fixes in kuka/racecar environment. kuka still doesn't train well, work-in-progress

This commit is contained in:
Erwin Coumans
2017-11-01 18:06:47 -07:00
parent e4f58ddc33
commit 4798d66f19
8 changed files with 218 additions and 65 deletions

View File

@@ -34,7 +34,7 @@ def default():
# General # General
algorithm = ppo.PPOAlgorithm algorithm = ppo.PPOAlgorithm
num_agents = 10 num_agents = 10
eval_episodes = 25 eval_episodes = 20
use_gpu = False use_gpu = False
# Network # Network
network = networks.feed_forward_gaussian network = networks.feed_forward_gaussian
@@ -47,7 +47,7 @@ def default():
init_mean_factor = 0.05 init_mean_factor = 0.05
init_logstd = -1 init_logstd = -1
# Optimization # Optimization
update_every = 25 update_every = 20
policy_optimizer = 'AdamOptimizer' policy_optimizer = 'AdamOptimizer'
value_optimizer = 'AdamOptimizer' value_optimizer = 'AdamOptimizer'
update_epochs_policy = 50 update_epochs_policy = 50
@@ -105,7 +105,7 @@ def pybullet_kuka_grasping():
locals().update(default()) locals().update(default())
# Environment # Environment
env = 'KukaBulletEnv-v0' env = 'KukaBulletEnv-v0'
max_length = 10 max_length = 1000
steps = 1e7 # 10M steps = 1e7 # 10M
return locals() return locals()

View File

@@ -25,6 +25,7 @@ class Kuka:
self.useNullSpace =21 self.useNullSpace =21
self.useOrientation = 1 self.useOrientation = 1
self.kukaEndEffectorIndex = 6 self.kukaEndEffectorIndex = 6
self.kukaGripperIndex = 7
#lower limits for null space #lower limits for null space
self.ll=[-.967,-2 ,-2.96,0.19,-2.96,-2.09,-3.05] self.ll=[-.967,-2 ,-2.96,0.19,-2.96,-2.09,-3.05]
#upper limits for null space #upper limits for null space
@@ -76,7 +77,7 @@ class Kuka:
def getObservation(self): def getObservation(self):
observation = [] observation = []
state = p.getLinkState(self.kukaUid,self.kukaEndEffectorIndex) state = p.getLinkState(self.kukaUid,self.kukaGripperIndex)
pos = state[0] pos = state[0]
orn = state[1] orn = state[1]
euler = p.getEulerFromQuaternion(orn) euler = p.getEulerFromQuaternion(orn)
@@ -106,13 +107,13 @@ class Kuka:
self.endEffectorPos[0] = self.endEffectorPos[0]+dx self.endEffectorPos[0] = self.endEffectorPos[0]+dx
if (self.endEffectorPos[0]>0.75): if (self.endEffectorPos[0]>0.65):
self.endEffectorPos[0]=0.75 self.endEffectorPos[0]=0.65
if (self.endEffectorPos[0]<0.45): if (self.endEffectorPos[0]<0.50):
self.endEffectorPos[0]=0.45 self.endEffectorPos[0]=0.50
self.endEffectorPos[1] = self.endEffectorPos[1]+dy self.endEffectorPos[1] = self.endEffectorPos[1]+dy
if (self.endEffectorPos[1]<-0.22): if (self.endEffectorPos[1]<-0.17):
self.endEffectorPos[1]=-0.22 self.endEffectorPos[1]=-0.17
if (self.endEffectorPos[1]>0.22): if (self.endEffectorPos[1]>0.22):
self.endEffectorPos[1]=0.22 self.endEffectorPos[1]=0.22

View File

@@ -16,6 +16,9 @@ import random
import pybullet_data import pybullet_data
maxSteps = 1000 maxSteps = 1000
RENDER_HEIGHT = 720
RENDER_WIDTH = 960
class KukaCamGymEnv(gym.Env): class KukaCamGymEnv(gym.Env):
metadata = { metadata = {
'render.modes': ['human', 'rgb_array'], 'render.modes': ['human', 'rgb_array'],
@@ -24,9 +27,9 @@ class KukaCamGymEnv(gym.Env):
def __init__(self, def __init__(self,
urdfRoot=pybullet_data.getDataPath(), urdfRoot=pybullet_data.getDataPath(),
actionRepeat=25, actionRepeat=1,
isEnableSelfCollision=True, isEnableSelfCollision=True,
renders=True, renders=False,
isDiscrete=False): isDiscrete=False):
self._timeStep = 1./240. self._timeStep = 1./240.
self._urdfRoot = urdfRoot self._urdfRoot = urdfRoot
@@ -163,7 +166,25 @@ class KukaCamGymEnv(gym.Env):
return np.array(self._observation), reward, done, {} return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False): def _render(self, mode='human', close=False):
return if mode != "rgb_array":
return np.array([])
base_pos,orn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
view_matrix = self._p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=base_pos,
distance=self._cam_dist,
yaw=self._cam_yaw,
pitch=self._cam_pitch,
roll=0,
upAxisIndex=2)
proj_matrix = self._p.computeProjectionMatrixFOV(
fov=60, aspect=float(RENDER_WIDTH)/RENDER_HEIGHT,
nearVal=0.1, farVal=100.0)
(_, _, px, _, _) = self._p.getCameraImage(
width=RENDER_WIDTH, height=RENDER_HEIGHT, viewMatrix=view_matrix,
projectionMatrix=proj_matrix, renderer=pybullet.ER_BULLET_HARDWARE_OPENGL)
rgb_array = np.array(px)
rgb_array = rgb_array[:, :, :3]
return rgb_array
def _termination(self): def _termination(self):
#print (self._kuka.endEffectorPos[2]) #print (self._kuka.endEffectorPos[2])

View File

@@ -14,8 +14,10 @@ from . import kuka
import random import random
import pybullet_data import pybullet_data
maxSteps = 1000 largeValObservation = 100
RENDER_HEIGHT = 720
RENDER_WIDTH = 960
class KukaGymEnv(gym.Env): class KukaGymEnv(gym.Env):
metadata = { metadata = {
@@ -27,8 +29,10 @@ class KukaGymEnv(gym.Env):
urdfRoot=pybullet_data.getDataPath(), urdfRoot=pybullet_data.getDataPath(),
actionRepeat=1, actionRepeat=1,
isEnableSelfCollision=True, isEnableSelfCollision=True,
renders=True, renders=False,
isDiscrete=False): isDiscrete=False,
maxSteps = 1000):
#print("KukaGymEnv __init__")
self._isDiscrete = isDiscrete self._isDiscrete = isDiscrete
self._timeStep = 1./240. self._timeStep = 1./240.
self._urdfRoot = urdfRoot self._urdfRoot = urdfRoot
@@ -37,7 +41,12 @@ class KukaGymEnv(gym.Env):
self._observation = [] self._observation = []
self._envStepCounter = 0 self._envStepCounter = 0
self._renders = renders self._renders = renders
self._maxSteps = maxSteps
self.terminated = 0 self.terminated = 0
self._cam_dist = 1.3
self._cam_yaw = 180
self._cam_pitch = -40
self._p = p self._p = p
if self._renders: if self._renders:
cid = p.connect(p.SHARED_MEMORY) cid = p.connect(p.SHARED_MEMORY)
@@ -53,7 +62,7 @@ class KukaGymEnv(gym.Env):
#print("observationDim") #print("observationDim")
#print(observationDim) #print(observationDim)
observation_high = np.array([np.finfo(np.float32).max] * observationDim) observation_high = np.array([largeValObservation] * observationDim)
if (self._isDiscrete): if (self._isDiscrete):
self.action_space = spaces.Discrete(7) self.action_space = spaces.Discrete(7)
else: else:
@@ -65,6 +74,7 @@ class KukaGymEnv(gym.Env):
self.viewer = None self.viewer = None
def _reset(self): def _reset(self):
#print("KukaGymEnv _reset")
self.terminated = 0 self.terminated = 0
p.resetSimulation() p.resetSimulation()
p.setPhysicsEngineParameter(numSolverIterations=150) p.setPhysicsEngineParameter(numSolverIterations=150)
@@ -73,11 +83,11 @@ class KukaGymEnv(gym.Env):
p.loadURDF(os.path.join(self._urdfRoot,"table/table.urdf"), 0.5000000,0.00000,-.820000,0.000000,0.000000,0.0,1.0) p.loadURDF(os.path.join(self._urdfRoot,"table/table.urdf"), 0.5000000,0.00000,-.820000,0.000000,0.000000,0.0,1.0)
xpos = 0.5 +0.2*random.random() xpos = 0.55 +0.12*random.random()
ypos = 0 +0.25*random.random() ypos = 0 +0.2*random.random()
ang = 3.1415925438*random.random() ang = 3.14*0.5+3.1415925438*random.random()
orn = p.getQuaternionFromEuler([0,0,ang]) orn = p.getQuaternionFromEuler([0,0,ang])
self.blockUid =p.loadURDF(os.path.join(self._urdfRoot,"block.urdf"), xpos,ypos,-0.1,orn[0],orn[1],orn[2],orn[3]) self.blockUid =p.loadURDF(os.path.join(self._urdfRoot,"block.urdf"), xpos,ypos,-0.15,orn[0],orn[1],orn[2],orn[3])
p.setGravity(0,0,-10) p.setGravity(0,0,-10)
self._kuka = kuka.Kuka(urdfRootPath=self._urdfRoot, timeStep=self._timeStep) self._kuka = kuka.Kuka(urdfRootPath=self._urdfRoot, timeStep=self._timeStep)
@@ -95,57 +105,104 @@ class KukaGymEnv(gym.Env):
def getExtendedObservation(self): def getExtendedObservation(self):
self._observation = self._kuka.getObservation() self._observation = self._kuka.getObservation()
eeState = p.getLinkState(self._kuka.kukaUid,self._kuka.kukaEndEffectorIndex) gripperState = p.getLinkState(self._kuka.kukaUid,self._kuka.kukaGripperIndex)
endEffectorPos = eeState[0] gripperPos = gripperState[0]
endEffectorOrn = eeState[1] gripperOrn = gripperState[1]
blockPos,blockOrn = p.getBasePositionAndOrientation(self.blockUid) blockPos,blockOrn = p.getBasePositionAndOrientation(self.blockUid)
invEEPos,invEEOrn = p.invertTransform(endEffectorPos,endEffectorOrn) invGripperPos,invGripperOrn = p.invertTransform(gripperPos,gripperOrn)
blockPosInEE,blockOrnInEE = p.multiplyTransforms(invEEPos,invEEOrn,blockPos,blockOrn) gripperMat = p.getMatrixFromQuaternion(gripperOrn)
blockEulerInEE = p.getEulerFromQuaternion(blockOrnInEE) dir0 = [gripperMat[0],gripperMat[3],gripperMat[6]]
self._observation.extend(list(blockPosInEE)) dir1 = [gripperMat[1],gripperMat[4],gripperMat[7]]
self._observation.extend(list(blockEulerInEE)) dir2 = [gripperMat[2],gripperMat[5],gripperMat[8]]
gripperEul = p.getEulerFromQuaternion(gripperOrn)
#print("gripperEul")
#print(gripperEul)
blockPosInGripper,blockOrnInGripper = p.multiplyTransforms(invGripperPos,invGripperOrn,blockPos,blockOrn)
projectedBlockPos2D =[blockPosInGripper[0],blockPosInGripper[1]]
blockEulerInGripper = p.getEulerFromQuaternion(blockOrnInGripper)
#print("projectedBlockPos2D")
#print(projectedBlockPos2D)
#print("blockEulerInGripper")
#print(blockEulerInGripper)
#we return the relative x,y position and euler angle of block in gripper space
blockInGripperPosXYEulZ =[blockPosInGripper[0],blockPosInGripper[1],blockEulerInGripper[2]]
#p.addUserDebugLine(gripperPos,[gripperPos[0]+dir0[0],gripperPos[1]+dir0[1],gripperPos[2]+dir0[2]],[1,0,0],lifeTime=1)
#p.addUserDebugLine(gripperPos,[gripperPos[0]+dir1[0],gripperPos[1]+dir1[1],gripperPos[2]+dir1[2]],[0,1,0],lifeTime=1)
#p.addUserDebugLine(gripperPos,[gripperPos[0]+dir2[0],gripperPos[1]+dir2[1],gripperPos[2]+dir2[2]],[0,0,1],lifeTime=1)
self._observation.extend(list(blockInGripperPosXYEulZ))
return self._observation return self._observation
def _step(self, action): def _step(self, action):
if (self._isDiscrete): if (self._isDiscrete):
dv = 0.01 dv = 0.005
dx = [0,-dv,dv,0,0,0,0][action] dx = [0,-dv,dv,0,0,0,0][action]
dy = [0,0,0,-dv,dv,0,0][action] dy = [0,0,0,-dv,dv,0,0][action]
da = [0,0,0,0,0,-0.1,0.1][action] da = [0,0,0,0,0,-0.05,0.05][action]
f = 0.3 f = 0.3
realAction = [dx,dy,-0.002,da,f] realAction = [dx,dy,-0.002,da,f]
else: else:
dv = 0.01 #print("action[0]=", str(action[0]))
dv = 0.005
dx = action[0] * dv dx = action[0] * dv
dy = action[1] * dv dy = action[1] * dv
da = action[2] * 0.1 da = action[2] * 0.05
f = 0.3 f = 0.3
realAction = [dx,dy,-0.002,da,f] realAction = [dx,dy,-0.002,da,f]
return self.step2( realAction) return self.step2( realAction)
def step2(self, action): def step2(self, action):
self._kuka.applyAction(action)
for i in range(self._actionRepeat): for i in range(self._actionRepeat):
self._kuka.applyAction(action)
p.stepSimulation() p.stepSimulation()
if self._renders:
time.sleep(self._timeStep)
self._observation = self.getExtendedObservation()
if self._termination(): if self._termination():
break break
self._envStepCounter += 1 self._envStepCounter += 1
if self._renders:
time.sleep(self._timeStep)
self._observation = self.getExtendedObservation()
#print("self._envStepCounter") #print("self._envStepCounter")
#print(self._envStepCounter) #print(self._envStepCounter)
done = self._termination() done = self._termination()
reward = self._reward() npaction = np.array([action[3]]) #only penalize rotation until learning works well [action[0],action[1],action[3]])
actionCost = np.linalg.norm(npaction)*10.
#print("actionCost")
#print(actionCost)
reward = self._reward()-actionCost
#print("reward")
#print(reward)
#print("len=%r" % len(self._observation)) #print("len=%r" % len(self._observation))
return np.array(self._observation), reward, done, {} return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False): def _render(self, mode="rgb_array", close=False):
return if mode != "rgb_array":
return np.array([])
base_pos,orn = self._p.getBasePositionAndOrientation(self._kuka.kukaUid)
view_matrix = self._p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=base_pos,
distance=self._cam_dist,
yaw=self._cam_yaw,
pitch=self._cam_pitch,
roll=0,
upAxisIndex=2)
proj_matrix = self._p.computeProjectionMatrixFOV(
fov=60, aspect=float(RENDER_WIDTH)/RENDER_HEIGHT,
nearVal=0.1, farVal=100.0)
(_, _, px, _, _) = self._p.getCameraImage(
width=RENDER_WIDTH, height=RENDER_HEIGHT, viewMatrix=view_matrix,
projectionMatrix=proj_matrix, renderer=self._p.ER_BULLET_HARDWARE_OPENGL)
rgb_array = np.array(px)
rgb_array = rgb_array[:, :, :3]
return rgb_array
def _termination(self): def _termination(self):
#print (self._kuka.endEffectorPos[2]) #print (self._kuka.endEffectorPos[2])
@@ -154,7 +211,7 @@ class KukaGymEnv(gym.Env):
#print("self._envStepCounter") #print("self._envStepCounter")
#print(self._envStepCounter) #print(self._envStepCounter)
if (self.terminated or self._envStepCounter>maxSteps): if (self.terminated or self._envStepCounter>self._maxSteps):
self._observation = self.getExtendedObservation() self._observation = self.getExtendedObservation()
return True return True
maxDist = 0.005 maxDist = 0.005
@@ -163,7 +220,7 @@ class KukaGymEnv(gym.Env):
if (len(closestPoints)):#(actualEndEffectorPos[2] <= -0.43): if (len(closestPoints)):#(actualEndEffectorPos[2] <= -0.43):
self.terminated = 1 self.terminated = 1
#print("closing gripper, attempting grasp") #print("terminating, closing gripper, attempting grasp")
#start grasp and terminate #start grasp and terminate
fingerAngle = 0.3 fingerAngle = 0.3
for i in range (100): for i in range (100):
@@ -199,18 +256,22 @@ class KukaGymEnv(gym.Env):
blockPos,blockOrn=p.getBasePositionAndOrientation(self.blockUid) blockPos,blockOrn=p.getBasePositionAndOrientation(self.blockUid)
closestPoints = p.getClosestPoints(self.blockUid,self._kuka.kukaUid,1000, -1, self._kuka.kukaEndEffectorIndex) closestPoints = p.getClosestPoints(self.blockUid,self._kuka.kukaUid,1000, -1, self._kuka.kukaEndEffectorIndex)
reward = -1000 reward = -1000
numPt = len(closestPoints) numPt = len(closestPoints)
#print(numPt) #print(numPt)
if (numPt>0): if (numPt>0):
#print("reward:") #print("reward:")
reward = -closestPoints[0][8]*10 reward = -closestPoints[0][8]*10
if (blockPos[2] >0.2): if (blockPos[2] >0.2):
#print("grasped a block!!!") reward = reward+10000
print("successfully grasped a block!!!")
#print("self._envStepCounter") #print("self._envStepCounter")
#print(self._envStepCounter) #print(self._envStepCounter)
reward = reward+1000 #print("self._envStepCounter")
#print(self._envStepCounter)
#print("reward") #print("reward")
#print(reward)
#print("reward")
#print(reward) #print(reward)
return reward return reward

View File

@@ -15,6 +15,9 @@ import random
from . import bullet_client from . import bullet_client
import pybullet_data import pybullet_data
RENDER_HEIGHT = 720
RENDER_WIDTH = 960
class RacecarGymEnv(gym.Env): class RacecarGymEnv(gym.Env):
metadata = { metadata = {
'render.modes': ['human', 'rgb_array'], 'render.modes': ['human', 'rgb_array'],
@@ -136,20 +139,27 @@ class RacecarGymEnv(gym.Env):
return np.array(self._observation), reward, done, {} return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False): def _render(self, mode='human', close=False):
width=320 if mode != "rgb_array":
height=200 return np.array([])
img_arr = self._p.getCameraImage(width,height) base_pos,orn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
w=img_arr[0] view_matrix = self._p.computeViewMatrixFromYawPitchRoll(
h=img_arr[1] cameraTargetPosition=base_pos,
rgb=img_arr[2] distance=self._cam_dist,
dep=img_arr[3] yaw=self._cam_yaw,
#print 'width = %d height = %d' % (w,h) pitch=self._cam_pitch,
# reshape creates np array roll=0,
np_img_arr = np.reshape(rgb, (h, w, 4)) upAxisIndex=2)
# remove alpha channel proj_matrix = self._p.computeProjectionMatrixFOV(
np_img_arr = np_img_arr[:, :, :3] fov=60, aspect=float(RENDER_WIDTH)/RENDER_HEIGHT,
return np_img_arr nearVal=0.1, farVal=100.0)
(_, _, px, _, _) = self._p.getCameraImage(
width=RENDER_WIDTH, height=RENDER_HEIGHT, viewMatrix=view_matrix,
projectionMatrix=proj_matrix, renderer=pybullet.ER_BULLET_HARDWARE_OPENGL)
rgb_array = np.array(px)
rgb_array = rgb_array[:, :, :3]
return rgb_array
def _termination(self): def _termination(self):
return self._envStepCounter>1000 return self._envStepCounter>1000

View File

@@ -15,6 +15,9 @@ from . import racecar
import random import random
import pybullet_data import pybullet_data
RENDER_HEIGHT = 720
RENDER_WIDTH = 960
class RacecarZEDGymEnv(gym.Env): class RacecarZEDGymEnv(gym.Env):
metadata = { metadata = {
'render.modes': ['human', 'rgb_array'], 'render.modes': ['human', 'rgb_array'],
@@ -151,7 +154,26 @@ class RacecarZEDGymEnv(gym.Env):
return np.array(self._observation), reward, done, {} return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False): def _render(self, mode='human', close=False):
return if mode != "rgb_array":
return np.array([])
base_pos,orn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
view_matrix = self._p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=base_pos,
distance=self._cam_dist,
yaw=self._cam_yaw,
pitch=self._cam_pitch,
roll=0,
upAxisIndex=2)
proj_matrix = self._p.computeProjectionMatrixFOV(
fov=60, aspect=float(RENDER_WIDTH)/RENDER_HEIGHT,
nearVal=0.1, farVal=100.0)
(_, _, px, _, _) = self._p.getCameraImage(
width=RENDER_WIDTH, height=RENDER_HEIGHT, viewMatrix=view_matrix,
projectionMatrix=proj_matrix, renderer=pybullet.ER_BULLET_HARDWARE_OPENGL)
rgb_array = np.array(px)
rgb_array = rgb_array[:, :, :3]
return rgb_array
def _termination(self): def _termination(self):
return self._envStepCounter>1000 return self._envStepCounter>1000

View File

@@ -9,7 +9,7 @@ import time
def main(): def main():
environment = KukaGymEnv(renders=True,isDiscrete=False) environment = KukaGymEnv(renders=True,isDiscrete=False, maxSteps = 10000000)
motorsIds=[] motorsIds=[]
@@ -19,7 +19,7 @@ def main():
#motorsIds.append(environment._p.addUserDebugParameter("yaw",-3.14,3.14,0)) #motorsIds.append(environment._p.addUserDebugParameter("yaw",-3.14,3.14,0))
#motorsIds.append(environment._p.addUserDebugParameter("fingerAngle",0,0.3,.3)) #motorsIds.append(environment._p.addUserDebugParameter("fingerAngle",0,0.3,.3))
dv = 1 dv = 0.01
motorsIds.append(environment._p.addUserDebugParameter("posX",-dv,dv,0)) motorsIds.append(environment._p.addUserDebugParameter("posX",-dv,dv,0))
motorsIds.append(environment._p.addUserDebugParameter("posY",-dv,dv,0)) motorsIds.append(environment._p.addUserDebugParameter("posY",-dv,dv,0))
motorsIds.append(environment._p.addUserDebugParameter("posZ",-dv,dv,0)) motorsIds.append(environment._p.addUserDebugParameter("posZ",-dv,dv,0))
@@ -33,7 +33,7 @@ def main():
for motorId in motorsIds: for motorId in motorsIds:
action.append(environment._p.readUserDebugParameter(motorId)) action.append(environment._p.readUserDebugParameter(motorId))
state, reward, done, info = environment.step(action) state, reward, done, info = environment.step2(action)
obs = environment.getExtendedObservation() obs = environment.getExtendedObservation()
if __name__=="__main__": if __name__=="__main__":

View File

@@ -0,0 +1,38 @@
#add parent dir to find package. Only needed for source code build, pip install doesn't need it.
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
from pybullet_envs.bullet.kukaGymEnv import KukaGymEnv
import time
def main():
environment = KukaGymEnv(renders=True,isDiscrete=False, maxSteps = 10000000)
motorsIds=[]
#motorsIds.append(environment._p.addUserDebugParameter("posX",-1,1,0))
#motorsIds.append(environment._p.addUserDebugParameter("posY",-.22,.3,0.0))
#motorsIds.append(environment._p.addUserDebugParameter("posZ",0.1,1,0.2))
#motorsIds.append(environment._p.addUserDebugParameter("yaw",-3.14,3.14,0))
#motorsIds.append(environment._p.addUserDebugParameter("fingerAngle",0,0.3,.3))
dv = 1
motorsIds.append(environment._p.addUserDebugParameter("posX",-dv,dv,0))
motorsIds.append(environment._p.addUserDebugParameter("posY",-dv,dv,0))
motorsIds.append(environment._p.addUserDebugParameter("yaw",-dv,dv,0))
done = False
while (not done):
action=[]
for motorId in motorsIds:
action.append(environment._p.readUserDebugParameter(motorId))
state, reward, done, info = environment.step(action)
obs = environment.getExtendedObservation()
if __name__=="__main__":
main()