removed STL usage of Extras/ConvexBuilder and replaced by btAlignedObjectArray
fixed several warnings, thanks to sparkprime added comments patch for linear math, thanks to Tully Foote
This commit is contained in:
@@ -17,30 +17,43 @@ subject to the following restrictions:
|
||||
#ifndef SIMD__QUATERNION_H_
|
||||
#define SIMD__QUATERNION_H_
|
||||
|
||||
|
||||
#include "btVector3.h"
|
||||
|
||||
///The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform.
|
||||
/**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */
|
||||
class btQuaternion : public btQuadWord {
|
||||
public:
|
||||
/**@brief No initialization constructor */
|
||||
btQuaternion() {}
|
||||
|
||||
// template <typename btScalar>
|
||||
// explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {}
|
||||
|
||||
/**@brief Constructor from scalars */
|
||||
btQuaternion(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w)
|
||||
: btQuadWord(x, y, z, w)
|
||||
{}
|
||||
|
||||
/**@brief Axis angle Constructor
|
||||
* @param axis The axis which the rotation is around
|
||||
* @param angle The magnitude of the rotation around the angle (Radians) */
|
||||
btQuaternion(const btVector3& axis, const btScalar& angle)
|
||||
{
|
||||
setRotation(axis, angle);
|
||||
}
|
||||
|
||||
/**@brief Constructor from Euler angles
|
||||
* @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z
|
||||
* @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y
|
||||
* @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */
|
||||
btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
|
||||
{
|
||||
#ifndef BT_EULER_DEFAULT_ZYX
|
||||
setEuler(yaw, pitch, roll);
|
||||
#else
|
||||
setEulerZYX(yaw, pitch, roll);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**@brief Set the rotation using axis angle notation
|
||||
* @param axis The axis around which to rotate
|
||||
* @param angle The magnitude of the rotation in Radians */
|
||||
void setRotation(const btVector3& axis, const btScalar& angle)
|
||||
{
|
||||
btScalar d = axis.length();
|
||||
@@ -49,7 +62,10 @@ public:
|
||||
setValue(axis.x() * s, axis.y() * s, axis.z() * s,
|
||||
btCos(angle * btScalar(0.5)));
|
||||
}
|
||||
|
||||
/**@brief Set the quaternion using Euler angles
|
||||
* @param yaw Angle around Y
|
||||
* @param pitch Angle around X
|
||||
* @param roll Angle around Z */
|
||||
void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
|
||||
{
|
||||
btScalar halfYaw = btScalar(yaw) * btScalar(0.5);
|
||||
@@ -66,26 +82,52 @@ public:
|
||||
sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
|
||||
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
|
||||
}
|
||||
|
||||
/**@brief Set the quaternion using euler angles
|
||||
* @param yaw Angle around Z
|
||||
* @param pitch Angle around Y
|
||||
* @param roll Angle around X */
|
||||
void setEulerZYX(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
|
||||
{
|
||||
btScalar halfYaw = btScalar(yaw) * btScalar(0.5);
|
||||
btScalar halfPitch = btScalar(pitch) * btScalar(0.5);
|
||||
btScalar halfRoll = btScalar(roll) * btScalar(0.5);
|
||||
btScalar cosYaw = btCos(halfYaw);
|
||||
btScalar sinYaw = btSin(halfYaw);
|
||||
btScalar cosPitch = btCos(halfPitch);
|
||||
btScalar sinPitch = btSin(halfPitch);
|
||||
btScalar cosRoll = btCos(halfRoll);
|
||||
btScalar sinRoll = btSin(halfRoll);
|
||||
setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x
|
||||
cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y
|
||||
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z
|
||||
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx
|
||||
}
|
||||
/**@brief Add two quaternions
|
||||
* @param q The quaternion to add to this one */
|
||||
btQuaternion& operator+=(const btQuaternion& q)
|
||||
{
|
||||
m_x += q.x(); m_y += q.y(); m_z += q.z(); m_unusedW += q.m_unusedW;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**@brief Subtract out a quaternion
|
||||
* @param q The quaternion to subtract from this one */
|
||||
btQuaternion& operator-=(const btQuaternion& q)
|
||||
{
|
||||
m_x -= q.x(); m_y -= q.y(); m_z -= q.z(); m_unusedW -= q.m_unusedW;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**@brief Scale this quaternion
|
||||
* @param s The scalar to scale by */
|
||||
btQuaternion& operator*=(const btScalar& s)
|
||||
{
|
||||
m_x *= s; m_y *= s; m_z *= s; m_unusedW *= s;
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
/**@brief Multiply this quaternion by q on the right
|
||||
* @param q The other quaternion
|
||||
* Equivilant to this = this * q */
|
||||
btQuaternion& operator*=(const btQuaternion& q)
|
||||
{
|
||||
setValue(m_unusedW * q.x() + m_x * q.m_unusedW + m_y * q.z() - m_z * q.y(),
|
||||
@@ -94,27 +136,34 @@ public:
|
||||
m_unusedW * q.m_unusedW - m_x * q.x() - m_y * q.y() - m_z * q.z());
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**@brief Return the dot product between this quaternion and another
|
||||
* @param q The other quaternion */
|
||||
btScalar dot(const btQuaternion& q) const
|
||||
{
|
||||
return m_x * q.x() + m_y * q.y() + m_z * q.z() + m_unusedW * q.m_unusedW;
|
||||
}
|
||||
|
||||
/**@brief Return the length squared of the quaternion */
|
||||
btScalar length2() const
|
||||
{
|
||||
return dot(*this);
|
||||
}
|
||||
|
||||
/**@brief Return the length of the quaternion */
|
||||
btScalar length() const
|
||||
{
|
||||
return btSqrt(length2());
|
||||
}
|
||||
|
||||
/**@brief Normalize the quaternion
|
||||
* Such that x^2 + y^2 + z^2 +w^2 = 1 */
|
||||
btQuaternion& normalize()
|
||||
{
|
||||
return *this /= length();
|
||||
}
|
||||
|
||||
/**@brief Return a scaled version of this quaternion
|
||||
* @param s The scale factor */
|
||||
SIMD_FORCE_INLINE btQuaternion
|
||||
operator*(const btScalar& s) const
|
||||
{
|
||||
@@ -122,33 +171,36 @@ public:
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**@brief Return an inversely scaled versionof this quaternion
|
||||
* @param s The inverse scale factor */
|
||||
btQuaternion operator/(const btScalar& s) const
|
||||
{
|
||||
assert(s != btScalar(0.0));
|
||||
return *this * (btScalar(1.0) / s);
|
||||
}
|
||||
|
||||
|
||||
/**@brief Inversely scale this quaternion
|
||||
* @param s The scale factor */
|
||||
btQuaternion& operator/=(const btScalar& s)
|
||||
{
|
||||
assert(s != btScalar(0.0));
|
||||
return *this *= btScalar(1.0) / s;
|
||||
}
|
||||
|
||||
|
||||
/**@brief Return a normalized version of this quaternion */
|
||||
btQuaternion normalized() const
|
||||
{
|
||||
return *this / length();
|
||||
}
|
||||
|
||||
/**@brief Return the angle between this quaternion and the other
|
||||
* @param q The other quaternion */
|
||||
btScalar angle(const btQuaternion& q) const
|
||||
{
|
||||
btScalar s = btSqrt(length2() * q.length2());
|
||||
assert(s != btScalar(0.0));
|
||||
return btAcos(dot(q) / s);
|
||||
}
|
||||
|
||||
/**@brief Return the angle of rotation represented by this quaternion */
|
||||
btScalar getAngle() const
|
||||
{
|
||||
btScalar s = btScalar(2.) * btAcos(m_unusedW);
|
||||
@@ -156,12 +208,14 @@ public:
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**@brief Return the inverse of this quaternion */
|
||||
btQuaternion inverse() const
|
||||
{
|
||||
return btQuaternion(-m_x, -m_y, -m_z, m_unusedW);
|
||||
}
|
||||
|
||||
/**@brief Return the sum of this quaternion and the other
|
||||
* @param q2 The other quaternion */
|
||||
SIMD_FORCE_INLINE btQuaternion
|
||||
operator+(const btQuaternion& q2) const
|
||||
{
|
||||
@@ -169,6 +223,8 @@ public:
|
||||
return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_unusedW + q2.m_unusedW);
|
||||
}
|
||||
|
||||
/**@brief Return the difference between this quaternion and the other
|
||||
* @param q2 The other quaternion */
|
||||
SIMD_FORCE_INLINE btQuaternion
|
||||
operator-(const btQuaternion& q2) const
|
||||
{
|
||||
@@ -176,12 +232,14 @@ public:
|
||||
return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_unusedW - q2.m_unusedW);
|
||||
}
|
||||
|
||||
/**@brief Return the negative of this quaternion
|
||||
* This simply negates each element */
|
||||
SIMD_FORCE_INLINE btQuaternion operator-() const
|
||||
{
|
||||
const btQuaternion& q2 = *this;
|
||||
return btQuaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_unusedW);
|
||||
}
|
||||
|
||||
/**@todo document this and it's use */
|
||||
SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const
|
||||
{
|
||||
btQuaternion diff,sum;
|
||||
@@ -192,6 +250,10 @@ public:
|
||||
return (-qd);
|
||||
}
|
||||
|
||||
/**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
|
||||
* @param q The other quaternion to interpolate with
|
||||
* @param t The ratio between this and q to interpolate. If t = 0 the result is this, if t=1 the result is q.
|
||||
* Slerp interpolates assuming constant velocity. */
|
||||
btQuaternion slerp(const btQuaternion& q, const btScalar& t) const
|
||||
{
|
||||
btScalar theta = angle(q);
|
||||
@@ -217,7 +279,7 @@ public:
|
||||
};
|
||||
|
||||
|
||||
|
||||
/**@brief Return the negative of a quaternion */
|
||||
SIMD_FORCE_INLINE btQuaternion
|
||||
operator-(const btQuaternion& q)
|
||||
{
|
||||
@@ -226,7 +288,7 @@ operator-(const btQuaternion& q)
|
||||
|
||||
|
||||
|
||||
|
||||
/**@brief Return the product of two quaternions */
|
||||
SIMD_FORCE_INLINE btQuaternion
|
||||
operator*(const btQuaternion& q1, const btQuaternion& q2) {
|
||||
return btQuaternion(q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
|
||||
@@ -253,6 +315,7 @@ operator*(const btVector3& w, const btQuaternion& q)
|
||||
-w.x() * q.x() - w.y() * q.y() - w.z() * q.z());
|
||||
}
|
||||
|
||||
/**@brief Calculate the dot product between two quaternions */
|
||||
SIMD_FORCE_INLINE btScalar
|
||||
dot(const btQuaternion& q1, const btQuaternion& q2)
|
||||
{
|
||||
@@ -260,25 +323,32 @@ dot(const btQuaternion& q1, const btQuaternion& q2)
|
||||
}
|
||||
|
||||
|
||||
/**@brief Return the length of a quaternion */
|
||||
SIMD_FORCE_INLINE btScalar
|
||||
length(const btQuaternion& q)
|
||||
{
|
||||
return q.length();
|
||||
}
|
||||
|
||||
/**@brief Return the angle between two quaternions*/
|
||||
SIMD_FORCE_INLINE btScalar
|
||||
angle(const btQuaternion& q1, const btQuaternion& q2)
|
||||
{
|
||||
return q1.angle(q2);
|
||||
}
|
||||
|
||||
|
||||
/**@brief Return the inverse of a quaternion*/
|
||||
SIMD_FORCE_INLINE btQuaternion
|
||||
inverse(const btQuaternion& q)
|
||||
{
|
||||
return q.inverse();
|
||||
}
|
||||
|
||||
/**@brief Return the result of spherical linear interpolation betwen two quaternions
|
||||
* @param q1 The first quaternion
|
||||
* @param q2 The second quaternion
|
||||
* @param t The ration between q1 and q2. t = 0 return q1, t=1 returns q2
|
||||
* Slerp assumes constant velocity between positions. */
|
||||
SIMD_FORCE_INLINE btQuaternion
|
||||
slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t)
|
||||
{
|
||||
|
||||
Reference in New Issue
Block a user