fixes in kuka/racecar environment. kuka still doesn't train well, work-in-progress

This commit is contained in:
Erwin Coumans
2017-11-01 18:06:47 -07:00
parent e4f58ddc33
commit 4798d66f19
8 changed files with 218 additions and 65 deletions

View File

@@ -34,7 +34,7 @@ def default():
# General
algorithm = ppo.PPOAlgorithm
num_agents = 10
eval_episodes = 25
eval_episodes = 20
use_gpu = False
# Network
network = networks.feed_forward_gaussian
@@ -47,7 +47,7 @@ def default():
init_mean_factor = 0.05
init_logstd = -1
# Optimization
update_every = 25
update_every = 20
policy_optimizer = 'AdamOptimizer'
value_optimizer = 'AdamOptimizer'
update_epochs_policy = 50
@@ -105,7 +105,7 @@ def pybullet_kuka_grasping():
locals().update(default())
# Environment
env = 'KukaBulletEnv-v0'
max_length = 10
max_length = 1000
steps = 1e7 # 10M
return locals()

View File

@@ -25,6 +25,7 @@ class Kuka:
self.useNullSpace =21
self.useOrientation = 1
self.kukaEndEffectorIndex = 6
self.kukaGripperIndex = 7
#lower limits for null space
self.ll=[-.967,-2 ,-2.96,0.19,-2.96,-2.09,-3.05]
#upper limits for null space
@@ -76,7 +77,7 @@ class Kuka:
def getObservation(self):
observation = []
state = p.getLinkState(self.kukaUid,self.kukaEndEffectorIndex)
state = p.getLinkState(self.kukaUid,self.kukaGripperIndex)
pos = state[0]
orn = state[1]
euler = p.getEulerFromQuaternion(orn)
@@ -106,13 +107,13 @@ class Kuka:
self.endEffectorPos[0] = self.endEffectorPos[0]+dx
if (self.endEffectorPos[0]>0.75):
self.endEffectorPos[0]=0.75
if (self.endEffectorPos[0]<0.45):
self.endEffectorPos[0]=0.45
if (self.endEffectorPos[0]>0.65):
self.endEffectorPos[0]=0.65
if (self.endEffectorPos[0]<0.50):
self.endEffectorPos[0]=0.50
self.endEffectorPos[1] = self.endEffectorPos[1]+dy
if (self.endEffectorPos[1]<-0.22):
self.endEffectorPos[1]=-0.22
if (self.endEffectorPos[1]<-0.17):
self.endEffectorPos[1]=-0.17
if (self.endEffectorPos[1]>0.22):
self.endEffectorPos[1]=0.22

View File

@@ -16,6 +16,9 @@ import random
import pybullet_data
maxSteps = 1000
RENDER_HEIGHT = 720
RENDER_WIDTH = 960
class KukaCamGymEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
@@ -24,9 +27,9 @@ class KukaCamGymEnv(gym.Env):
def __init__(self,
urdfRoot=pybullet_data.getDataPath(),
actionRepeat=25,
actionRepeat=1,
isEnableSelfCollision=True,
renders=True,
renders=False,
isDiscrete=False):
self._timeStep = 1./240.
self._urdfRoot = urdfRoot
@@ -163,7 +166,25 @@ class KukaCamGymEnv(gym.Env):
return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False):
return
if mode != "rgb_array":
return np.array([])
base_pos,orn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
view_matrix = self._p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=base_pos,
distance=self._cam_dist,
yaw=self._cam_yaw,
pitch=self._cam_pitch,
roll=0,
upAxisIndex=2)
proj_matrix = self._p.computeProjectionMatrixFOV(
fov=60, aspect=float(RENDER_WIDTH)/RENDER_HEIGHT,
nearVal=0.1, farVal=100.0)
(_, _, px, _, _) = self._p.getCameraImage(
width=RENDER_WIDTH, height=RENDER_HEIGHT, viewMatrix=view_matrix,
projectionMatrix=proj_matrix, renderer=pybullet.ER_BULLET_HARDWARE_OPENGL)
rgb_array = np.array(px)
rgb_array = rgb_array[:, :, :3]
return rgb_array
def _termination(self):
#print (self._kuka.endEffectorPos[2])

View File

@@ -14,8 +14,10 @@ from . import kuka
import random
import pybullet_data
maxSteps = 1000
largeValObservation = 100
RENDER_HEIGHT = 720
RENDER_WIDTH = 960
class KukaGymEnv(gym.Env):
metadata = {
@@ -27,8 +29,10 @@ class KukaGymEnv(gym.Env):
urdfRoot=pybullet_data.getDataPath(),
actionRepeat=1,
isEnableSelfCollision=True,
renders=True,
isDiscrete=False):
renders=False,
isDiscrete=False,
maxSteps = 1000):
#print("KukaGymEnv __init__")
self._isDiscrete = isDiscrete
self._timeStep = 1./240.
self._urdfRoot = urdfRoot
@@ -37,7 +41,12 @@ class KukaGymEnv(gym.Env):
self._observation = []
self._envStepCounter = 0
self._renders = renders
self._maxSteps = maxSteps
self.terminated = 0
self._cam_dist = 1.3
self._cam_yaw = 180
self._cam_pitch = -40
self._p = p
if self._renders:
cid = p.connect(p.SHARED_MEMORY)
@@ -53,7 +62,7 @@ class KukaGymEnv(gym.Env):
#print("observationDim")
#print(observationDim)
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
observation_high = np.array([largeValObservation] * observationDim)
if (self._isDiscrete):
self.action_space = spaces.Discrete(7)
else:
@@ -65,6 +74,7 @@ class KukaGymEnv(gym.Env):
self.viewer = None
def _reset(self):
#print("KukaGymEnv _reset")
self.terminated = 0
p.resetSimulation()
p.setPhysicsEngineParameter(numSolverIterations=150)
@@ -73,11 +83,11 @@ class KukaGymEnv(gym.Env):
p.loadURDF(os.path.join(self._urdfRoot,"table/table.urdf"), 0.5000000,0.00000,-.820000,0.000000,0.000000,0.0,1.0)
xpos = 0.5 +0.2*random.random()
ypos = 0 +0.25*random.random()
ang = 3.1415925438*random.random()
xpos = 0.55 +0.12*random.random()
ypos = 0 +0.2*random.random()
ang = 3.14*0.5+3.1415925438*random.random()
orn = p.getQuaternionFromEuler([0,0,ang])
self.blockUid =p.loadURDF(os.path.join(self._urdfRoot,"block.urdf"), xpos,ypos,-0.1,orn[0],orn[1],orn[2],orn[3])
self.blockUid =p.loadURDF(os.path.join(self._urdfRoot,"block.urdf"), xpos,ypos,-0.15,orn[0],orn[1],orn[2],orn[3])
p.setGravity(0,0,-10)
self._kuka = kuka.Kuka(urdfRootPath=self._urdfRoot, timeStep=self._timeStep)
@@ -95,57 +105,104 @@ class KukaGymEnv(gym.Env):
def getExtendedObservation(self):
self._observation = self._kuka.getObservation()
eeState = p.getLinkState(self._kuka.kukaUid,self._kuka.kukaEndEffectorIndex)
endEffectorPos = eeState[0]
endEffectorOrn = eeState[1]
gripperState = p.getLinkState(self._kuka.kukaUid,self._kuka.kukaGripperIndex)
gripperPos = gripperState[0]
gripperOrn = gripperState[1]
blockPos,blockOrn = p.getBasePositionAndOrientation(self.blockUid)
invEEPos,invEEOrn = p.invertTransform(endEffectorPos,endEffectorOrn)
blockPosInEE,blockOrnInEE = p.multiplyTransforms(invEEPos,invEEOrn,blockPos,blockOrn)
blockEulerInEE = p.getEulerFromQuaternion(blockOrnInEE)
self._observation.extend(list(blockPosInEE))
self._observation.extend(list(blockEulerInEE))
invGripperPos,invGripperOrn = p.invertTransform(gripperPos,gripperOrn)
gripperMat = p.getMatrixFromQuaternion(gripperOrn)
dir0 = [gripperMat[0],gripperMat[3],gripperMat[6]]
dir1 = [gripperMat[1],gripperMat[4],gripperMat[7]]
dir2 = [gripperMat[2],gripperMat[5],gripperMat[8]]
gripperEul = p.getEulerFromQuaternion(gripperOrn)
#print("gripperEul")
#print(gripperEul)
blockPosInGripper,blockOrnInGripper = p.multiplyTransforms(invGripperPos,invGripperOrn,blockPos,blockOrn)
projectedBlockPos2D =[blockPosInGripper[0],blockPosInGripper[1]]
blockEulerInGripper = p.getEulerFromQuaternion(blockOrnInGripper)
#print("projectedBlockPos2D")
#print(projectedBlockPos2D)
#print("blockEulerInGripper")
#print(blockEulerInGripper)
#we return the relative x,y position and euler angle of block in gripper space
blockInGripperPosXYEulZ =[blockPosInGripper[0],blockPosInGripper[1],blockEulerInGripper[2]]
#p.addUserDebugLine(gripperPos,[gripperPos[0]+dir0[0],gripperPos[1]+dir0[1],gripperPos[2]+dir0[2]],[1,0,0],lifeTime=1)
#p.addUserDebugLine(gripperPos,[gripperPos[0]+dir1[0],gripperPos[1]+dir1[1],gripperPos[2]+dir1[2]],[0,1,0],lifeTime=1)
#p.addUserDebugLine(gripperPos,[gripperPos[0]+dir2[0],gripperPos[1]+dir2[1],gripperPos[2]+dir2[2]],[0,0,1],lifeTime=1)
self._observation.extend(list(blockInGripperPosXYEulZ))
return self._observation
def _step(self, action):
if (self._isDiscrete):
dv = 0.01
dv = 0.005
dx = [0,-dv,dv,0,0,0,0][action]
dy = [0,0,0,-dv,dv,0,0][action]
da = [0,0,0,0,0,-0.1,0.1][action]
da = [0,0,0,0,0,-0.05,0.05][action]
f = 0.3
realAction = [dx,dy,-0.002,da,f]
else:
dv = 0.01
#print("action[0]=", str(action[0]))
dv = 0.005
dx = action[0] * dv
dy = action[1] * dv
da = action[2] * 0.1
da = action[2] * 0.05
f = 0.3
realAction = [dx,dy,-0.002,da,f]
return self.step2( realAction)
def step2(self, action):
self._kuka.applyAction(action)
for i in range(self._actionRepeat):
self._kuka.applyAction(action)
p.stepSimulation()
if self._renders:
time.sleep(self._timeStep)
self._observation = self.getExtendedObservation()
if self._termination():
break
self._envStepCounter += 1
if self._renders:
time.sleep(self._timeStep)
self._observation = self.getExtendedObservation()
#print("self._envStepCounter")
#print(self._envStepCounter)
done = self._termination()
reward = self._reward()
npaction = np.array([action[3]]) #only penalize rotation until learning works well [action[0],action[1],action[3]])
actionCost = np.linalg.norm(npaction)*10.
#print("actionCost")
#print(actionCost)
reward = self._reward()-actionCost
#print("reward")
#print(reward)
#print("len=%r" % len(self._observation))
return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False):
return
def _render(self, mode="rgb_array", close=False):
if mode != "rgb_array":
return np.array([])
base_pos,orn = self._p.getBasePositionAndOrientation(self._kuka.kukaUid)
view_matrix = self._p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=base_pos,
distance=self._cam_dist,
yaw=self._cam_yaw,
pitch=self._cam_pitch,
roll=0,
upAxisIndex=2)
proj_matrix = self._p.computeProjectionMatrixFOV(
fov=60, aspect=float(RENDER_WIDTH)/RENDER_HEIGHT,
nearVal=0.1, farVal=100.0)
(_, _, px, _, _) = self._p.getCameraImage(
width=RENDER_WIDTH, height=RENDER_HEIGHT, viewMatrix=view_matrix,
projectionMatrix=proj_matrix, renderer=self._p.ER_BULLET_HARDWARE_OPENGL)
rgb_array = np.array(px)
rgb_array = rgb_array[:, :, :3]
return rgb_array
def _termination(self):
#print (self._kuka.endEffectorPos[2])
@@ -154,7 +211,7 @@ class KukaGymEnv(gym.Env):
#print("self._envStepCounter")
#print(self._envStepCounter)
if (self.terminated or self._envStepCounter>maxSteps):
if (self.terminated or self._envStepCounter>self._maxSteps):
self._observation = self.getExtendedObservation()
return True
maxDist = 0.005
@@ -163,7 +220,7 @@ class KukaGymEnv(gym.Env):
if (len(closestPoints)):#(actualEndEffectorPos[2] <= -0.43):
self.terminated = 1
#print("closing gripper, attempting grasp")
#print("terminating, closing gripper, attempting grasp")
#start grasp and terminate
fingerAngle = 0.3
for i in range (100):
@@ -199,18 +256,22 @@ class KukaGymEnv(gym.Env):
blockPos,blockOrn=p.getBasePositionAndOrientation(self.blockUid)
closestPoints = p.getClosestPoints(self.blockUid,self._kuka.kukaUid,1000, -1, self._kuka.kukaEndEffectorIndex)
reward = -1000
reward = -1000
numPt = len(closestPoints)
#print(numPt)
if (numPt>0):
#print("reward:")
reward = -closestPoints[0][8]*10
if (blockPos[2] >0.2):
#print("grasped a block!!!")
reward = reward+10000
print("successfully grasped a block!!!")
#print("self._envStepCounter")
#print(self._envStepCounter)
reward = reward+1000
#print("reward")
#print("self._envStepCounter")
#print(self._envStepCounter)
#print("reward")
#print(reward)
#print("reward")
#print(reward)
return reward

View File

@@ -15,6 +15,9 @@ import random
from . import bullet_client
import pybullet_data
RENDER_HEIGHT = 720
RENDER_WIDTH = 960
class RacecarGymEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
@@ -136,20 +139,27 @@ class RacecarGymEnv(gym.Env):
return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False):
width=320
height=200
img_arr = self._p.getCameraImage(width,height)
w=img_arr[0]
h=img_arr[1]
rgb=img_arr[2]
dep=img_arr[3]
#print 'width = %d height = %d' % (w,h)
# reshape creates np array
np_img_arr = np.reshape(rgb, (h, w, 4))
# remove alpha channel
np_img_arr = np_img_arr[:, :, :3]
return np_img_arr
if mode != "rgb_array":
return np.array([])
base_pos,orn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
view_matrix = self._p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=base_pos,
distance=self._cam_dist,
yaw=self._cam_yaw,
pitch=self._cam_pitch,
roll=0,
upAxisIndex=2)
proj_matrix = self._p.computeProjectionMatrixFOV(
fov=60, aspect=float(RENDER_WIDTH)/RENDER_HEIGHT,
nearVal=0.1, farVal=100.0)
(_, _, px, _, _) = self._p.getCameraImage(
width=RENDER_WIDTH, height=RENDER_HEIGHT, viewMatrix=view_matrix,
projectionMatrix=proj_matrix, renderer=pybullet.ER_BULLET_HARDWARE_OPENGL)
rgb_array = np.array(px)
rgb_array = rgb_array[:, :, :3]
return rgb_array
def _termination(self):
return self._envStepCounter>1000

View File

@@ -15,6 +15,9 @@ from . import racecar
import random
import pybullet_data
RENDER_HEIGHT = 720
RENDER_WIDTH = 960
class RacecarZEDGymEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
@@ -151,7 +154,26 @@ class RacecarZEDGymEnv(gym.Env):
return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False):
return
if mode != "rgb_array":
return np.array([])
base_pos,orn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
view_matrix = self._p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=base_pos,
distance=self._cam_dist,
yaw=self._cam_yaw,
pitch=self._cam_pitch,
roll=0,
upAxisIndex=2)
proj_matrix = self._p.computeProjectionMatrixFOV(
fov=60, aspect=float(RENDER_WIDTH)/RENDER_HEIGHT,
nearVal=0.1, farVal=100.0)
(_, _, px, _, _) = self._p.getCameraImage(
width=RENDER_WIDTH, height=RENDER_HEIGHT, viewMatrix=view_matrix,
projectionMatrix=proj_matrix, renderer=pybullet.ER_BULLET_HARDWARE_OPENGL)
rgb_array = np.array(px)
rgb_array = rgb_array[:, :, :3]
return rgb_array
def _termination(self):
return self._envStepCounter>1000

View File

@@ -9,7 +9,7 @@ import time
def main():
environment = KukaGymEnv(renders=True,isDiscrete=False)
environment = KukaGymEnv(renders=True,isDiscrete=False, maxSteps = 10000000)
motorsIds=[]
@@ -19,7 +19,7 @@ def main():
#motorsIds.append(environment._p.addUserDebugParameter("yaw",-3.14,3.14,0))
#motorsIds.append(environment._p.addUserDebugParameter("fingerAngle",0,0.3,.3))
dv = 1
dv = 0.01
motorsIds.append(environment._p.addUserDebugParameter("posX",-dv,dv,0))
motorsIds.append(environment._p.addUserDebugParameter("posY",-dv,dv,0))
motorsIds.append(environment._p.addUserDebugParameter("posZ",-dv,dv,0))
@@ -33,7 +33,7 @@ def main():
for motorId in motorsIds:
action.append(environment._p.readUserDebugParameter(motorId))
state, reward, done, info = environment.step(action)
state, reward, done, info = environment.step2(action)
obs = environment.getExtendedObservation()
if __name__=="__main__":

View File

@@ -0,0 +1,38 @@
#add parent dir to find package. Only needed for source code build, pip install doesn't need it.
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
from pybullet_envs.bullet.kukaGymEnv import KukaGymEnv
import time
def main():
environment = KukaGymEnv(renders=True,isDiscrete=False, maxSteps = 10000000)
motorsIds=[]
#motorsIds.append(environment._p.addUserDebugParameter("posX",-1,1,0))
#motorsIds.append(environment._p.addUserDebugParameter("posY",-.22,.3,0.0))
#motorsIds.append(environment._p.addUserDebugParameter("posZ",0.1,1,0.2))
#motorsIds.append(environment._p.addUserDebugParameter("yaw",-3.14,3.14,0))
#motorsIds.append(environment._p.addUserDebugParameter("fingerAngle",0,0.3,.3))
dv = 1
motorsIds.append(environment._p.addUserDebugParameter("posX",-dv,dv,0))
motorsIds.append(environment._p.addUserDebugParameter("posY",-dv,dv,0))
motorsIds.append(environment._p.addUserDebugParameter("yaw",-dv,dv,0))
done = False
while (not done):
action=[]
for motorId in motorsIds:
action.append(environment._p.readUserDebugParameter(motorId))
state, reward, done, info = environment.step(action)
obs = environment.getExtendedObservation()
if __name__=="__main__":
main()