVector3& bbmin, const btVector3& bbmax, const btQuaternion& bbq, const btVector3& bbt, btScalar matDensity);
|
||||
void voronoiConvexHullShatter(const btAlignedObjectArray<btVector3>& points, const btAlignedObjectArray<btVector3>& verts, const btQuaternion& bbq, const btVector3& bbt, btScalar matDensity);
|
||||
|
||||
//virtual void clientMoveAndDisplay();
|
||||
|
||||
//virtual void displayCallback();
|
||||
//virtual void clientResetScene();
|
||||
|
||||
//virtual void keyboardCallback(unsigned char key, int x, int y);
|
||||
|
||||
void attachFixedConstraints();
|
||||
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
void VoronoiFractureDemo::attachFixedConstraints()
|
||||
{
|
||||
btAlignedObjectArray<btRigidBody*> bodies;
|
||||
|
||||
int numManifolds = m_dynamicsWorld->getDispatcher()->getNumManifolds();
|
||||
|
||||
for (int i=0;i<numManifolds;i++)
|
||||
{
|
||||
btPersistentManifold* manifold = m_dynamicsWorld->getDispatcher()->getManifoldByIndexInternal(i);
|
||||
if (!manifold->getNumContacts())
|
||||
continue;
|
||||
|
||||
btScalar minDist = 1e30f;
|
||||
int minIndex = -1;
|
||||
for (int v=0;v<manifold->getNumContacts();v++)
|
||||
{
|
||||
if (minDist >manifold->getContactPoint(v).getDistance())
|
||||
{
|
||||
minDist = manifold->getContactPoint(v).getDistance();
|
||||
minIndex = v;
|
||||
}
|
||||
}
|
||||
if (minDist>0.)
|
||||
continue;
|
||||
|
||||
btCollisionObject* colObj0 = (btCollisionObject*)manifold->getBody0();
|
||||
btCollisionObject* colObj1 = (btCollisionObject*)manifold->getBody1();
|
||||
// int tag0 = (colObj0)->getIslandTag();
|
||||
// int tag1 = (colObj1)->getIslandTag();
|
||||
btRigidBody* body0 = btRigidBody::upcast(colObj0);
|
||||
btRigidBody* body1 = btRigidBody::upcast(colObj1);
|
||||
if (bodies.findLinearSearch(body0)==bodies.size())
|
||||
bodies.push_back(body0);
|
||||
if (bodies.findLinearSearch(body1)==bodies.size())
|
||||
bodies.push_back(body1);
|
||||
|
||||
if (body0 && body1)
|
||||
{
|
||||
if (!colObj0->isStaticOrKinematicObject() && !colObj1->isStaticOrKinematicObject())
|
||||
{
|
||||
if (body0->checkCollideWithOverride(body1))
|
||||
{
|
||||
{
|
||||
btTransform trA,trB;
|
||||
trA.setIdentity();
|
||||
trB.setIdentity();
|
||||
btVector3 contactPosWorld = manifold->getContactPoint(minIndex).m_positionWorldOnA;
|
||||
btTransform globalFrame;
|
||||
globalFrame.setIdentity();
|
||||
globalFrame.setOrigin(contactPosWorld);
|
||||
|
||||
trA = body0->getWorldTransform().inverse()*globalFrame;
|
||||
trB = body1->getWorldTransform().inverse()*globalFrame;
|
||||
float totalMass = 1.f/body0->getInvMass() + 1.f/body1->getInvMass();
|
||||
|
||||
|
||||
if (useGenericConstraint)
|
||||
{
|
||||
btGeneric6DofConstraint* dof6 = new btGeneric6DofConstraint(*body0,*body1,trA,trB,true);
|
||||
dof6->setOverrideNumSolverIterations(30);
|
||||
|
||||
|
||||
dof6->setBreakingImpulseThreshold(BREAKING_THRESHOLD*totalMass);
|
||||
|
||||
for (int i=0;i<6;i++)
|
||||
dof6->setLimit(i,0,0);
|
||||
m_dynamicsWorld->addConstraint(dof6,true);
|
||||
|
||||
} else
|
||||
{
|
||||
btFixedConstraint* fixed = new btFixedConstraint(*body0,*body1,trA,trB);
|
||||
fixed->setBreakingImpulseThreshold(BREAKING_THRESHOLD*totalMass);
|
||||
fixed ->setOverrideNumSolverIterations(30);
|
||||
m_dynamicsWorld->addConstraint(fixed,true);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
for (int i=0;i<bodies.size();i++)
|
||||
{
|
||||
m_dynamicsWorld->removeRigidBody(bodies[i]);
|
||||
m_dynamicsWorld->addRigidBody(bodies[i]);
|
||||
}
|
||||
}
|
||||
/*
|
||||
void VoronoiFractureDemo::keyboardCallback(unsigned char key, int x, int y)
|
||||
{
|
||||
if (key == 'g')
|
||||
{
|
||||
attachFixedConstraints();
|
||||
}else
|
||||
{
|
||||
PlatformDemoApplication::keyboardCallback(key,x,y);
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
void VoronoiFractureDemo::getVerticesInsidePlanes(const btAlignedObjectArray<btVector3>& planes, btAlignedObjectArray<btVector3>& verticesOut, std::set<int>& planeIndicesOut)
|
||||
{
|
||||
// Based on btGeometryUtil.cpp (Gino van den Bergen / Erwin Coumans)
|
||||
verticesOut.resize(0);
|
||||
planeIndicesOut.clear();
|
||||
const int numPlanes = planes.size();
|
||||
int i, j, k, l;
|
||||
for (i=0;i<numPlanes;i++)
|
||||
{
|
||||
const btVector3& N1 = planes[i];
|
||||
for (j=i+1;j<numPlanes;j++)
|
||||
{
|
||||
const btVector3& N2 = planes[j];
|
||||
btVector3 n1n2 = N1.cross(N2);
|
||||
if (n1n2.length2() > btScalar(0.0001))
|
||||
{
|
||||
for (k=j+1;k<numPlanes;k++)
|
||||
{
|
||||
const btVector3& N3 = planes[k];
|
||||
btVector3 n2n3 = N2.cross(N3);
|
||||
btVector3 n3n1 = N3.cross(N1);
|
||||
if ((n2n3.length2() > btScalar(0.0001)) && (n3n1.length2() > btScalar(0.0001) ))
|
||||
{
|
||||
btScalar quotient = (N1.dot(n2n3));
|
||||
if (btFabs(quotient) > btScalar(0.0001))
|
||||
{
|
||||
btVector3 potentialVertex = (n2n3 * N1[3] + n3n1 * N2[3] + n1n2 * N3[3]) * (btScalar(-1.) / quotient);
|
||||
for (l=0; l<numPlanes; l++)
|
||||
{
|
||||
const btVector3& NP = planes[l];
|
||||
if (btScalar(NP.dot(potentialVertex))+btScalar(NP[3]) > btScalar(0.000001))
|
||||
break;
|
||||
}
|
||||
if (l == numPlanes)
|
||||
{
|
||||
// vertex (three plane intersection) inside all planes
|
||||
verticesOut.push_back(potentialVertex);
|
||||
planeIndicesOut.insert(i);
|
||||
planeIndicesOut.insert(j);
|
||||
planeIndicesOut.insert(k);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static btVector3 curVoronoiPoint;
|
||||
|
||||
struct pointCmp
|
||||
{
|
||||
bool operator()(const btVector3& p1, const btVector3& p2) const
|
||||
{
|
||||
float v1 = (p1-curVoronoiPoint).length2();
|
||||
float v2 = (p2-curVoronoiPoint).length2();
|
||||
bool result0 = v1 < v2;
|
||||
//bool result1 = ((btScalar)(p1-curVoronoiPoint).length2()) < ((btScalar)(p2-curVoronoiPoint).length2());
|
||||
//apparently result0 is not always result1, because extended precision used in registered is different from precision when values are stored in memory
|
||||
return result0;
|
||||
}
|
||||
};
|
||||
|
||||
void VoronoiFractureDemo::voronoiBBShatter(const btAlignedObjectArray<btVector3>& points, const btVector3& bbmin, const btVector3& bbmax, const btQuaternion& bbq, const btVector3& bbt, btScalar matDensity) {
|
||||
// points define voronoi cells in world space (avoid duplicates)
|
||||
// bbmin & bbmax = bounding box min and max in local space
|
||||
// bbq & bbt = bounding box quaternion rotation and translation
|
||||
// matDensity = Material density for voronoi shard mass calculation
|
||||
btVector3 bbvx = quatRotate(bbq, btVector3(1.0, 0.0, 0.0));
|
||||
btVector3 bbvy = quatRotate(bbq, btVector3(0.0, 1.0, 0.0));
|
||||
btVector3 bbvz = quatRotate(bbq, btVector3(0.0, 0.0, 1.0));
|
||||
btQuaternion bbiq = bbq.inverse();
|
||||
btConvexHullComputer* convexHC = new btConvexHullComputer();
|
||||
btAlignedObjectArray<btVector3> vertices;
|
||||
btVector3 rbb, nrbb;
|
||||
btScalar nlength, maxDistance, distance;
|
||||
btAlignedObjectArray<btVector3> sortedVoronoiPoints;
|
||||
sortedVoronoiPoints.copyFromArray(points);
|
||||
btVector3 normal, plane;
|
||||
btAlignedObjectArray<btVector3> planes;
|
||||
std::set<int> planeIndices;
|
||||
std::set<int>::iterator planeIndicesIter;
|
||||
int numplaneIndices;
|
||||
int cellnum = 0;
|
||||
int i, j, k;
|
||||
|
||||
int numpoints = points.size();
|
||||
for (i=0; i < numpoints ;i++) {
|
||||
curVoronoiPoint = points[i];
|
||||
btVector3 icp = quatRotate(bbiq, curVoronoiPoint - bbt);
|
||||
rbb = icp - bbmax;
|
||||
nrbb = bbmin - icp;
|
||||
planes.resize(6);
|
||||
planes[0] = bbvx; planes[0][3] = rbb.x();
|
||||
planes[1] = bbvy; planes[1][3] = rbb.y();
|
||||
planes[2] = bbvz; planes[2][3] = rbb.z();
|
||||
planes[3] = -bbvx; planes[3][3] = nrbb.x();
|
||||
planes[4] = -bbvy; planes[4][3] = nrbb.y();
|
||||
planes[5] = -bbvz; planes[5][3] = nrbb.z();
|
||||
maxDistance = SIMD_INFINITY;
|
||||
sortedVoronoiPoints.heapSort(pointCmp());
|
||||
for (j=1; j < numpoints; j++) {
|
||||
normal = sortedVoronoiPoints[j] - curVoronoiPoint;
|
||||
nlength = normal.length();
|
||||
if (nlength > maxDistance)
|
||||
break;
|
||||
plane = normal.normalized();
|
||||
plane[3] = -nlength / btScalar(2.);
|
||||
planes.push_back(plane);
|
||||
getVerticesInsidePlanes(planes, vertices, planeIndices);
|
||||
if (vertices.size() == 0)
|
||||
break;
|
||||
numplaneIndices = planeIndices.size();
|
||||
if (numplaneIndices != planes.size()) {
|
||||
planeIndicesIter = planeIndices.begin();
|
||||
for (k=0; k < numplaneIndices; k++) {
|
||||
if (k != *planeIndicesIter)
|
||||
planes[k] = planes[*planeIndicesIter];
|
||||
planeIndicesIter++;
|
||||
}
|
||||
planes.resize(numplaneIndices);
|
||||
}
|
||||
maxDistance = vertices[0].length();
|
||||
for (k=1; k < vertices.size(); k++) {
|
||||
distance = vertices[k].length();
|
||||
if (maxDistance < distance)
|
||||
maxDistance = distance;
|
||||
}
|
||||
maxDistance *= btScalar(2.);
|
||||
}
|
||||
if (vertices.size() == 0)
|
||||
continue;
|
||||
|
||||
// Clean-up voronoi convex shard vertices and generate edges & faces
|
||||
convexHC->compute(&vertices[0].getX(), sizeof(btVector3), vertices.size(),CONVEX_MARGIN,0.0);
|
||||
|
||||
// At this point we have a complete 3D voronoi shard mesh contained in convexHC
|
||||
|
||||
// Calculate volume and center of mass (Stan Melax volume integration)
|
||||
int numFaces = convexHC->faces.size();
|
||||
int v0, v1, v2; // Triangle vertices
|
||||
btScalar volume = btScalar(0.);
|
||||
btVector3 com(0., 0., 0.);
|
||||
for (j=0; j < numFaces; j++) {
|
||||
const btConvexHullComputer::Edge* edge = &convexHC->edges[convexHC->faces[j]];
|
||||
v0 = edge->getSourceVertex();
|
||||
v1 = edge->getTargetVertex();
|
||||
edge = edge->getNextEdgeOfFace();
|
||||
v2 = edge->getTargetVertex();
|
||||
while (v2 != v0) {
|
||||
// Counter-clockwise triangulated voronoi shard mesh faces (v0-v1-v2) and edges here...
|
||||
btScalar vol = convexHC->vertices[v0].triple(convexHC->vertices[v1], convexHC->vertices[v2]);
|
||||
volume += vol;
|
||||
com += vol * (convexHC->vertices[v0] + convexHC->vertices[v1] + convexHC->vertices[v2]);
|
||||
edge = edge->getNextEdgeOfFace();
|
||||
v1 = v2;
|
||||
v2 = edge->getTargetVertex();
|
||||
}
|
||||
}
|
||||
com /= volume * btScalar(4.);
|
||||
volume /= btScalar(6.);
|
||||
|
||||
// Shift all vertices relative to center of mass
|
||||
int numVerts = convexHC->vertices.size();
|
||||
for (j=0; j < numVerts; j++)
|
||||
{
|
||||
convexHC->vertices[j] -= com;
|
||||
}
|
||||
|
||||
// Note:
|
||||
// At this point convex hulls contained in convexHC should be accurate (line up flush with other pieces, no cracks),
|
||||
// ...however Bullet Physics rigid bodies demo visualizations appear to produce some visible cracks.
|
||||
// Use the mesh in convexHC for visual display or to perform boolean operations with.
|
||||
|
||||
// Create Bullet Physics rigid body shards
|
||||
btCollisionShape* shardShape = new btConvexHullShape(&(convexHC->vertices[0].getX()), convexHC->vertices.size());
|
||||
shardShape->setMargin(CONVEX_MARGIN); // for this demo; note convexHC has optional margin parameter for this
|
||||
m_collisionShapes.push_back(shardShape);
|
||||
btTransform shardTransform;
|
||||
shardTransform.setIdentity();
|
||||
shardTransform.setOrigin(curVoronoiPoint + com); // Shard's adjusted location
|
||||
btDefaultMotionState* shardMotionState = new btDefaultMotionState(shardTransform);
|
||||
btScalar shardMass(volume * matDensity);
|
||||
btVector3 shardInertia(0.,0.,0.);
|
||||
shardShape->calculateLocalInertia(shardMass, shardInertia);
|
||||
btRigidBody::btRigidBodyConstructionInfo shardRBInfo(shardMass, shardMotionState, shardShape, shardInertia);
|
||||
btRigidBody* shardBody = new btRigidBody(shardRBInfo);
|
||||
m_dynamicsWorld->addRigidBody(shardBody);
|
||||
|
||||
cellnum ++;
|
||||
|
||||
}
|
||||
printf("Generated %d voronoi btRigidBody shards\n", cellnum);
|
||||
}
|
||||
|
||||
void VoronoiFractureDemo::voronoiConvexHullShatter(const btAlignedObjectArray<btVector3>& points, const btAlignedObjectArray<btVector3>& verts, const btQuaternion& bbq, const btVector3& bbt, btScalar matDensity) {
|
||||
// points define voronoi cells in world space (avoid duplicates)
|
||||
// verts = source (convex hull) mesh vertices in local space
|
||||
// bbq & bbt = source (convex hull) mesh quaternion rotation and translation
|
||||
// matDensity = Material density for voronoi shard mass calculation
|
||||
btConvexHullComputer* convexHC = new btConvexHullComputer();
|
||||
btAlignedObjectArray<btVector3> vertices, chverts;
|
||||
btVector3 rbb, nrbb;
|
||||
btScalar nlength, maxDistance, distance;
|
||||
btAlignedObjectArray<btVector3> sortedVoronoiPoints;
|
||||
sortedVoronoiPoints.copyFromArray(points);
|
||||
btVector3 normal, plane;
|
||||
btAlignedObjectArray<btVector3> planes, convexPlanes;
|
||||
std::set<int> planeIndices;
|
||||
std::set<int>::iterator planeIndicesIter;
|
||||
int numplaneIndices;
|
||||
int cellnum = 0;
|
||||
int i, j, k;
|
||||
|
||||
// Convert verts to world space and get convexPlanes
|
||||
int numverts = verts.size();
|
||||
chverts.resize(verts.size());
|
||||
for (i=0; i < numverts ;i++) {
|
||||
chverts[i] = quatRotate(bbq, verts[i]) + bbt;
|
||||
}
|
||||
//btGeometryUtil::getPlaneEquationsFromVertices(chverts, convexPlanes);
|
||||
// Using convexHullComputer faster than getPlaneEquationsFromVertices for large meshes...
|
||||
convexHC->compute(&chverts[0].getX(), sizeof(btVector3), numverts, 0.0, 0.0);
|
||||
int numFaces = convexHC->faces.size();
|
||||
int v0, v1, v2; // vertices
|
||||
for (i=0; i < numFaces; i++) {
|
||||
const btConvexHullComputer::Edge* edge = &convexHC->edges[convexHC->faces[i]];
|
||||
v0 = edge->getSourceVertex();
|
||||
v1 = edge->getTargetVertex();
|
||||
edge = edge->getNextEdgeOfFace();
|
||||
v2 = edge->getTargetVertex();
|
||||
plane = (convexHC->vertices[v1]-convexHC->vertices[v0]).cross(convexHC->vertices[v2]-convexHC->vertices[v0]).normalize();
|
||||
plane[3] = -plane.dot(convexHC->vertices[v0]);
|
||||
convexPlanes.push_back(plane);
|
||||
}
|
||||
const int numconvexPlanes = convexPlanes.size();
|
||||
|
||||
int numpoints = points.size();
|
||||
for (i=0; i < numpoints ;i++) {
|
||||
curVoronoiPoint = points[i];
|
||||
planes.copyFromArray(convexPlanes);
|
||||
for (j=0; j < numconvexPlanes ;j++) {
|
||||
planes[j][3] += planes[j].dot(curVoronoiPoint);
|
||||
}
|
||||
maxDistance = SIMD_INFINITY;
|
||||
sortedVoronoiPoints.heapSort(pointCmp());
|
||||
for (j=1; j < numpoints; j++) {
|
||||
normal = sortedVoronoiPoints[j] - curVoronoiPoint;
|
||||
nlength = normal.length();
|
||||
if (nlength > maxDistance)
|
||||
break;
|
||||
plane = normal.normalized();
|
||||
plane[3] = -nlength / btScalar(2.);
|
||||
planes.push_back(plane);
|
||||
getVerticesInsidePlanes(planes, vertices, planeIndices);
|
||||
if (vertices.size() == 0)
|
||||
break;
|
||||
numplaneIndices = planeIndices.size();
|
||||
if (numplaneIndices != planes.size()) {
|
||||
planeIndicesIter = planeIndices.begin();
|
||||
for (k=0; k < numplaneIndices; k++) {
|
||||
if (k != *planeIndicesIter)
|
||||
planes[k] = planes[*planeIndicesIter];
|
||||
planeIndicesIter++;
|
||||
}
|
||||
planes.resize(numplaneIndices);
|
||||
}
|
||||
maxDistance = vertices[0].length();
|
||||
for (k=1; k < vertices.size(); k++) {
|
||||
distance = vertices[k].length();
|
||||
if (maxDistance < distance)
|
||||
maxDistance = distance;
|
||||
}
|
||||
maxDistance *= btScalar(2.);
|
||||
}
|
||||
if (vertices.size() == 0)
|
||||
continue;
|
||||
|
||||
// Clean-up voronoi convex shard vertices and generate edges & faces
|
||||
convexHC->compute(&vertices[0].getX(), sizeof(btVector3), vertices.size(),0.0,0.0);
|
||||
|
||||
// At this point we have a complete 3D voronoi shard mesh contained in convexHC
|
||||
|
||||
// Calculate volume and center of mass (Stan Melax volume integration)
|
||||
numFaces = convexHC->faces.size();
|
||||
btScalar volume = btScalar(0.);
|
||||
btVector3 com(0., 0., 0.);
|
||||
for (j=0; j < numFaces; j++) {
|
||||
const btConvexHullComputer::Edge* edge = &convexHC->edges[convexHC->faces[j]];
|
||||
v0 = edge->getSourceVertex();
|
||||
v1 = edge->getTargetVertex();
|
||||
edge = edge->getNextEdgeOfFace();
|
||||
v2 = edge->getTargetVertex();
|
||||
while (v2 != v0) {
|
||||
// Counter-clockwise triangulated voronoi shard mesh faces (v0-v1-v2) and edges here...
|
||||
btScalar vol = convexHC->vertices[v0].triple(convexHC->vertices[v1], convexHC->vertices[v2]);
|
||||
volume += vol;
|
||||
com += vol * (convexHC->vertices[v0] + convexHC->vertices[v1] + convexHC->vertices[v2]);
|
||||
edge = edge->getNextEdgeOfFace();
|
||||
v1 = v2;
|
||||
v2 = edge->getTargetVertex();
|
||||
}
|
||||
}
|
||||
com /= volume * btScalar(4.);
|
||||
volume /= btScalar(6.);
|
||||
|
||||
// Shift all vertices relative to center of mass
|
||||
int numVerts = convexHC->vertices.size();
|
||||
for (j=0; j < numVerts; j++)
|
||||
{
|
||||
convexHC->vertices[j] -= com;
|
||||
}
|
||||
|
||||
// Note:
|
||||
// At this point convex hulls contained in convexHC should be accurate (line up flush with other pieces, no cracks),
|
||||
// ...however Bullet Physics rigid bodies demo visualizations appear to produce some visible cracks.
|
||||
// Use the mesh in convexHC for visual display or to perform boolean operations with.
|
||||
|
||||
// Create Bullet Physics rigid body shards
|
||||
btCollisionShape* shardShape = new btConvexHullShape(&(convexHC->vertices[0].getX()), convexHC->vertices.size());
|
||||
shardShape->setMargin(CONVEX_MARGIN); // for this demo; note convexHC has optional margin parameter for this
|
||||
m_collisionShapes.push_back(shardShape);
|
||||
btTransform shardTransform;
|
||||
shardTransform.setIdentity();
|
||||
shardTransform.setOrigin(curVoronoiPoint + com); // Shard's adjusted location
|
||||
btDefaultMotionState* shardMotionState = new btDefaultMotionState(shardTransform);
|
||||
btScalar shardMass(volume * matDensity);
|
||||
btVector3 shardInertia(0.,0.,0.);
|
||||
shardShape->calculateLocalInertia(shardMass, shardInertia);
|
||||
btRigidBody::btRigidBodyConstructionInfo shardRBInfo(shardMass, shardMotionState, shardShape, shardInertia);
|
||||
btRigidBody* shardBody = new btRigidBody(shardRBInfo);
|
||||
m_dynamicsWorld->addRigidBody(shardBody);
|
||||
|
||||
cellnum ++;
|
||||
|
||||
}
|
||||
printf("Generated %d voronoi btRigidBody shards\n", cellnum);
|
||||
}
|
||||
|
||||
/*
|
||||
void VoronoiFractureDemo::clientMoveAndDisplay()
|
||||
{
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
|
||||
//simple dynamics world doesn't handle fixed-time-stepping
|
||||
float ms = getDeltaTimeMicroseconds();
|
||||
|
||||
///step the simulation
|
||||
if (m_dynamicsWorld)
|
||||
{
|
||||
m_dynamicsWorld->stepSimulation(1. / 60., 0);// ms / 1000000.f);
|
||||
//optional but useful: debug drawing
|
||||
m_dynamicsWorld->debugDrawWorld();
|
||||
}
|
||||
|
||||
renderme();
|
||||
|
||||
glFlush();
|
||||
|
||||
swapBuffers();
|
||||
}
|
||||
*/
|
||||
/*
|
||||
void VoronoiFractureDemo::displayCallback(void) {
|
||||
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
|
||||
renderme();
|
||||
|
||||
//optional but useful: debug drawing to detect problems
|
||||
if (m_dynamicsWorld)
|
||||
m_dynamicsWorld->debugDrawWorld();
|
||||
|
||||
glFlush();
|
||||
swapBuffers();
|
||||
}
|
||||
*/
|
||||
/*
|
||||
void VoronoiFractureDemo::renderme()
|
||||
{
|
||||
DemoApplication::renderme();
|
||||
char buf[124];
|
||||
|
||||
int lineWidth = 200;
|
||||
int xStart = m_glutScreenWidth - lineWidth;
|
||||
|
||||
if (useMpr)
|
||||
{
|
||||
sprintf(buf, "Using GJK+MPR");
|
||||
}
|
||||
else
|
||||
{
|
||||
sprintf(buf, "Using GJK+EPA");
|
||||
}
|
||||
GLDebugDrawString(xStart, 20, buf);
|
||||
|
||||
}
|
||||
*/
|
||||
|
||||
void VoronoiFractureDemo::initPhysics()
|
||||
{
|
||||
srand(13);
|
||||
useGenericConstraint = !useGenericConstraint;
|
||||
printf("useGenericConstraint = %d\n", useGenericConstraint);
|
||||
|
||||
|
||||
|
||||
///collision configuration contains default setup for memory, collision setup
|
||||
m_collisionConfiguration = new btDefaultCollisionConfiguration();
|
||||
//m_collisionConfiguration->setConvexConvexMultipointIterations();
|
||||
|
||||
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
|
||||
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
|
||||
|
||||
useMpr = 1 - useMpr;
|
||||
|
||||
if (useMpr)
|
||||
{
|
||||
printf("using GJK+MPR convex-convex collision detection\n");
|
||||
btConvexConvexMprAlgorithm::CreateFunc* cf = new btConvexConvexMprAlgorithm::CreateFunc;
|
||||
m_dispatcher->registerCollisionCreateFunc(CONVEX_HULL_SHAPE_PROXYTYPE, CONVEX_HULL_SHAPE_PROXYTYPE, cf);
|
||||
m_dispatcher->registerCollisionCreateFunc(CONVEX_HULL_SHAPE_PROXYTYPE, BOX_SHAPE_PROXYTYPE, cf);
|
||||
m_dispatcher->registerCollisionCreateFunc(BOX_SHAPE_PROXYTYPE, CONVEX_HULL_SHAPE_PROXYTYPE, cf);
|
||||
}
|
||||
else
|
||||
{
|
||||
printf("using default (GJK+EPA) convex-convex collision detection\n");
|
||||
}
|
||||
|
||||
m_broadphase = new btDbvtBroadphase();
|
||||
|
||||
///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded)
|
||||
btSequentialImpulseConstraintSolver* sol = new btSequentialImpulseConstraintSolver;
|
||||
m_solver = sol;
|
||||
|
||||
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
|
||||
m_dynamicsWorld->getSolverInfo().m_splitImpulse = true;
|
||||
|
||||
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
|
||||
|
||||
|
||||
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
|
||||
|
||||
///create a few basic rigid bodies
|
||||
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(50.),btScalar(50.),btScalar(50.)));
|
||||
// btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50);
|
||||
|
||||
m_collisionShapes.push_back(groundShape);
|
||||
|
||||
btTransform groundTransform;
|
||||
groundTransform.setIdentity();
|
||||
groundTransform.setOrigin(btVector3(0,-50,0));
|
||||
|
||||
//We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
|
||||
{
|
||||
btScalar mass(0.);
|
||||
|
||||
//rigidbody is dynamic if and only if mass is non zero, otherwise static
|
||||
bool isDynamic = (mass != 0.f);
|
||||
|
||||
btVector3 localInertia(0,0,0);
|
||||
if (isDynamic)
|
||||
groundShape->calculateLocalInertia(mass,localInertia);
|
||||
|
||||
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
|
||||
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
|
||||
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
|
||||
btRigidBody* body = new btRigidBody(rbInfo);
|
||||
|
||||
//add the body to the dynamics world
|
||||
m_dynamicsWorld->addRigidBody(body);
|
||||
}
|
||||
|
||||
{
|
||||
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(10.),btScalar(8.),btScalar(1.)));
|
||||
btScalar mass(0.);
|
||||
|
||||
//rigidbody is dynamic if and only if mass is non zero, otherwise static
|
||||
bool isDynamic = (mass != 0.f);
|
||||
|
||||
btVector3 localInertia(0,0,0);
|
||||
if (isDynamic)
|
||||
groundShape->calculateLocalInertia(mass,localInertia);
|
||||
groundTransform.setOrigin(btVector3(0,0,0));
|
||||
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
|
||||
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
|
||||
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
|
||||
btRigidBody* body = new btRigidBody(rbInfo);
|
||||
|
||||
//add the body to the dynamics world
|
||||
m_dynamicsWorld->addRigidBody(body);
|
||||
}
|
||||
|
||||
// ==> Voronoi Shatter Basic Demo: Random Cuboid
|
||||
|
||||
// Random size cuboid (defined by bounding box max and min)
|
||||
btVector3 bbmax(btScalar(rand() / btScalar(RAND_MAX)) * 12. +0.5, btScalar(rand() / btScalar(RAND_MAX)) * 1. +0.5, btScalar(rand() / btScalar(RAND_MAX)) * 1. +0.5);
|
||||
btVector3 bbmin = -bbmax;
|
||||
// Place it 10 units above ground
|
||||
btVector3 bbt(0,15,0);
|
||||
// Use an arbitrary material density for shards (should be consitent/relative with/to rest of RBs in world)
|
||||
btScalar matDensity = 1;
|
||||
// Using random rotation
|
||||
btQuaternion bbq(btScalar(rand() / btScalar(RAND_MAX)) * 2. -1.,btScalar(rand() / btScalar(RAND_MAX)) * 2. -1.,btScalar(rand() / btScalar(RAND_MAX)) * 2. -1.,btScalar(rand() / btScalar(RAND_MAX)) * 2. -1.);
|
||||
bbq.normalize();
|
||||
// Generate random points for voronoi cells
|
||||
btAlignedObjectArray<btVector3> points;
|
||||
btVector3 point;
|
||||
btVector3 diff = bbmax - bbmin;
|
||||
for (int i=0; i < VORONOIPOINTS; i++) {
|
||||
// Place points within box area (points are in world coordinates)
|
||||
point = quatRotate(bbq, btVector3(btScalar(rand() / btScalar(RAND_MAX)) * diff.x() -diff.x()/2., btScalar(rand() / btScalar(RAND_MAX)) * diff.y() -diff.y()/2., btScalar(rand() / btScalar(RAND_MAX)) * diff.z() -diff.z()/2.)) + bbt;
|
||||
points.push_back(point);
|
||||
}
|
||||
m_perfmTimer.reset();
|
||||
voronoiBBShatter(points, bbmin, bbmax, bbq, bbt, matDensity);
|
||||
printf("Total Time: %f seconds\n", m_perfmTimer.getTimeMilliseconds()/1000.);
|
||||
|
||||
for (int i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
|
||||
{
|
||||
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
|
||||
obj->getCollisionShape()->setMargin(CONVEX_MARGIN+0.01);
|
||||
}
|
||||
m_dynamicsWorld->performDiscreteCollisionDetection();
|
||||
|
||||
for (int i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
|
||||
{
|
||||
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
|
||||
obj->getCollisionShape()->setMargin(CONVEX_MARGIN);
|
||||
}
|
||||
|
||||
attachFixedConstraints();
|
||||
|
||||
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
|
||||
}
|
||||
|
||||
|
||||
void VoronoiFractureDemo::exitPhysics()
|
||||
{
|
||||
|
||||
//cleanup in the reverse order of creation/initialization
|
||||
|
||||
int i;
|
||||
//remove all constraints
|
||||
for (i=m_dynamicsWorld->getNumConstraints()-1;i>=0;i--)
|
||||
{
|
||||
btTypedConstraint* constraint = m_dynamicsWorld->getConstraint(i);
|
||||
m_dynamicsWorld->removeConstraint(constraint);
|
||||
delete constraint;
|
||||
}
|
||||
|
||||
//remove the rigidbodies from the dynamics world and delete them
|
||||
|
||||
for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
|
||||
{
|
||||
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
|
||||
btRigidBody* body = btRigidBody::upcast(obj);
|
||||
if (body && body->getMotionState())
|
||||
{
|
||||
delete body->getMotionState();
|
||||
}
|
||||
m_dynamicsWorld->removeCollisionObject( obj );
|
||||
delete obj;
|
||||
}
|
||||
|
||||
//delete collision shapes
|
||||
for (int j=0;j<m_collisionShapes.size();j++)
|
||||
{
|
||||
btCollisionShape* shape = m_collisionShapes[j];
|
||||
delete shape;
|
||||
}
|
||||
m_collisionShapes.clear();
|
||||
|
||||
delete m_dynamicsWorld;
|
||||
m_dynamicsWorld = 0;
|
||||
|
||||
delete m_solver;
|
||||
m_solver=0;
|
||||
|
||||
delete m_broadphase;
|
||||
m_broadphase=0;
|
||||
|
||||
delete m_dispatcher;
|
||||
m_dispatcher=0;
|
||||
|
||||
delete m_collisionConfiguration;
|
||||
m_collisionConfiguration=0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
static DemoApplication* Create()
|
||||
{
|
||||
VoronoiFractureDemo* demo = new VoronoiFractureDemo;
|
||||
demo->myinit();
|
||||
demo->initPhysics();
|
||||
return demo;
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
ExampleInterface* VoronoiFractureCreateFunc(PhysicsInterface* pint, GUIHelperInterface* helper, int option)
|
||||
{
|
||||
return new VoronoiFractureDemo(helper);
|
||||
}
|
||||
21
examples/VoronoiFracture/VoronoiFractureDemo.h
Normal file
21
examples/VoronoiFracture/VoronoiFractureDemo.h
Normal file
@@ -0,0 +1,21 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
#ifndef VORONOI_FRACTURE_DEMO_H
|
||||
#define VORONOI_FRACTURE_DEMO_H
|
||||
|
||||
class ExampleInterface* VoronoiFractureCreateFunc(struct PhysicsInterface* pint, struct GUIHelperInterface* helper, int option);
|
||||
|
||||
#endif //VORONOI_FRACTURE_DEMO_H
|
||||
|
||||
288
examples/VoronoiFracture/btConvexConvexMprAlgorithm.cpp
Normal file
288
examples/VoronoiFracture/btConvexConvexMprAlgorithm.cpp
Normal file
@@ -0,0 +1,288 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2014 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
|
||||
#include "btConvexConvexMprAlgorithm.h"
|
||||
|
||||
//#include <stdio.h>
|
||||
#include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
|
||||
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
|
||||
#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
||||
|
||||
#include "BulletCollision/CollisionShapes/btTriangleShape.h"
|
||||
|
||||
|
||||
|
||||
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
|
||||
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
|
||||
#include "BulletCollision/CollisionShapes/btBoxShape.h"
|
||||
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"
|
||||
|
||||
#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
|
||||
|
||||
|
||||
|
||||
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
|
||||
#include "BulletCollision/CollisionShapes/btSphereShape.h"
|
||||
|
||||
#include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
|
||||
|
||||
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.h"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
|
||||
|
||||
#include "BulletCollision/NarrowPhaseCollision/btComputeGjkEpaPenetration.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa3.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btMprPenetration.h"
|
||||
|
||||
//this is just an internal debug variable to switch between GJK+MPR or GJK+EPA
|
||||
bool gUseMprCollisionFunction = true;
|
||||
|
||||
btConvexConvexMprAlgorithm::CreateFunc::CreateFunc()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
btConvexConvexMprAlgorithm::CreateFunc::~CreateFunc()
|
||||
{
|
||||
}
|
||||
|
||||
btConvexConvexMprAlgorithm::btConvexConvexMprAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap)
|
||||
: btActivatingCollisionAlgorithm(ci,body0Wrap,body1Wrap),
|
||||
m_ownManifold (false),
|
||||
m_manifoldPtr(mf)
|
||||
{
|
||||
(void)body0Wrap;
|
||||
(void)body1Wrap;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
btConvexConvexMprAlgorithm::~btConvexConvexMprAlgorithm()
|
||||
{
|
||||
if (m_ownManifold)
|
||||
{
|
||||
if (m_manifoldPtr)
|
||||
m_dispatcher->releaseManifold(m_manifoldPtr);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
btVector3 btBulletShapeSupportFunc(const void* shapeAptr, const btVector3& dir, bool includeMargin)
|
||||
{
|
||||
btConvexShape* shape = (btConvexShape*) shapeAptr;
|
||||
if (includeMargin)
|
||||
{
|
||||
return shape->localGetSupportingVertex(dir);
|
||||
}
|
||||
|
||||
return shape->localGetSupportingVertexWithoutMargin(dir);
|
||||
}
|
||||
|
||||
btVector3 btBulletShapeCenterFunc(const void* shapeAptr)
|
||||
{
|
||||
return btVector3(0,0,0);
|
||||
}
|
||||
|
||||
|
||||
struct btMprConvexWrap
|
||||
{
|
||||
const btConvexShape* m_convex;
|
||||
btTransform m_worldTrans;
|
||||
inline btScalar getMargin() const
|
||||
{
|
||||
return m_convex->getMargin();
|
||||
}
|
||||
inline btVector3 getObjectCenterInWorld() const
|
||||
{
|
||||
return m_worldTrans.getOrigin();
|
||||
}
|
||||
inline const btTransform& getWorldTransform() const
|
||||
{
|
||||
return m_worldTrans;
|
||||
}
|
||||
inline btVector3 getLocalSupportWithMargin(const btVector3& dir) const
|
||||
{
|
||||
return m_convex->localGetSupportingVertex(dir);
|
||||
}
|
||||
inline btVector3 getLocalSupportWithoutMargin(const btVector3& dir) const
|
||||
{
|
||||
return m_convex->localGetSupportingVertexWithoutMargin(dir);
|
||||
}
|
||||
};
|
||||
|
||||
struct btMyDistanceInfo
|
||||
{
|
||||
btVector3 m_pointOnA;
|
||||
btVector3 m_pointOnB;
|
||||
btVector3 m_normalBtoA;
|
||||
btScalar m_distance;
|
||||
};
|
||||
|
||||
//
|
||||
// Convex-Convex collision algorithm
|
||||
//
|
||||
void btConvexConvexMprAlgorithm ::processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
||||
{
|
||||
|
||||
if (!m_manifoldPtr)
|
||||
{
|
||||
//swapped?
|
||||
m_manifoldPtr = m_dispatcher->getNewManifold(body0Wrap->getCollisionObject(),body1Wrap->getCollisionObject());
|
||||
m_ownManifold = true;
|
||||
}
|
||||
resultOut->setPersistentManifold(m_manifoldPtr);
|
||||
|
||||
//comment-out next line to test multi-contact generation
|
||||
//resultOut->getPersistentManifold()->clearManifold();
|
||||
|
||||
|
||||
const btConvexShape* min0 = static_cast<const btConvexShape*>(body0Wrap->getCollisionShape());
|
||||
const btConvexShape* min1 = static_cast<const btConvexShape*>(body1Wrap->getCollisionShape());
|
||||
|
||||
btVector3 normalOnB;
|
||||
btVector3 pointOnBWorld;
|
||||
|
||||
btGjkPairDetector::ClosestPointInput input;
|
||||
|
||||
btVoronoiSimplexSolver vs;
|
||||
btGjkEpaPenetrationDepthSolver epa;
|
||||
|
||||
|
||||
if (gUseMprCollisionFunction)
|
||||
{
|
||||
|
||||
btMprConvexWrap a,b;
|
||||
a.m_worldTrans = body0Wrap->getWorldTransform();
|
||||
b.m_worldTrans = body1Wrap->getWorldTransform();
|
||||
a.m_convex = (const btConvexShape*)body0Wrap->getCollisionShape();
|
||||
b.m_convex = (const btConvexShape*)body1Wrap->getCollisionShape();
|
||||
btVoronoiSimplexSolver simplexSolver;
|
||||
simplexSolver.reset();
|
||||
btGjkCollisionDescription colDesc;
|
||||
btMyDistanceInfo distInfo;
|
||||
int res = btComputeGjkDistance(a,b,colDesc,&distInfo);
|
||||
if (res==0)
|
||||
{
|
||||
//printf("use GJK results in distance %f\n",distInfo.m_distance);
|
||||
} else
|
||||
{
|
||||
btMprCollisionDescription mprDesc;
|
||||
res = btComputeMprPenetration(a,b,mprDesc, &distInfo);
|
||||
|
||||
//printf("use MPR results in distance %f\n",distInfo.m_distance);
|
||||
|
||||
}
|
||||
if (res == 0)
|
||||
{
|
||||
#if 0
|
||||
printf("Dist=%f,normalOnB[%f,%f,%f],pA=[%f,%f,%f],pB[%f,%f,%f]\n",
|
||||
distInfo.m_distance, distInfo.m_normalBtoA[0], distInfo.m_normalBtoA[1], distInfo.m_normalBtoA[2],
|
||||
distInfo.m_pointOnA[0], distInfo.m_pointOnA[1], distInfo.m_pointOnA[2],
|
||||
distInfo.m_pointOnB[0], distInfo.m_pointOnB[1], distInfo.m_pointOnB[2]);
|
||||
#endif
|
||||
|
||||
if (distInfo.m_distance<=0)
|
||||
{
|
||||
resultOut->addContactPoint(distInfo.m_normalBtoA, distInfo.m_pointOnB, distInfo.m_distance);
|
||||
}
|
||||
//ASSERT_EQ(0,result);
|
||||
//ASSERT_NEAR(btFabs(btScalar(i-z))-btScalar(j)-ssd.m_radiusB, distInfo.m_distance, abs_error);
|
||||
//btVector3 computedA = distInfo.m_pointOnB+distInfo.m_distance*distInfo.m_normalBtoA;
|
||||
//ASSERT_NEAR(computedA.x(),distInfo.m_pointOnA.x(),abs_error);
|
||||
//ASSERT_NEAR(computedA.y(),distInfo.m_pointOnA.y(),abs_error);
|
||||
//ASSERT_NEAR(computedA.z(),distInfo.m_pointOnA.z(),abs_error);
|
||||
}
|
||||
|
||||
|
||||
#if 0
|
||||
btCollisionDescription colDesc;
|
||||
colDesc.m_objA = min0;
|
||||
colDesc.m_objB = min1;
|
||||
colDesc.m_localSupportFuncA = &btBulletShapeSupportFunc;
|
||||
colDesc.m_localSupportFuncB = &btBulletShapeSupportFunc;
|
||||
colDesc.m_localOriginFuncA = &btBulletShapeCenterFunc;
|
||||
colDesc.m_localOriginFuncB = &btBulletShapeCenterFunc;
|
||||
|
||||
colDesc.m_transformA = body0Wrap->getWorldTransform();
|
||||
colDesc.m_transformB = body1Wrap->getWorldTransform();
|
||||
colDesc.m_marginA = body0Wrap->getCollisionShape()->getMargin();
|
||||
colDesc.m_marginB = body1Wrap->getCollisionShape()->getMargin();
|
||||
btDistanceInfo distInfo;
|
||||
//int result = btComputeGjkEpaPenetration(colDesc, &distInfo);
|
||||
//int result = btComputeGjkEpaPenetration2(colDesc, &distInfo);
|
||||
int result = btComputeMprPenetration(colDesc, &distInfo);
|
||||
|
||||
if (result==0)
|
||||
{
|
||||
resultOut->addContactPoint(distInfo.m_normalBtoA,distInfo.m_pointOnB,distInfo.m_distance);
|
||||
}
|
||||
|
||||
//bool res = b3MprPenetration(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,convexData,collidable2,cpuVertices,sepAxis,hasSepAxis,depthOut,dirOut,posOut);
|
||||
|
||||
/*btCollisionDescription colDesc;
|
||||
btDistanceInfo distInfo;
|
||||
int btComputeGjkEpaPenetration(min0, min1, &colDesc, &distInfo);
|
||||
*/
|
||||
#endif
|
||||
} else
|
||||
{
|
||||
|
||||
btGjkPairDetector gjkPairDetector(min0,min1,&vs,&epa);//m_simplexSolver,m_pdSolver);
|
||||
//TODO: if (dispatchInfo.m_useContinuous)
|
||||
gjkPairDetector.setMinkowskiA(min0);
|
||||
gjkPairDetector.setMinkowskiB(min1);
|
||||
|
||||
{
|
||||
//if (dispatchInfo.m_convexMaxDistanceUseCPT)
|
||||
//{
|
||||
// input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactProcessingThreshold();
|
||||
//} else
|
||||
//{
|
||||
input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
|
||||
// }
|
||||
|
||||
input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
|
||||
}
|
||||
|
||||
input.m_transformA = body0Wrap->getWorldTransform();
|
||||
input.m_transformB = body1Wrap->getWorldTransform();
|
||||
|
||||
|
||||
gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
|
||||
}
|
||||
if (m_ownManifold)
|
||||
{
|
||||
resultOut->refreshContactPoints();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
btScalar btConvexConvexMprAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
||||
{
|
||||
(void)resultOut;
|
||||
(void)dispatchInfo;
|
||||
btAssert(0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
87
examples/VoronoiFracture/btConvexConvexMprAlgorithm.h
Normal file
87
examples/VoronoiFracture/btConvexConvexMprAlgorithm.h
Normal file
@@ -0,0 +1,87 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef BT_CONVEX_CONVEX_MPR_ALGORITHM_H
|
||||
#define BT_CONVEX_CONVEX_MPR_ALGORITHM_H
|
||||
|
||||
#include "BulletCollision/CollisionDispatch/btActivatingCollisionAlgorithm.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
|
||||
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
|
||||
#include "LinearMath/btTransformUtil.h" //for btConvexSeparatingDistanceUtil
|
||||
|
||||
class btConvexPenetrationDepthSolver;
|
||||
|
||||
///Enabling USE_SEPDISTANCE_UTIL2 requires 100% reliable distance computation. However, when using large size ratios GJK can be imprecise
|
||||
///so the distance is not conservative. In that case, enabling this USE_SEPDISTANCE_UTIL2 would result in failing/missing collisions.
|
||||
///Either improve GJK for large size ratios (testing a 100 units versus a 0.1 unit object) or only enable the util
|
||||
///for certain pairs that have a small size ratio
|
||||
|
||||
///The convexConvexAlgorithm collision algorithm implements time of impact, convex closest points and penetration depth calculations between two convex objects.
|
||||
///Multiple contact points are calculated by perturbing the orientation of the smallest object orthogonal to the separating normal.
|
||||
///This idea was described by Gino van den Bergen in this forum topic http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=4&t=288&p=888#p888
|
||||
class btConvexConvexMprAlgorithm : public btActivatingCollisionAlgorithm
|
||||
{
|
||||
|
||||
|
||||
bool m_ownManifold;
|
||||
btPersistentManifold* m_manifoldPtr;
|
||||
///cache separating vector to speedup collision detection
|
||||
|
||||
public:
|
||||
|
||||
btConvexConvexMprAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap);
|
||||
|
||||
virtual ~btConvexConvexMprAlgorithm();
|
||||
|
||||
virtual void processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
|
||||
|
||||
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
|
||||
|
||||
virtual void getAllContactManifolds(btManifoldArray& manifoldArray)
|
||||
{
|
||||
///should we use m_ownManifold to avoid adding duplicates?
|
||||
if (m_manifoldPtr && m_ownManifold)
|
||||
manifoldArray.push_back(m_manifoldPtr);
|
||||
}
|
||||
|
||||
const btPersistentManifold* getManifold()
|
||||
{
|
||||
return m_manifoldPtr;
|
||||
}
|
||||
|
||||
struct CreateFunc :public btCollisionAlgorithmCreateFunc
|
||||
{
|
||||
|
||||
|
||||
|
||||
CreateFunc();
|
||||
|
||||
virtual ~CreateFunc();
|
||||
|
||||
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap)
|
||||
{
|
||||
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btConvexConvexMprAlgorithm));
|
||||
return new(mem) btConvexConvexMprAlgorithm(ci.m_manifold,ci,body0Wrap,body1Wrap);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
};
|
||||
|
||||
#endif //BT_CONVEX_CONVEX_MPR_ALGORITHM_H
|
||||
Reference in New Issue
Block a user