use Dispatcher in ConcaveConvexCollisionAlgorithm (so it uses the registered collision algorithm, not hardcoded convexconcave)

improved performance of constraint solver by precalculating the cross product/impulse arm
added collision comparison code: ODE box-box, also sphere-triangle
added safety check into GJK, and an assert for AABB's that are very large
write partid/triangle index outside of GJK
This commit is contained in:
ejcoumans
2006-10-28 02:06:19 +00:00
parent 7987be45c5
commit 3fe3b11924
24 changed files with 730 additions and 90 deletions

View File

@@ -0,0 +1,71 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btSphereTriangleCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "SphereTriangleDetector.h"
btSphereTriangleCollisionAlgorithm::btSphereTriangleCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1,bool swapped)
: btCollisionAlgorithm(ci),
m_ownManifold(false),
m_manifoldPtr(mf),
m_swapped(swapped)
{
if (!m_manifoldPtr)
{
m_manifoldPtr = m_dispatcher->getNewManifold(col0,col1);
m_ownManifold = true;
}
}
btSphereTriangleCollisionAlgorithm::~btSphereTriangleCollisionAlgorithm()
{
if (m_ownManifold)
{
if (m_manifoldPtr)
m_dispatcher->releaseManifold(m_manifoldPtr);
}
}
void btSphereTriangleCollisionAlgorithm::processCollision (btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
if (!m_manifoldPtr)
return;
btSphereShape* sphere = (btSphereShape*)col0->m_collisionShape;
btTriangleShape* triangle = (btTriangleShape*)col1->m_collisionShape;
/// report a contact. internally this will be kept persistent, and contact reduction is done
resultOut->setPersistentManifold(m_manifoldPtr);
SphereTriangleDetector detector(sphere,triangle);
btDiscreteCollisionDetectorInterface::ClosestPointInput input;
input.m_maximumDistanceSquared = 1e30f;//todo: tighter bounds
input.m_transformA = col0->m_worldTransform;
input.m_transformB = col1->m_worldTransform;
detector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
}
float btSphereTriangleCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
//not yet
return 1.f;
}