remove ARS files

This commit is contained in:
Erwin Coumans
2018-10-29 19:23:54 -07:00
parent c2b9dc9361
commit 44976780fa
17 changed files with 0 additions and 1494 deletions

View File

@@ -1,397 +0,0 @@
"""Internal implementation of the Augmented Random Search method."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
os.sys.path.insert(0,currentdir)
from concurrent import futures
import copy
import os
import time
import gym
import numpy as np
import logz
import utils
import optimizers
#from google3.pyglib import gfile
import policies
import shared_noise
import utility
class Worker(object):
"""Object class for parallel rollout generation."""
def __init__(self,
env_seed,
env_callback,
policy_params=None,
deltas=None,
rollout_length=1000,
delta_std=0.02):
# initialize OpenAI environment for each worker
self.env = env_callback()
self.env.seed(env_seed)
# each worker gets access to the shared noise table
# with independent random streams for sampling
# from the shared noise table.
self.deltas = shared_noise.SharedNoiseTable(deltas, env_seed + 7)
self.policy_params = policy_params
if policy_params['type'] == 'linear':
self.policy = policies.LinearPolicy(policy_params)
else:
raise NotImplementedError
self.delta_std = delta_std
self.rollout_length = rollout_length
def get_weights_plus_stats(self):
"""
Get current policy weights and current statistics of past states.
"""
assert self.policy_params['type'] == 'linear'
return self.policy.get_weights_plus_stats()
def rollout(self, shift=0., rollout_length=None):
"""Performs one rollout of maximum length rollout_length.
At each time-step it substracts shift from the reward.
"""
if rollout_length is None:
rollout_length = self.rollout_length
total_reward = 0.
steps = 0
ob = self.env.reset()
for i in range(rollout_length):
action = self.policy.act(ob)
ob, reward, done, _ = self.env.step(action)
steps += 1
total_reward += (reward - shift)
if done:
break
return total_reward, steps
def do_rollouts(self, w_policy, num_rollouts=1, shift=1, evaluate=False):
"""
Generate multiple rollouts with a policy parametrized by w_policy.
"""
print('Doing {} rollouts'.format(num_rollouts))
rollout_rewards, deltas_idx = [], []
steps = 0
for i in range(num_rollouts):
if evaluate:
self.policy.update_weights(w_policy)
deltas_idx.append(-1)
# set to false so that evaluation rollouts are not used for updating state statistics
self.policy.update_filter = False
# for evaluation we do not shift the rewards (shift = 0) and we use the
# default rollout length (1000 for the MuJoCo locomotion tasks)
reward, r_steps = self.rollout(
shift=0., rollout_length=self.rollout_length)
rollout_rewards.append(reward)
else:
idx, delta = self.deltas.get_delta(w_policy.size)
delta = (self.delta_std * delta).reshape(w_policy.shape)
deltas_idx.append(idx)
# set to true so that state statistics are updated
self.policy.update_filter = True
# compute reward and number of timesteps used for positive perturbation rollout
self.policy.update_weights(w_policy + delta)
pos_reward, pos_steps = self.rollout(shift=shift)
# compute reward and number of timesteps used for negative pertubation rollout
self.policy.update_weights(w_policy - delta)
neg_reward, neg_steps = self.rollout(shift=shift)
steps += pos_steps + neg_steps
rollout_rewards.append([pos_reward, neg_reward])
return {
'deltas_idx': deltas_idx,
'rollout_rewards': rollout_rewards,
'steps': steps
}
def stats_increment(self):
self.policy.observation_filter.stats_increment()
return
def get_weights(self):
return self.policy.get_weights()
def get_filter(self):
return self.policy.observation_filter
def sync_filter(self, other):
self.policy.observation_filter.sync(other)
return
class ARSLearner(object):
"""
Object class implementing the ARS algorithm.
"""
def __init__(self,
env_callback,
policy_params=None,
num_workers=32,
num_deltas=320,
deltas_used=320,
delta_std=0.02,
logdir=None,
rollout_length=1000,
step_size=0.01,
shift='constant zero',
params=None,
seed=123):
logz.configure_output_dir(logdir)
# params_to_save = copy.deepcopy(params)
# params_to_save['env'] = None
# logz.save_params(params_to_save)
utility.save_config(params, logdir)
env = env_callback()
self.timesteps = 0
self.action_size = env.action_space.shape[0]
self.ob_size = env.observation_space.shape[0]
self.num_deltas = num_deltas
self.deltas_used = deltas_used
self.rollout_length = rollout_length
self.step_size = step_size
self.delta_std = delta_std
self.logdir = logdir
self.shift = shift
self.params = params
self.max_past_avg_reward = float('-inf')
self.num_episodes_used = float('inf')
# create shared table for storing noise
print('Creating deltas table.')
deltas = shared_noise.create_shared_noise()
self.deltas = shared_noise.SharedNoiseTable(deltas, seed=seed + 3)
print('Created deltas table.')
# initialize workers with different random seeds
print('Initializing workers.')
self.num_workers = num_workers
self.workers = [
Worker(
seed + 7 * i,
env_callback=env_callback,
policy_params=policy_params,
deltas=deltas,
rollout_length=rollout_length,
delta_std=delta_std) for i in range(num_workers)
]
# initialize policy
if policy_params['type'] == 'linear':
self.policy = policies.LinearPolicy(policy_params)
self.w_policy = self.policy.get_weights()
else:
raise NotImplementedError
# initialize optimization algorithm
self.optimizer = optimizers.SGD(self.w_policy, self.step_size)
print('Initialization of ARS complete.')
def aggregate_rollouts(self, num_rollouts=None, evaluate=False):
"""
Aggregate update step from rollouts generated in parallel.
"""
if num_rollouts is None:
num_deltas = self.num_deltas
else:
num_deltas = num_rollouts
results_one = [] #rollout_ids_one
results_two = [] #rollout_ids_two
t1 = time.time()
num_rollouts = int(num_deltas / self.num_workers)
# if num_rollouts > 0:
# with futures.ThreadPoolExecutor(
# max_workers=self.num_workers) as executor:
# workers = [
# executor.submit(
# worker.do_rollouts,
# self.w_policy,
# num_rollouts=num_rollouts,
# shift=self.shift,
# evaluate=evaluate) for worker in self.workers
# ]
# for worker in futures.as_completed(workers):
# results_one.append(worker.result())
#
# workers = [
# executor.submit(
# worker.do_rollouts,
# self.w_policy,
# num_rollouts=1,
# shift=self.shift,
# evaluate=evaluate)
# for worker in self.workers[:(num_deltas % self.num_workers)]
# ]
# for worker in futures.as_completed(workers):
# results_two.append(worker.result())
# parallel generation of rollouts
rollout_ids_one = [
worker.do_rollouts(
self.w_policy,
num_rollouts=num_rollouts,
shift=self.shift,
evaluate=evaluate) for worker in self.workers
]
rollout_ids_two = [
worker.do_rollouts(
self.w_policy, num_rollouts=1, shift=self.shift, evaluate=evaluate)
for worker in self.workers[:(num_deltas % self.num_workers)]
]
results_one = rollout_ids_one
results_two = rollout_ids_two
# gather results
rollout_rewards, deltas_idx = [], []
for result in results_one:
if not evaluate:
self.timesteps += result['steps']
deltas_idx += result['deltas_idx']
rollout_rewards += result['rollout_rewards']
for result in results_two:
if not evaluate:
self.timesteps += result['steps']
deltas_idx += result['deltas_idx']
rollout_rewards += result['rollout_rewards']
deltas_idx = np.array(deltas_idx)
rollout_rewards = np.array(rollout_rewards, dtype=np.float64)
print('Maximum reward of collected rollouts:', rollout_rewards.max())
info_dict = {
"max_reward": rollout_rewards.max()
}
t2 = time.time()
print('Time to generate rollouts:', t2 - t1)
if evaluate:
return rollout_rewards
# select top performing directions if deltas_used < num_deltas
max_rewards = np.max(rollout_rewards, axis=1)
if self.deltas_used > self.num_deltas:
self.deltas_used = self.num_deltas
idx = np.arange(max_rewards.size)[max_rewards >= np.percentile(
max_rewards, 100 * (1 - (self.deltas_used / self.num_deltas)))]
deltas_idx = deltas_idx[idx]
rollout_rewards = rollout_rewards[idx, :]
# normalize rewards by their standard deviation
rollout_rewards /= np.std(rollout_rewards)
t1 = time.time()
# aggregate rollouts to form g_hat, the gradient used to compute SGD step
g_hat, count = utils.batched_weighted_sum(
rollout_rewards[:, 0] - rollout_rewards[:, 1],
(self.deltas.get(idx, self.w_policy.size) for idx in deltas_idx),
batch_size=500)
g_hat /= deltas_idx.size
t2 = time.time()
print('time to aggregate rollouts', t2 - t1)
return g_hat, info_dict
def train_step(self):
"""
Perform one update step of the policy weights.
"""
g_hat, info_dict = self.aggregate_rollouts()
print('Euclidean norm of update step:', np.linalg.norm(g_hat))
self.w_policy -= self.optimizer._compute_step(g_hat).reshape(
self.w_policy.shape)
return info_dict
def train(self, num_iter):
start = time.time()
for i in range(num_iter):
t1 = time.time()
info_dict = self.train_step()
t2 = time.time()
print('total time of one step', t2 - t1)
print('iter ', i, ' done')
# record statistics every 10 iterations
if ((i) % 10 == 0):
rewards = self.aggregate_rollouts(num_rollouts=8, evaluate=True)
w = self.workers[0].get_weights_plus_stats()
checkpoint_filename = os.path.join(
self.logdir, 'lin_policy_plus_{:03d}.npz'.format(i))
print('Save checkpoints to {}...', checkpoint_filename)
checkpoint_file = open(checkpoint_filename, 'w')
np.savez(checkpoint_file, w)
print('End save checkpoints.')
print(sorted(self.params.items()))
logz.log_tabular('Time', time.time() - start)
logz.log_tabular('Iteration', i + 1)
logz.log_tabular('AverageReward', np.mean(rewards))
logz.log_tabular('StdRewards', np.std(rewards))
logz.log_tabular('MaxRewardRollout', np.max(rewards))
logz.log_tabular('MinRewardRollout', np.min(rewards))
logz.log_tabular('timesteps', self.timesteps)
logz.dump_tabular()
t1 = time.time()
# get statistics from all workers
for j in range(self.num_workers):
self.policy.observation_filter.update(self.workers[j].get_filter())
self.policy.observation_filter.stats_increment()
# make sure master filter buffer is clear
self.policy.observation_filter.clear_buffer()
# sync all workers
#filter_id = ray.put(self.policy.observation_filter)
setting_filters_ids = [
worker.sync_filter(self.policy.observation_filter)
for worker in self.workers
]
# waiting for sync of all workers
#ray.get(setting_filters_ids)
increment_filters_ids = [
worker.stats_increment() for worker in self.workers
]
# waiting for increment of all workers
#ray.get(increment_filters_ids)
t2 = time.time()
print('Time to sync statistics:', t2 - t1)
return info_dict