reformulate how constraints are managed in the projection class
This commit is contained in:
@@ -12,20 +12,21 @@ void btContactProjection::update(const TVStack& dv, const TVStack& backupVelocit
|
||||
///solve rigid body constraints
|
||||
m_world->btMultiBodyDynamicsWorld::solveConstraints(m_world->getSolverInfo());
|
||||
|
||||
// loop through contacts to create contact constraints
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
// loop through constraints to set constrained values
|
||||
for (auto it : m_constraints)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
btMultiBodyJacobianData jacobianData;
|
||||
for (int i = 0, ni = psb->m_rcontacts.size(); i < ni; ++i)
|
||||
btAlignedObjectArray<Constraint>& constraints = it.second;
|
||||
for (int i = 0; i < constraints.size(); ++i)
|
||||
{
|
||||
const btSoftBody::RContact& c = psb->m_rcontacts[i];
|
||||
|
||||
// skip anchor points
|
||||
if (c.m_node->m_im == 0)
|
||||
Constraint& constraint = constraints[i];
|
||||
if (constraint.m_contact == nullptr)
|
||||
{
|
||||
// nothing needs to be done for dirichelet constraints
|
||||
continue;
|
||||
|
||||
const btSoftBody::sCti& cti = c.m_cti;
|
||||
}
|
||||
const btSoftBody::RContact* c = constraint.m_contact;
|
||||
const btSoftBody::sCti& cti = c->m_cti;
|
||||
btMultiBodyJacobianData jacobianData;
|
||||
if (cti.m_colObj->hasContactResponse())
|
||||
{
|
||||
btVector3 va(0, 0, 0);
|
||||
@@ -37,7 +38,7 @@ void btContactProjection::update(const TVStack& dv, const TVStack& backupVelocit
|
||||
if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
|
||||
{
|
||||
rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
|
||||
va = rigidCol ? (rigidCol->getVelocityInLocalPoint(c.m_c1)) * m_dt : btVector3(0, 0, 0);
|
||||
va = rigidCol ? (rigidCol->getVelocityInLocalPoint(c->m_c1)) * m_dt : btVector3(0, 0, 0);
|
||||
}
|
||||
else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
|
||||
{
|
||||
@@ -49,7 +50,7 @@ void btContactProjection::update(const TVStack& dv, const TVStack& backupVelocit
|
||||
jacobianData.m_deltaVelocitiesUnitImpulse.resize(ndof);
|
||||
btScalar* jac = &jacobianData.m_jacobians[0];
|
||||
|
||||
multibodyLinkCol->m_multiBody->fillContactJacobianMultiDof(multibodyLinkCol->m_link, c.m_node->m_x, cti.m_normal, jac, jacobianData.scratch_r, jacobianData.scratch_v, jacobianData.scratch_m);
|
||||
multibodyLinkCol->m_multiBody->fillContactJacobianMultiDof(multibodyLinkCol->m_link, c->m_node->m_x, cti.m_normal, jac, jacobianData.scratch_r, jacobianData.scratch_v, jacobianData.scratch_m);
|
||||
deltaV = &jacobianData.m_deltaVelocitiesUnitImpulse[0];
|
||||
multibodyLinkCol->m_multiBody->calcAccelerationDeltasMultiDof(&jacobianData.m_jacobians[0], deltaV, jacobianData.scratch_r, jacobianData.scratch_v);
|
||||
|
||||
@@ -62,26 +63,26 @@ void btContactProjection::update(const TVStack& dv, const TVStack& backupVelocit
|
||||
}
|
||||
}
|
||||
|
||||
const btVector3 vb = c.m_node->m_v * m_dt;
|
||||
const btVector3 vb = c->m_node->m_v * m_dt;
|
||||
const btVector3 vr = vb - va;
|
||||
const btScalar dn = btDot(vr, cti.m_normal);
|
||||
if (1) // in the same CG solve, the set of constraits doesn't change
|
||||
// if (dn <= SIMD_EPSILON)
|
||||
// if (dn <= SIMD_EPSILON)
|
||||
{
|
||||
// c0 is the impulse matrix, c3 is 1 - the friction coefficient or 0, c4 is the contact hardness coefficient
|
||||
const btVector3 impulse = c.m_c0 *(cti.m_normal * dn);
|
||||
const btVector3 impulse = c->m_c0 *(cti.m_normal * dn);
|
||||
// TODO: only contact is considered here, add friction later
|
||||
|
||||
// dv = new_impulse + accumulated velocity change in previous CG iterations
|
||||
// so we have the invariant node->m_v = backupVelocity + dv;
|
||||
btVector3 dv = -impulse * c.m_c2/m_dt + c.m_node->m_v - backupVelocity[m_indices[c.m_node]];
|
||||
btVector3 dv = -impulse * c->m_c2/m_dt + c->m_node->m_v - backupVelocity[m_indices[c->m_node]];
|
||||
btScalar dvn = dv.dot(cti.m_normal);
|
||||
m_constrainedValues[m_indices[c.m_node]][0]=(dvn);
|
||||
constraint.m_value = dvn;
|
||||
|
||||
if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
|
||||
{
|
||||
if (rigidCol)
|
||||
rigidCol->applyImpulse(impulse, c.m_c1);
|
||||
rigidCol->applyImpulse(impulse, c->m_c1);
|
||||
}
|
||||
else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
|
||||
{
|
||||
@@ -97,24 +98,23 @@ void btContactProjection::update(const TVStack& dv, const TVStack& backupVelocit
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void btContactProjection::setConstraintDirections()
|
||||
{
|
||||
// set Dirichlet constraint
|
||||
size_t counter = 0;
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
const btSoftBody* psb = m_softBodies[i];
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
for (int j = 0; j < psb->m_nodes.size(); ++j)
|
||||
{
|
||||
if (psb->m_nodes[j].m_im == 0)
|
||||
{
|
||||
m_constrainedDirections[counter].push_back(btVector3(1,0,0));
|
||||
m_constrainedDirections[counter].push_back(btVector3(0,1,0));
|
||||
m_constrainedDirections[counter].push_back(btVector3(0,0,1));
|
||||
m_constrainedValues[counter].push_back(0);
|
||||
m_constrainedValues[counter].push_back(0);
|
||||
m_constrainedValues[counter].push_back(0);
|
||||
m_constrainedId.push_back(counter);
|
||||
btAlignedObjectArray<Constraint> c;
|
||||
c.push_back(Constraint(btVector3(1,0,0)));
|
||||
c.push_back(Constraint(btVector3(0,1,0)));
|
||||
c.push_back(Constraint(btVector3(0,0,1)));
|
||||
m_constraints[&(psb->m_nodes[j])] = c;
|
||||
}
|
||||
++counter;
|
||||
}
|
||||
@@ -125,14 +125,12 @@ void btContactProjection::setConstraintDirections()
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
btMultiBodyJacobianData jacobianData;
|
||||
|
||||
int j = 0;
|
||||
while (j < psb->m_rcontacts.size())
|
||||
for (int j = 0; j < psb->m_rcontacts.size(); ++j)
|
||||
{
|
||||
const btSoftBody::RContact& c = psb->m_rcontacts[j];
|
||||
// skip anchor points
|
||||
if (c.m_node->m_im == 0)
|
||||
{
|
||||
psb->m_rcontacts.removeAtIndex(j);
|
||||
continue;
|
||||
}
|
||||
|
||||
@@ -178,68 +176,69 @@ void btContactProjection::setConstraintDirections()
|
||||
const btScalar dn = btDot(vr, cti.m_normal);
|
||||
if (dn < SIMD_EPSILON)
|
||||
{
|
||||
++j;
|
||||
m_constrainedDirections[m_indices[c.m_node]].push_back(cti.m_normal);
|
||||
m_constrainedValues[m_indices[c.m_node]].resize(m_constrainedValues[m_indices[c.m_node]].size()+1);
|
||||
m_constrainedId.push_back(m_indices[c.m_node]);
|
||||
if (m_constraints.find(c.m_node) == m_constraints.end())
|
||||
{
|
||||
btAlignedObjectArray<Constraint> constraints;
|
||||
constraints.push_back(Constraint(c));
|
||||
m_constraints[c.m_node] = constraints;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_constraints[c.m_node].push_back(Constraint(c));
|
||||
}
|
||||
continue;
|
||||
}
|
||||
}
|
||||
psb->m_rcontacts.removeAtIndex(j);
|
||||
}
|
||||
}
|
||||
|
||||
// for particles with more than three constrained directions, prune constrained directions so that there are at most three constrained directions
|
||||
counter = 0;
|
||||
const int dim = 3;
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
for (auto it : m_constraints)
|
||||
{
|
||||
const btSoftBody* psb = m_softBodies[i];
|
||||
for (int j = 0; j < psb->m_nodes.size(); ++j)
|
||||
const btAlignedObjectArray<Constraint>& c = it.second;
|
||||
if (c.size() > dim)
|
||||
{
|
||||
if (m_constrainedDirections[counter].size() > dim)
|
||||
btAlignedObjectArray<Constraint> prunedConstraints;
|
||||
// always keep the first constrained direction
|
||||
prunedConstraints.push_back(c[0]);
|
||||
|
||||
// find the direction most orthogonal to the first direction and keep it
|
||||
size_t selected = 1;
|
||||
btScalar min_dotProductAbs = std::abs(prunedConstraints[0].m_direction.dot(c[selected].m_direction));
|
||||
for (int j = 2; j < c.size(); ++j)
|
||||
{
|
||||
btAlignedObjectArray<btVector3> prunedConstraints;
|
||||
// always keep the first constrained direction
|
||||
prunedConstraints.push_back(m_constrainedDirections[counter][0]);
|
||||
// find the direction most orthogonal to the first direction and keep it
|
||||
size_t selected = 1;
|
||||
btScalar min_dotProductAbs = std::abs(prunedConstraints[0].dot(m_constrainedDirections[counter][selected]));
|
||||
for (int j = 2; j < m_constrainedDirections[counter].size(); ++j)
|
||||
btScalar dotProductAbs =std::abs(prunedConstraints[0].m_direction.dot(c[j].m_direction));
|
||||
if (dotProductAbs < min_dotProductAbs)
|
||||
{
|
||||
btScalar dotProductAbs =std::abs(prunedConstraints[0].dot(m_constrainedDirections[counter][j]));
|
||||
if (dotProductAbs < min_dotProductAbs)
|
||||
{
|
||||
selected = j;
|
||||
min_dotProductAbs = dotProductAbs;
|
||||
}
|
||||
selected = j;
|
||||
min_dotProductAbs = dotProductAbs;
|
||||
}
|
||||
if (std::abs(min_dotProductAbs-1) < SIMD_EPSILON)
|
||||
{
|
||||
m_constrainedDirections[counter++] = prunedConstraints;
|
||||
continue;
|
||||
}
|
||||
prunedConstraints.push_back(m_constrainedDirections[counter][selected]);
|
||||
|
||||
// find the direction most orthogonal to the previous two directions and keep it
|
||||
size_t selected2 = (selected == 1) ? 2 : 1;
|
||||
btVector3 normal = btCross(prunedConstraints[0], prunedConstraints[1]);
|
||||
normal.normalize();
|
||||
btScalar max_dotProductAbs = std::abs(normal.dot(m_constrainedDirections[counter][selected2]));
|
||||
for (int j = 3; j < m_constrainedDirections[counter].size(); ++j)
|
||||
{
|
||||
btScalar dotProductAbs = std::abs(normal.dot(m_constrainedDirections[counter][j]));
|
||||
if (dotProductAbs > min_dotProductAbs)
|
||||
{
|
||||
selected2 = j;
|
||||
max_dotProductAbs = dotProductAbs;
|
||||
}
|
||||
}
|
||||
prunedConstraints.push_back(m_constrainedDirections[counter][selected2]);
|
||||
m_constrainedDirections[counter] = prunedConstraints;
|
||||
m_constrainedValues[counter].resize(dim);
|
||||
}
|
||||
++counter;
|
||||
if (std::abs(min_dotProductAbs-1) < SIMD_EPSILON)
|
||||
{
|
||||
it.second = prunedConstraints;
|
||||
continue;
|
||||
}
|
||||
prunedConstraints.push_back(c[selected]);
|
||||
|
||||
// find the direction most orthogonal to the previous two directions and keep it
|
||||
size_t selected2 = (selected == 1) ? 2 : 1;
|
||||
btVector3 normal = btCross(prunedConstraints[0].m_direction, prunedConstraints[1].m_direction);
|
||||
normal.normalize();
|
||||
btScalar max_dotProductAbs = std::abs(normal.dot(c[selected2].m_direction));
|
||||
for (int j = 3; j < c.size(); ++j)
|
||||
{
|
||||
btScalar dotProductAbs = std::abs(normal.dot(c[j].m_direction));
|
||||
if (dotProductAbs > min_dotProductAbs)
|
||||
{
|
||||
selected2 = j;
|
||||
max_dotProductAbs = dotProductAbs;
|
||||
}
|
||||
}
|
||||
prunedConstraints.push_back(c[selected2]);
|
||||
it.second = prunedConstraints;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user