use Dispatcher in ConcaveConvexCollisionAlgorithm (so it uses the registered collision algorithm, not hardcoded convexconcave)

improved performance of constraint solver by precalculating the cross product/impulse arm
added collision comparison code: ODE box-box, also sphere-triangle
added safety check into GJK, and an assert for AABB's that are very large
write partid/triangle index outside of GJK
This commit is contained in:
ejcoumans
2006-10-28 02:06:19 +00:00
parent 7987be45c5
commit 3fe3b11924
24 changed files with 730 additions and 90 deletions

View File

@@ -24,16 +24,7 @@ subject to the following restrictions:
#define ASSERT2 assert
//some values to find stable tresholds
float useGlobalSettingContacts = false;//true;
btScalar contactDamping = 0.2f;
btScalar contactTau = .02f;//0.02f;//*0.02f;
#define USE_INTERNAL_APPLY_IMPULSE 1
//bilateral constraint between two dynamic objects
@@ -75,7 +66,9 @@ void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1,
rel_vel = normal.dot(vel);
//todo: move this into proper structure
btScalar contactDamping = 0.2f;
#ifdef ONLY_USE_LINEAR_MASS
btScalar massTerm = 1.f / (body1.getInvMass() + body2.getInvMass());
@@ -88,25 +81,17 @@ void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1,
//velocity + friction
//response between two dynamic objects with friction
float resolveSingleCollision(
btRigidBody& body1,
btRigidBody& body2,
btManifoldPoint& contactPoint,
const btContactSolverInfo& solverInfo
)
const btContactSolverInfo& solverInfo)
{
const btVector3& pos1 = contactPoint.getPositionWorldOnA();
const btVector3& pos2 = contactPoint.getPositionWorldOnB();
// printf("distance=%f\n",distance);
const btVector3& normal = contactPoint.m_normalWorldOnB;
const btVector3& normal = contactPoint.m_normalWorldOnB;
btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition();
btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
@@ -117,34 +102,18 @@ float resolveSingleCollision(
btScalar rel_vel;
rel_vel = normal.dot(vel);
btScalar Kfps = 1.f / solverInfo.m_timeStep ;
float damping = solverInfo.m_damping ;
float Kerp = solverInfo.m_erp;
if (useGlobalSettingContacts)
{
damping = contactDamping;
Kerp = contactTau;
}
float Kcor = Kerp *Kfps;
//printf("dist=%f\n",distance);
btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData;
btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData;
assert(cpd);
btScalar distance = cpd->m_penetration;//contactPoint.getDistance();
//distance = 0.f;
btScalar distance = cpd->m_penetration;
btScalar positionalError = Kcor *-distance;
//jacDiagABInv;
btScalar velocityError = cpd->m_restitution - rel_vel;// * damping;
btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv;
btScalar velocityImpulse = velocityError * cpd->m_jacDiagABInv;
@@ -158,9 +127,20 @@ float resolveSingleCollision(
normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse;
#ifdef USE_INTERNAL_APPLY_IMPULSE
if (body1.getInvMass())
{
body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse);
}
if (body2.getInvMass())
{
body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse);
}
#else USE_INTERNAL_APPLY_IMPULSE
body1.applyImpulse(normal*(normalImpulse), rel_pos1);
body2.applyImpulse(-normal*(normalImpulse), rel_pos2);
#endif //USE_INTERNAL_APPLY_IMPULSE
return normalImpulse;
}
@@ -169,9 +149,86 @@ float resolveSingleFriction(
btRigidBody& body1,
btRigidBody& body2,
btManifoldPoint& contactPoint,
const btContactSolverInfo& solverInfo
const btContactSolverInfo& solverInfo)
{
)
const btVector3& pos1 = contactPoint.getPositionWorldOnA();
const btVector3& pos2 = contactPoint.getPositionWorldOnB();
btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition();
btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData;
assert(cpd);
float combinedFriction = cpd->m_friction;
btScalar limit = cpd->m_appliedImpulse * combinedFriction;
//if (contactPoint.m_appliedImpulse>0.f)
//friction
{
//apply friction in the 2 tangential directions
// 1st tangent
btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
btVector3 vel = vel1 - vel2;
btScalar j1,j2;
{
btScalar vrel = cpd->m_frictionWorldTangential0.dot(vel);
// calculate j that moves us to zero relative velocity
j1 = -vrel * cpd->m_jacDiagABInvTangent0;
float total = cpd->m_accumulatedTangentImpulse0 + j1;
GEN_set_min(total, limit);
GEN_set_max(total, -limit);
j1 = total - cpd->m_accumulatedTangentImpulse0;
cpd->m_accumulatedTangentImpulse0 = total;
}
{
// 2nd tangent
btScalar vrel = cpd->m_frictionWorldTangential1.dot(vel);
// calculate j that moves us to zero relative velocity
j2 = -vrel * cpd->m_jacDiagABInvTangent1;
float total = cpd->m_accumulatedTangentImpulse1 + j2;
GEN_set_min(total, limit);
GEN_set_max(total, -limit);
j2 = total - cpd->m_accumulatedTangentImpulse1;
cpd->m_accumulatedTangentImpulse1 = total;
}
#ifdef USE_INTERNAL_APPLY_IMPULSE
if (body1.getInvMass())
{
body1.internalApplyImpulse(cpd->m_frictionWorldTangential0*body1.getInvMass(),cpd->m_frictionAngularComponent0A,j1);
body1.internalApplyImpulse(cpd->m_frictionWorldTangential1*body1.getInvMass(),cpd->m_frictionAngularComponent1A,j2);
}
if (body2.getInvMass())
{
body2.internalApplyImpulse(cpd->m_frictionWorldTangential0*body2.getInvMass(),cpd->m_frictionAngularComponent0B,-j1);
body2.internalApplyImpulse(cpd->m_frictionWorldTangential1*body2.getInvMass(),cpd->m_frictionAngularComponent1B,-j2);
}
#else USE_INTERNAL_APPLY_IMPULSE
body1.applyImpulse((j1 * cpd->m_frictionWorldTangential0)+(j2 * cpd->m_frictionWorldTangential1), rel_pos1);
body2.applyImpulse((j1 * -cpd->m_frictionWorldTangential0)+(j2 * -cpd->m_frictionWorldTangential1), rel_pos2);
#endif //USE_INTERNAL_APPLY_IMPULSE
}
return cpd->m_appliedImpulse;
}
float resolveSingleFrictionOriginal(
btRigidBody& body1,
btRigidBody& body2,
btManifoldPoint& contactPoint,
const btContactSolverInfo& solverInfo)
{
const btVector3& pos1 = contactPoint.getPositionWorldOnA();
@@ -232,3 +289,110 @@ float resolveSingleFriction(
}
return cpd->m_appliedImpulse;
}
//velocity + friction
//response between two dynamic objects with friction
float resolveSingleCollisionCombined(
btRigidBody& body1,
btRigidBody& body2,
btManifoldPoint& contactPoint,
const btContactSolverInfo& solverInfo)
{
const btVector3& pos1 = contactPoint.getPositionWorldOnA();
const btVector3& pos2 = contactPoint.getPositionWorldOnB();
const btVector3& normal = contactPoint.m_normalWorldOnB;
btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition();
btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
btVector3 vel = vel1 - vel2;
btScalar rel_vel;
rel_vel = normal.dot(vel);
btScalar Kfps = 1.f / solverInfo.m_timeStep ;
float damping = solverInfo.m_damping ;
float Kerp = solverInfo.m_erp;
float Kcor = Kerp *Kfps;
btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData;
assert(cpd);
btScalar distance = cpd->m_penetration;
btScalar positionalError = Kcor *-distance;
btScalar velocityError = cpd->m_restitution - rel_vel;// * damping;
btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv;
btScalar velocityImpulse = velocityError * cpd->m_jacDiagABInv;
btScalar normalImpulse = penetrationImpulse+velocityImpulse;
// See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse
float oldNormalImpulse = cpd->m_appliedImpulse;
float sum = oldNormalImpulse + normalImpulse;
cpd->m_appliedImpulse = 0.f > sum ? 0.f: sum;
normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse;
#ifdef USE_INTERNAL_APPLY_IMPULSE
if (body1.getInvMass())
{
body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse);
}
if (body2.getInvMass())
{
body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse);
}
#else USE_INTERNAL_APPLY_IMPULSE
body1.applyImpulse(normal*(normalImpulse), rel_pos1);
body2.applyImpulse(-normal*(normalImpulse), rel_pos2);
#endif //USE_INTERNAL_APPLY_IMPULSE
{
//friction
btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
btVector3 vel = vel1 - vel2;
rel_vel = normal.dot(vel);
btVector3 lat_vel = vel - normal * rel_vel;
btScalar lat_rel_vel = lat_vel.length();
float combinedFriction = cpd->m_friction;
if (cpd->m_appliedImpulse > 0)
if (lat_rel_vel > SIMD_EPSILON)
{
lat_vel /= lat_rel_vel;
btVector3 temp1 = body1.getInvInertiaTensorWorld() * rel_pos1.cross(lat_vel);
btVector3 temp2 = body2.getInvInertiaTensorWorld() * rel_pos2.cross(lat_vel);
btScalar friction_impulse = lat_rel_vel /
(body1.getInvMass() + body2.getInvMass() + lat_vel.dot(temp1.cross(rel_pos1) + temp2.cross(rel_pos2)));
btScalar normal_impulse = cpd->m_appliedImpulse * combinedFriction;
GEN_set_min(friction_impulse, normal_impulse);
GEN_set_max(friction_impulse, -normal_impulse);
body1.applyImpulse(lat_vel * -friction_impulse, rel_pos1);
body2.applyImpulse(lat_vel * friction_impulse, rel_pos2);
}
}
return normalImpulse;
}
float resolveSingleFrictionEmpty(
btRigidBody& body1,
btRigidBody& body2,
btManifoldPoint& contactPoint,
const btContactSolverInfo& solverInfo)
{
return 0.f;
};