Merge remote-tracking branch 'bp/master'

This commit is contained in:
Erwin Coumans
2017-03-13 18:50:32 -07:00
12 changed files with 705 additions and 178 deletions

View File

@@ -0,0 +1,31 @@
"""One-line documentation for gym_example module.
A detailed description of gym_example.
"""
import gym
from envs.bullet.cartpole_bullet import CartPoleBulletEnv
import setuptools
import time
import numpy as np
w = [0.3, 0.02, 0.02, 0.012]
def main():
env = gym.make('CartPoleBulletEnv-v0')
for i_episode in range(1):
observation = env.reset()
done = False
t = 0
while not done:
print(observation)
action = np.array([np.inner(observation, w)])
print(action)
observation, reward, done, info = env.step(action)
t = t + 1
if done:
print("Episode finished after {} timesteps".format(t+1))
break
main()

View File

@@ -0,0 +1,17 @@
from gym.envs.registration import registry, register, make, spec
# ------------bullet-------------
register(
id='CartPoleBulletEnv-v0',
entry_point='envs.bullet:CartPoleBulletEnv',
timestep_limit=1000,
reward_threshold=950.0,
)
register(
id='MinitaurBulletEnv-v0',
entry_point='envs.bullet:MinitaurBulletEnv',
timestep_limit=1000,
reward_threshold=5.0,
)

View File

@@ -0,0 +1,2 @@
from envs.bullet.cartpole_bullet import CartPoleBulletEnv
from envs.bullet.minitaur_bullet import MinitaurBulletEnv

View File

@@ -0,0 +1,89 @@
"""
Classic cart-pole system implemented by Rich Sutton et al.
Copied from https://webdocs.cs.ualberta.ca/~sutton/book/code/pole.c
"""
import os
import logging
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import subprocess
import pybullet as p
logger = logging.getLogger(__name__)
class CartPoleBulletEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self):
# start the bullet physics server
p.connect(p.GUI)
# p.connect(p.DIRECT)
observation_high = np.array([
np.finfo(np.float32).max,
np.finfo(np.float32).max,
np.finfo(np.float32).max,
np.finfo(np.float32).max])
action_high = np.array([0.1])
self.action_space = spaces.Box(-action_high, action_high)
self.observation_space = spaces.Box(-observation_high, observation_high)
self.theta_threshold_radians = 1
self.x_threshold = 2.4
self._seed()
# self.reset()
self.viewer = None
self._configure()
def _configure(self, display=None):
self.display = display
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def _step(self, action):
p.stepSimulation()
# time.sleep(self.timeStep)
self.state = p.getJointState(self.cartpole, 1)[0:2] + p.getJointState(self.cartpole, 0)[0:2]
theta, theta_dot, x, x_dot = self.state
force = action
p.setJointMotorControl2(self.cartpole, 0, p.VELOCITY_CONTROL, targetVelocity=(action + self.state[3]))
done = x < -self.x_threshold \
or x > self.x_threshold \
or theta < -self.theta_threshold_radians \
or theta > self.theta_threshold_radians
reward = 1.0
return np.array(self.state), reward, done, {}
def _reset(self):
# print("-----------reset simulation---------------")
p.resetSimulation()
self.cartpole = p.loadURDF("cartpole.urdf",[0,0,0])
self.timeStep = 0.01
p.setJointMotorControl2(self.cartpole, 1, p.VELOCITY_CONTROL, force=0)
p.setGravity(0,0, -10)
p.setTimeStep(self.timeStep)
p.setRealTimeSimulation(0)
initialCartPos = self.np_random.uniform(low=-0.5, high=0.5, size=(1,))
initialAngle = self.np_random.uniform(low=-0.5, high=0.5, size=(1,))
p.resetJointState(self.cartpole, 1, initialAngle)
p.resetJointState(self.cartpole, 0, initialCartPos)
self.state = p.getJointState(self.cartpole, 1)[0:2] + p.getJointState(self.cartpole, 0)[0:2]
return np.array(self.state)
def _render(self, mode='human', close=False):
return

View File

@@ -0,0 +1,142 @@
import pybullet as p
import numpy as np
class Minitaur:
def __init__(self, urdfRootPath=''):
self.urdfRootPath = urdfRootPath
self.reset()
def applyAction(self, motorCommands):
motorCommandsWithDir = np.multiply(motorCommands, self.motorDir)
for i in range(self.nMotors):
self.setMotorAngleById(self.motorIdList[i], motorCommandsWithDir[i])
def getObservation(self):
observation = []
observation.extend(self.getMotorAngles().tolist())
observation.extend(self.getMotorVelocities().tolist())
observation.extend(self.getMotorTorques().tolist())
observation.extend(list(self.getBaseOrientation()))
observation.extend(list(self.getBasePosition()))
return observation
def getActionDimension(self):
return self.nMotors
def getObservationDimension(self):
return len(self.getObservation())
def buildJointNameToIdDict(self):
nJoints = p.getNumJoints(self.quadruped)
self.jointNameToId = {}
for i in range(nJoints):
jointInfo = p.getJointInfo(self.quadruped, i)
self.jointNameToId[jointInfo[1].decode('UTF-8')] = jointInfo[0]
self.resetPose()
for i in range(100):
p.stepSimulation()
def buildMotorIdList(self):
self.motorIdList.append(self.jointNameToId['motor_front_leftR_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_leftL_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_leftR_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_leftL_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_rightL_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_rightR_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_rightL_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_rightR_joint'])
def reset(self):
self.quadruped = p.loadURDF("%s/quadruped/quadruped.urdf" % self.urdfRootPath,0,0,.3)
self.kp = 1
self.kd = 0.1
self.maxForce = 3.5
self.nMotors = 8
self.motorIdList = []
self.motorDir = [1, -1, 1, -1, -1, 1, -1, 1]
self.buildJointNameToIdDict()
self.buildMotorIdList()
def disableAllMotors(self):
nJoints = p.getNumJoints(self.quadruped)
for i in range(nJoints):
p.setJointMotorControl2(bodyIndex=self.quadruped, jointIndex=i, controlMode=p.VELOCITY_CONTROL, force=0)
def setMotorAngleById(self, motorId, desiredAngle):
p.setJointMotorControl2(bodyIndex=self.quadruped, jointIndex=motorId, controlMode=p.POSITION_CONTROL, targetPosition=desiredAngle, positionGain=self.kp, velocityGain=self.kd, force=self.maxForce)
def setMotorAngleByName(self, motorName, desiredAngle):
self.setMotorAngleById(self.jointNameToId[motorName], desiredAngle)
def resetPose(self):
#right front leg
self.disableAllMotors()
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_rightR_joint'],1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_rightR_link'],-2.2)
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_rightL_joint'],-1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_rightL_link'],2.2)
p.createConstraint(self.quadruped,self.jointNameToId['knee_front_rightR_link'],self.quadruped,self.jointNameToId['knee_front_rightL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.01,0.2],[0,-0.015,0.2])
self.setMotorAngleByName('motor_front_rightR_joint', 1.57)
self.setMotorAngleByName('motor_front_rightL_joint',-1.57)
#left front leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_leftR_joint'],1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_leftR_link'],-2.2)
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_leftL_joint'],-1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_leftL_link'],2.2)
p.createConstraint(self.quadruped,self.jointNameToId['knee_front_leftR_link'],self.quadruped,self.jointNameToId['knee_front_leftL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,-0.01,0.2],[0,0.015,0.2])
self.setMotorAngleByName('motor_front_leftR_joint', 1.57)
self.setMotorAngleByName('motor_front_leftL_joint',-1.57)
#right back leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_rightR_joint'],1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_rightR_link'],-2.2)
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_rightL_joint'],-1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_rightL_link'],2.2)
p.createConstraint(self.quadruped,self.jointNameToId['knee_back_rightR_link'],self.quadruped,self.jointNameToId['knee_back_rightL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.01,0.2],[0,-0.015,0.2])
self.setMotorAngleByName('motor_back_rightR_joint', 1.57)
self.setMotorAngleByName('motor_back_rightL_joint',-1.57)
#left back leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_leftR_joint'],1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_leftR_link'],-2.2)
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_leftL_joint'],-1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_leftL_link'],2.2)
p.createConstraint(self.quadruped,self.jointNameToId['knee_back_leftR_link'],self.quadruped,self.jointNameToId['knee_back_leftL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,-0.01,0.2],[0,0.015,0.2])
self.setMotorAngleByName('motor_back_leftR_joint', 1.57)
self.setMotorAngleByName('motor_back_leftL_joint',-1.57)
def getBasePosition(self):
position, orientation = p.getBasePositionAndOrientation(self.quadruped)
return position
def getBaseOrientation(self):
position, orientation = p.getBasePositionAndOrientation(self.quadruped)
return orientation
def getMotorAngles(self):
motorAngles = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorAngles.append(jointState[0])
motorAngles = np.multiply(motorAngles, self.motorDir)
return motorAngles
def getMotorVelocities(self):
motorVelocities = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorVelocities.append(jointState[1])
motorVelocities = np.multiply(motorVelocities, self.motorDir)
return motorVelocities
def getMotorTorques(self):
motorTorques = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorTorques.append(jointState[3])
motorTorques = np.multiply(motorTorques, self.motorDir)
return motorTorques

View File

@@ -0,0 +1,90 @@
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import pybullet as p
from envs.bullet.minitaur import Minitaur
class MinitaurBulletEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self):
self._timeStep = 0.01
self._observation = []
self._envStepCounter = 0
self._lastBasePosition = [0, 0, 0]
p.connect(p.GUI)
p.resetSimulation()
p.setTimeStep(self._timeStep)
p.loadURDF("plane.urdf")
p.setGravity(0,0,-10)
self._minitaur = Minitaur()
observationDim = self._minitaur.getObservationDimension()
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
actionDim = 8
action_high = np.array([math.pi / 2.0] * actionDim)
self.action_space = spaces.Box(-action_high, action_high)
self.observation_space = spaces.Box(-observation_high, observation_high)
self._seed()
self.reset()
self.viewer = None
def __del__(self):
p.disconnect()
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def _step(self, action):
if len(action) != self._minitaur.getActionDimension():
raise ValueError("We expect {} continuous action not {}.".format(self._minitaur.getActionDimension(), len(actions.continuous_actions)))
for i in range(len(action)):
if not -math.pi/2 <= action[i] <= math.pi/2:
raise ValueError("{}th action should be between -1 and 1 not {}.".format(i, action[i]))
action[i] += math.pi / 2
self._minitaur.applyAction(action)
p.stepSimulation()
self._observation = self._minitaur.getObservation()
self._envStepCounter += 1
reward = self._reward()
done = self._termination()
return np.array(self._observation), reward, done, {}
def _reset(self):
p.resetSimulation()
p.setTimeStep(self._timeStep)
p.loadURDF("plane.urdf")
p.setGravity(0,0,-10)
self._minitaur = Minitaur()
self._observation = self._minitaur.getObservation()
def _render(self, mode='human', close=False):
return
def is_fallen(self):
orientation = self._minitaur.getBaseOrientation()
rotMat = p.getMatrixFromQuaternion(orientation)
localUp = rotMat[6:]
return np.dot(np.asarray([0, 0, 1]), np.asarray(localUp)) < 0
def _termination(self):
return self.is_fallen()
def _reward(self):
currentBasePosition = self._minitaur.getBasePosition()
reward = np.dot(np.asarray([-1, 0, 0]), np.asarray(currentBasePosition) - np.asarray(self._lastBasePosition))
self._lastBasePosition = currentBasePosition
return reward

View File

@@ -0,0 +1,31 @@
from envs.bullet.cartpole_bullet import CartPoleBulletEnv
from rllab.algos.trpo import TRPO
from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline
from rllab.envs.gym_env import GymEnv
from rllab.envs.normalized_env import normalize
from rllab.policies.gaussian_mlp_policy import GaussianMLPPolicy
env = normalize(GymEnv("CartPoleBulletEnv-v0"))
policy = GaussianMLPPolicy(
env_spec=env.spec,
# The neural network policy should have two hidden layers, each with 32 hidden units.
hidden_sizes=(8,)
)
baseline = LinearFeatureBaseline(env_spec=env.spec)
algo = TRPO(
env=env,
policy=policy,
baseline=baseline,
batch_size=5000,
max_path_length=env.horizon,
n_itr=50,
discount=0.999,
step_size=0.01,
# Uncomment both lines (this and the plot parameter below) to enable plotting
# plot=True,
)
algo.train()

View File

@@ -0,0 +1,35 @@
from envs.bullet.cartpole_bullet import CartPoleBulletEnv
from sandbox.rocky.tf.algos.trpo import TRPO
from sandbox.rocky.tf.policies.gaussian_mlp_policy import GaussianMLPPolicy
from sandbox.rocky.tf.envs.base import TfEnv
from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline
from rllab.envs.gym_env import GymEnv
from rllab.envs.normalized_env import normalize
env = TfEnv(normalize(GymEnv("CartPoleBulletEnv-v0")))
policy = GaussianMLPPolicy(
name = "tf_gaussian_mlp",
env_spec=env.spec,
# The neural network policy should have two hidden layers, each with 32 hidden units.
hidden_sizes=(8,)
)
baseline = LinearFeatureBaseline(env_spec=env.spec)
algo = TRPO(
env=env,
policy=policy,
baseline=baseline,
batch_size=5000,
max_path_length=env.horizon,
n_itr=50,
discount=0.999,
step_size=0.01,
force_batch_sampler=True,
# Uncomment both lines (this and the plot parameter below) to enable plotting
#plot=True,
)
algo.train()

View File

@@ -3069,8 +3069,8 @@ static PyObject* pybullet_configureDebugVisualizer(PyObject* self, PyObject* arg
static PyObject* pybullet_resetDebugVisualizerCamera(PyObject* self, PyObject* args, PyObject* keywds)
{
float cameraDistance = -1;
float cameraYaw = -1;
float cameraPitch = -1;
float cameraYaw = 35;
float cameraPitch = 50;
PyObject* cameraTargetPosObj = 0;
int physicsClientId = 0;
@@ -3090,7 +3090,7 @@ static PyObject* pybullet_resetDebugVisualizerCamera(PyObject* self, PyObject* a
{
b3SharedMemoryCommandHandle commandHandle = b3InitConfigureOpenGLVisualizer(sm);
if ((cameraDistance >= 0) && (cameraYaw >= 0) && (cameraPitch >= 0))
if ((cameraDistance >= 0))
{
float cameraTargetPosition[3];
if (pybullet_internalSetVector(cameraTargetPosObj, cameraTargetPosition))

View File

@@ -43,8 +43,8 @@ for pitch in range (0,360,10) :
print ('width = %d height = %d' % (w,h))
#note that sending the data to matplotlib is really slow
plt.imshow(rgb,interpolation='none')
plt.imshow(rgb,interpolation='none')
plt.pause(0.001)
main_stop = time.time()

View File

@@ -0,0 +1,90 @@
## Assume you have run vr_kuka_setup and have default scene set up
# Require p.setInternalSimFlags(0) in kuka_setup
import pybullet as p
import math
p.connect(p.SHARED_MEMORY)
kuka = 3
kuka_gripper = 7
POSITION = 1
BUTTONS = 6
THRESHOLD = 1.3
LOWER_LIMITS = [-.967, -2.0, -2.96, 0.19, -2.96, -2.09, -3.05]
UPPER_LIMITS = [.96, 2.0, 2.96, 2.29, 2.96, 2.09, 3.05]
JOINT_RANGE = [5.8, 4, 5.8, 4, 5.8, 4, 6]
REST_POSE = [0, 0, 0, math.pi / 2, 0, -math.pi * 0.66, 0]
JOINT_DAMP = [.1, .1, .1, .1, .1, .1, .1]
REST_JOINT_POS = [-0., -0., 0., 1.570793, 0., -1.036725, 0.000001]
MAX_FORCE = 500
def euc_dist(posA, posB):
dist = 0.
for i in range(len(posA)):
dist += (posA[i] - posB[i]) ** 2
return dist
p.setRealTimeSimulation(1)
controllers = [e[0] for e in p.getVREvents()]
while True:
events = p.getVREvents()
for e in (events):
# Only use one controller
if e[0] == min(controllers):
break
sq_len = euc_dist(p.getLinkState(kuka, 6)[0], e[POSITION])
# A simplistic version of gripper control
if e[BUTTONS][33] & p.VR_BUTTON_WAS_TRIGGERED:
# avg = 0.
for i in range(p.getNumJoints(kuka_gripper)):
p.setJointMotorControl2(kuka_gripper, i, p.VELOCITY_CONTROL, targetVelocity=5, force=50)
# posTarget = 0.1 + (1 - min(0.75, e[3])) * 1.5 * math.pi * 0.29;
# maxPosTarget = 0.55
# correction = 0.
# jointPosition = p.getJointState(kuka_gripper, i)[0]
# if avg:
# correction = jointPosition - avg
# if jointPosition < 0:
# p.resetJointState(kuka_gripper, i, 0)
# if jointPosition > maxPosTarget:
# p.resetJointState(kuka_gripper, i, maxPosTarget)
# if avg:
# p.setJointMotorControl2(kuka_gripper, i, p.POSITION_CONTROL,
# targetPosition=avg, targetVelocity=0.,
# positionGain=1, velocityGain=0.5, force=50)
# else:
# p.setJointMotorControl2(kuka_gripper, i, p.POSITION_CONTROL,
# targetPosition=posTarget, targetVelocity=0.,
# positionGain=1, velocityGain=0.5, force=50)
# avg = p.getJointState(kuka_gripper, i)[0]
if e[BUTTONS][33] & p.VR_BUTTON_WAS_RELEASED:
for i in range(p.getNumJoints(kuka_gripper)):
p.setJointMotorControl2(kuka_gripper, i, p.VELOCITY_CONTROL, targetVelocity=-5, force=50)
if sq_len < THRESHOLD * THRESHOLD:
joint_pos = p.calculateInverseKinematics(kuka, 6, e[POSITION], (0, 1, 0, 0),
lowerLimits=LOWER_LIMITS, upperLimits=UPPER_LIMITS,
jointRanges=JOINT_RANGE, restPoses=REST_POSE, jointDamping=JOINT_DAMP)
for i in range(len(joint_pos)):
p.setJointMotorControl2(kuka, i, p.POSITION_CONTROL,
targetPosition=joint_pos[i], targetVelocity=0,
positionGain=0.6, velocityGain=1.0, force=MAX_FORCE)
else:
# Set back to original rest pose
for jointIndex in range(p.getNumJoints(kuka)):
p.setJointMotorControl2(kuka, jointIndex, p.POSITION_CONTROL,
REST_JOINT_POS[jointIndex], 0)