use Dispatcher in ConcaveConvexCollisionAlgorithm (so it uses the registered collision algorithm, not hardcoded convexconcave)
improved performance of constraint solver by precalculating the cross product/impulse arm added collision comparison code: ODE box-box, also sphere-triangle added safety check into GJK, and an assert for AABB's that are very large write partid/triangle index outside of GJK
This commit is contained in:
201
src/BulletCollision/CollisionDispatch/SphereTriangleDetector.cpp
Normal file
201
src/BulletCollision/CollisionDispatch/SphereTriangleDetector.cpp
Normal file
@@ -0,0 +1,201 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "SphereTriangleDetector.h"
|
||||
#include "BulletCollision/CollisionShapes/btTriangleShape.h"
|
||||
#include "BulletCollision/CollisionShapes/btSphereShape.h"
|
||||
|
||||
|
||||
SphereTriangleDetector::SphereTriangleDetector(btSphereShape* sphere,btTriangleShape* triangle)
|
||||
:m_sphere(sphere),
|
||||
m_triangle(triangle)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
void SphereTriangleDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw)
|
||||
{
|
||||
|
||||
const btTransform& transformA = input.m_transformA;
|
||||
const btTransform& transformB = input.m_transformB;
|
||||
|
||||
btVector3 point,normal;
|
||||
btScalar timeOfImpact = 1.f;
|
||||
btScalar depth = 0.f;
|
||||
// output.m_distance = 1e30f;
|
||||
//move sphere into triangle space
|
||||
btTransform sphereInTr = transformB.inverseTimes(transformA);
|
||||
|
||||
if (collide(sphereInTr.getOrigin(),point,normal,depth,timeOfImpact))
|
||||
{
|
||||
output.addContactPoint(transformB.getBasis()*normal,transformB*point,depth);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#define MAX_OVERLAP 0.f
|
||||
|
||||
|
||||
|
||||
// See also geometrictools.com
|
||||
// Basic idea: D = |p - (lo + t0*lv)| where t0 = lv . (p - lo) / lv . lv
|
||||
float SegmentSqrDistance(const btVector3& from, const btVector3& to,const btVector3 &p, btVector3 &nearest) {
|
||||
btVector3 diff = p - from;
|
||||
btVector3 v = to - from;
|
||||
float t = v.dot(diff);
|
||||
|
||||
if (t > 0) {
|
||||
float dotVV = v.dot(v);
|
||||
if (t < dotVV) {
|
||||
t /= dotVV;
|
||||
diff -= t*v;
|
||||
} else {
|
||||
t = 1;
|
||||
diff -= v;
|
||||
}
|
||||
} else
|
||||
t = 0;
|
||||
|
||||
nearest = from + t*v;
|
||||
return diff.dot(diff);
|
||||
}
|
||||
|
||||
bool SphereTriangleDetector::facecontains(const btVector3 &p,const btVector3* vertices,btVector3& normal) {
|
||||
btVector3 lp(p);
|
||||
btVector3 lnormal(normal);
|
||||
|
||||
return pointInTriangle(vertices, lnormal, &lp);
|
||||
}
|
||||
|
||||
///combined discrete/continuous sphere-triangle
|
||||
bool SphereTriangleDetector::collide(const btVector3& sphereCenter,btVector3 &point, btVector3& resultNormal, btScalar& depth, float &timeOfImpact)
|
||||
{
|
||||
|
||||
const btVector3* vertices = &m_triangle->getVertexPtr(0);
|
||||
const btVector3& c = sphereCenter;
|
||||
btScalar r = m_sphere->getRadius();
|
||||
|
||||
btVector3 delta (0,0,0);
|
||||
|
||||
btVector3 normal = (vertices[1]-vertices[0]).cross(vertices[2]-vertices[0]);
|
||||
normal.normalize();
|
||||
btVector3 p1ToCentre = c - vertices[0];
|
||||
float distanceFromPlane = p1ToCentre.dot(normal);
|
||||
|
||||
if (distanceFromPlane < 0.f)
|
||||
{
|
||||
//triangle facing the other way
|
||||
|
||||
distanceFromPlane *= -1.f;
|
||||
normal *= -1.f;
|
||||
}
|
||||
|
||||
///todo: move this gContactBreakingTreshold into a proper structure
|
||||
extern float gContactBreakingTreshold;
|
||||
|
||||
float contactMargin = gContactBreakingTreshold;
|
||||
bool isInsideContactPlane = distanceFromPlane < r + contactMargin;
|
||||
bool isInsideShellPlane = distanceFromPlane < r;
|
||||
|
||||
float deltaDotNormal = delta.dot(normal);
|
||||
if (!isInsideShellPlane && deltaDotNormal >= 0.0f)
|
||||
return false;
|
||||
|
||||
// Check for contact / intersection
|
||||
bool hasContact = false;
|
||||
btVector3 contactPoint;
|
||||
if (isInsideContactPlane) {
|
||||
if (facecontains(c,vertices,normal)) {
|
||||
// Inside the contact wedge - touches a point on the shell plane
|
||||
hasContact = true;
|
||||
contactPoint = c - normal*distanceFromPlane;
|
||||
} else {
|
||||
// Could be inside one of the contact capsules
|
||||
float contactCapsuleRadiusSqr = (r + contactMargin) * (r + contactMargin);
|
||||
btVector3 nearestOnEdge;
|
||||
for (int i = 0; i < m_triangle->getNumEdges(); i++) {
|
||||
|
||||
btPoint3 pa;
|
||||
btPoint3 pb;
|
||||
|
||||
m_triangle->getEdge(i,pa,pb);
|
||||
|
||||
float distanceSqr = SegmentSqrDistance(pa,pb,c, nearestOnEdge);
|
||||
if (distanceSqr < contactCapsuleRadiusSqr) {
|
||||
// Yep, we're inside a capsule
|
||||
hasContact = true;
|
||||
contactPoint = nearestOnEdge;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (hasContact) {
|
||||
btVector3 contactToCentre = c - contactPoint;
|
||||
float distanceSqr = contactToCentre.length2();
|
||||
if (distanceSqr < (r - MAX_OVERLAP)*(r - MAX_OVERLAP)) {
|
||||
float distance = sqrtf(distanceSqr);
|
||||
if (1)
|
||||
{
|
||||
resultNormal = contactToCentre;
|
||||
resultNormal.normalize();
|
||||
}
|
||||
point = contactPoint;
|
||||
depth = -(r-distance);
|
||||
return true;
|
||||
}
|
||||
|
||||
if (delta.dot(contactToCentre) >= 0.0f)
|
||||
return false;
|
||||
|
||||
// Moving towards the contact point -> collision
|
||||
point = contactPoint;
|
||||
timeOfImpact = 0.0f;
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
bool SphereTriangleDetector::pointInTriangle(const btVector3 vertices[], const btVector3 &normal, btVector3 *p )
|
||||
{
|
||||
const btVector3* p1 = &vertices[0];
|
||||
const btVector3* p2 = &vertices[1];
|
||||
const btVector3* p3 = &vertices[2];
|
||||
|
||||
btVector3 edge1( *p2 - *p1 );
|
||||
btVector3 edge2( *p3 - *p2 );
|
||||
btVector3 edge3( *p1 - *p3 );
|
||||
|
||||
btVector3 p1_to_p( *p - *p1 );
|
||||
btVector3 p2_to_p( *p - *p2 );
|
||||
btVector3 p3_to_p( *p - *p3 );
|
||||
|
||||
btVector3 edge1_normal( edge1.cross(normal));
|
||||
btVector3 edge2_normal( edge2.cross(normal));
|
||||
btVector3 edge3_normal( edge3.cross(normal));
|
||||
|
||||
float r1, r2, r3;
|
||||
r1 = edge1_normal.dot( p1_to_p );
|
||||
r2 = edge2_normal.dot( p2_to_p );
|
||||
r3 = edge3_normal.dot( p3_to_p );
|
||||
if ( ( r1 > 0 && r2 > 0 && r3 > 0 ) ||
|
||||
( r1 <= 0 && r2 <= 0 && r3 <= 0 ) )
|
||||
return true;
|
||||
return false;
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user