Merge pull request #1668 from erwincoumans/master
Revert back to using the Jacobi method to diagonalize a symmetric mat…
This commit is contained in:
@@ -649,6 +649,10 @@ public:
|
|||||||
|
|
||||||
///extractRotation is from "A robust method to extract the rotational part of deformations"
|
///extractRotation is from "A robust method to extract the rotational part of deformations"
|
||||||
///See http://dl.acm.org/citation.cfm?doid=2994258.2994269
|
///See http://dl.acm.org/citation.cfm?doid=2994258.2994269
|
||||||
|
///decomposes a matrix A in a orthogonal matrix R and a
|
||||||
|
///symmetric matrix S:
|
||||||
|
///A = R*S.
|
||||||
|
///note that R can include both rotation and scaling.
|
||||||
SIMD_FORCE_INLINE void extractRotation(btQuaternion &q,btScalar tolerance = 1.0e-9, int maxIter=100)
|
SIMD_FORCE_INLINE void extractRotation(btQuaternion &q,btScalar tolerance = 1.0e-9, int maxIter=100)
|
||||||
{
|
{
|
||||||
int iter =0;
|
int iter =0;
|
||||||
@@ -673,25 +677,93 @@ public:
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
/**@brief diagonalizes this matrix
|
|
||||||
* @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
|
|
||||||
* coordinate system, i.e., old_this = rot * new_this * rot^T.
|
|
||||||
* @param threshold See iteration
|
|
||||||
* @param maxIter The iteration stops when we hit the given tolerance or when maxIter have been executed.
|
|
||||||
*/
|
|
||||||
void diagonalize(btMatrix3x3& rot, btScalar tolerance = 1.0e-9, int maxIter=100)
|
|
||||||
{
|
|
||||||
btQuaternion r;
|
|
||||||
r = btQuaternion::getIdentity();
|
|
||||||
extractRotation(r,tolerance,maxIter);
|
|
||||||
rot.setRotation(r);
|
|
||||||
btMatrix3x3 rotInv = btMatrix3x3(r.inverse());
|
|
||||||
btMatrix3x3 old = *this;
|
|
||||||
setValue(old.tdotx( rotInv[0]), old.tdoty( rotInv[0]), old.tdotz( rotInv[0]),
|
|
||||||
old.tdotx( rotInv[1]), old.tdoty( rotInv[1]), old.tdotz( rotInv[1]),
|
|
||||||
old.tdotx( rotInv[2]), old.tdoty( rotInv[2]), old.tdotz( rotInv[2]));
|
|
||||||
}
|
|
||||||
|
|
||||||
|
/**@brief diagonalizes this matrix by the Jacobi method.
|
||||||
|
* @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
|
||||||
|
* coordinate system, i.e., old_this = rot * new_this * rot^T.
|
||||||
|
* @param threshold See iteration
|
||||||
|
* @param iteration The iteration stops when all off-diagonal elements are less than the threshold multiplied
|
||||||
|
* by the sum of the absolute values of the diagonal, or when maxSteps have been executed.
|
||||||
|
*
|
||||||
|
* Note that this matrix is assumed to be symmetric.
|
||||||
|
*/
|
||||||
|
void diagonalize(btMatrix3x3& rot, btScalar threshold, int maxSteps)
|
||||||
|
{
|
||||||
|
rot.setIdentity();
|
||||||
|
for (int step = maxSteps; step > 0; step--)
|
||||||
|
{
|
||||||
|
// find off-diagonal element [p][q] with largest magnitude
|
||||||
|
int p = 0;
|
||||||
|
int q = 1;
|
||||||
|
int r = 2;
|
||||||
|
btScalar max = btFabs(m_el[0][1]);
|
||||||
|
btScalar v = btFabs(m_el[0][2]);
|
||||||
|
if (v > max)
|
||||||
|
{
|
||||||
|
q = 2;
|
||||||
|
r = 1;
|
||||||
|
max = v;
|
||||||
|
}
|
||||||
|
v = btFabs(m_el[1][2]);
|
||||||
|
if (v > max)
|
||||||
|
{
|
||||||
|
p = 1;
|
||||||
|
q = 2;
|
||||||
|
r = 0;
|
||||||
|
max = v;
|
||||||
|
}
|
||||||
|
|
||||||
|
btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2]));
|
||||||
|
if (max <= t)
|
||||||
|
{
|
||||||
|
if (max <= SIMD_EPSILON * t)
|
||||||
|
{
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
step = 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// compute Jacobi rotation J which leads to a zero for element [p][q]
|
||||||
|
btScalar mpq = m_el[p][q];
|
||||||
|
btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq);
|
||||||
|
btScalar theta2 = theta * theta;
|
||||||
|
btScalar cos;
|
||||||
|
btScalar sin;
|
||||||
|
if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON))
|
||||||
|
{
|
||||||
|
t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2))
|
||||||
|
: 1 / (theta - btSqrt(1 + theta2));
|
||||||
|
cos = 1 / btSqrt(1 + t * t);
|
||||||
|
sin = cos * t;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// approximation for large theta-value, i.e., a nearly diagonal matrix
|
||||||
|
t = 1 / (theta * (2 + btScalar(0.5) / theta2));
|
||||||
|
cos = 1 - btScalar(0.5) * t * t;
|
||||||
|
sin = cos * t;
|
||||||
|
}
|
||||||
|
|
||||||
|
// apply rotation to matrix (this = J^T * this * J)
|
||||||
|
m_el[p][q] = m_el[q][p] = 0;
|
||||||
|
m_el[p][p] -= t * mpq;
|
||||||
|
m_el[q][q] += t * mpq;
|
||||||
|
btScalar mrp = m_el[r][p];
|
||||||
|
btScalar mrq = m_el[r][q];
|
||||||
|
m_el[r][p] = m_el[p][r] = cos * mrp - sin * mrq;
|
||||||
|
m_el[r][q] = m_el[q][r] = cos * mrq + sin * mrp;
|
||||||
|
|
||||||
|
// apply rotation to rot (rot = rot * J)
|
||||||
|
for (int i = 0; i < 3; i++)
|
||||||
|
{
|
||||||
|
btVector3& row = rot[i];
|
||||||
|
mrp = row[p];
|
||||||
|
mrq = row[q];
|
||||||
|
row[p] = cos * mrp - sin * mrq;
|
||||||
|
row[q] = cos * mrq + sin * mrp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user