Merge pull request #1011 from erwincoumans/master

clang-format style file, easier way to format according to Bullet code style (may need some tweaks)
This commit is contained in:
erwincoumans
2017-03-13 14:13:50 -07:00
committed by GitHub
3 changed files with 624 additions and 535 deletions

90
_clang-format Normal file
View File

@@ -0,0 +1,90 @@
---
Language: Cpp
# BasedOnStyle: Google
AccessModifierOffset: -1
AlignAfterOpenBracket: Align
AlignConsecutiveAssignments: false
AlignConsecutiveDeclarations: false
AlignEscapedNewlinesLeft: true
AlignOperands: true
AlignTrailingComments: true
AllowAllParametersOfDeclarationOnNextLine: true
AllowShortBlocksOnASingleLine: false
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: All
AllowShortIfStatementsOnASingleLine: true
AllowShortLoopsOnASingleLine: true
AlwaysBreakAfterDefinitionReturnType: None
AlwaysBreakAfterReturnType: None
AlwaysBreakBeforeMultilineStrings: true
AlwaysBreakTemplateDeclarations: true
BinPackArguments: true
BinPackParameters: true
BraceWrapping:
AfterClass: false
AfterControlStatement: false
AfterEnum: false
AfterFunction: false
AfterNamespace: false
AfterObjCDeclaration: false
AfterStruct: false
AfterUnion: false
BeforeCatch: false
BeforeElse: false
IndentBraces: false
BreakBeforeBinaryOperators: None
BreakBeforeBraces: Allman
BreakBeforeTernaryOperators: true
BreakConstructorInitializersBeforeComma: false
ColumnLimit: 0
CommentPragmas: '^ IWYU pragma:'
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ConstructorInitializerIndentWidth: 4
ContinuationIndentWidth: 4
Cpp11BracedListStyle: true
DerivePointerAlignment: true
DisableFormat: false
ExperimentalAutoDetectBinPacking: false
ForEachMacros: [ foreach, Q_FOREACH, BOOST_FOREACH ]
IncludeCategories:
- Regex: '^<.*\.h>'
Priority: 1
- Regex: '^<.*'
Priority: 2
- Regex: '.*'
Priority: 3
IndentCaseLabels: true
IndentWidth: 4
IndentWrappedFunctionNames: false
KeepEmptyLinesAtTheStartOfBlocks: false
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
ObjCBlockIndentWidth: 2
ObjCSpaceAfterProperty: false
ObjCSpaceBeforeProtocolList: false
PenaltyBreakBeforeFirstCallParameter: 1
PenaltyBreakComment: 300
PenaltyBreakFirstLessLess: 120
PenaltyBreakString: 1000
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 200
PointerAlignment: Left
ReflowComments: false
SortIncludes: false
SpaceAfterCStyleCast: false
SpaceBeforeAssignmentOperators: true
SpaceBeforeParens: ControlStatements
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 2
SpacesInAngles: false
SpacesInContainerLiterals: true
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
Standard: Auto
TabWidth: 4
UseTab: Always
...

View File

@@ -38,9 +38,9 @@ int main(int argc, char** argv)
///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded)
btSequentialImpulseConstraintSolver* solver = new btSequentialImpulseConstraintSolver;
btDiscreteDynamicsWorld* dynamicsWorld = new btDiscreteDynamicsWorld(dispatcher,overlappingPairCache,solver,collisionConfiguration);
btDiscreteDynamicsWorld* dynamicsWorld = new btDiscreteDynamicsWorld(dispatcher, overlappingPairCache, solver, collisionConfiguration);
dynamicsWorld->setGravity(btVector3(0,-10,0));
dynamicsWorld->setGravity(btVector3(0, -10, 0));
///-----initialization_end-----
@@ -48,39 +48,37 @@ int main(int argc, char** argv)
//make sure to re-use collision shapes among rigid bodies whenever possible!
btAlignedObjectArray<btCollisionShape*> collisionShapes;
///create a few basic rigid bodies
//the ground is a cube of side 100 at position y = -56.
//the sphere will hit it at y = -6, with center at -5
{
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(50.),btScalar(50.),btScalar(50.)));
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(50.), btScalar(50.), btScalar(50.)));
collisionShapes.push_back(groundShape);
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0,-56,0));
groundTransform.setOrigin(btVector3(0, -56, 0));
btScalar mass(0.);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
btVector3 localInertia(0, 0, 0);
if (isDynamic)
groundShape->calculateLocalInertia(mass,localInertia);
groundShape->calculateLocalInertia(mass, localInertia);
//using motionstate is optional, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, groundShape, localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
//add the body to the dynamics world
dynamicsWorld->addRigidBody(body);
}
{
//create a dynamic rigidbody
@@ -97,32 +95,29 @@ int main(int argc, char** argv)
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
btVector3 localInertia(0, 0, 0);
if (isDynamic)
colShape->calculateLocalInertia(mass,localInertia);
colShape->calculateLocalInertia(mass, localInertia);
startTransform.setOrigin(btVector3(2,10,0));
startTransform.setOrigin(btVector3(2, 10, 0));
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, colShape, localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
dynamicsWorld->addRigidBody(body);
}
/// Do some simulation
/// Do some simulation
///-----stepsimulation_start-----
for (i=0;i<150;i++)
for (i = 0; i < 150; i++)
{
dynamicsWorld->stepSimulation(1.f/60.f,10);
dynamicsWorld->stepSimulation(1.f / 60.f, 10);
//print positions of all objects
for (int j=dynamicsWorld->getNumCollisionObjects()-1; j>=0 ;j--)
for (int j = dynamicsWorld->getNumCollisionObjects() - 1; j >= 0; j--)
{
btCollisionObject* obj = dynamicsWorld->getCollisionObjectArray()[j];
btRigidBody* body = btRigidBody::upcast(obj);
@@ -130,12 +125,12 @@ int main(int argc, char** argv)
if (body && body->getMotionState())
{
body->getMotionState()->getWorldTransform(trans);
} else
}
else
{
trans = obj->getWorldTransform();
}
printf("world pos object %d = %f,%f,%f\n",j,float(trans.getOrigin().getX()),float(trans.getOrigin().getY()),float(trans.getOrigin().getZ()));
printf("world pos object %d = %f,%f,%f\n", j, float(trans.getOrigin().getX()), float(trans.getOrigin().getY()), float(trans.getOrigin().getZ()));
}
}
@@ -146,7 +141,7 @@ int main(int argc, char** argv)
///-----cleanup_start-----
//remove the rigidbodies from the dynamics world and delete them
for (i=dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
for (i = dynamicsWorld->getNumCollisionObjects() - 1; i >= 0; i--)
{
btCollisionObject* obj = dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
@@ -154,12 +149,12 @@ int main(int argc, char** argv)
{
delete body->getMotionState();
}
dynamicsWorld->removeCollisionObject( obj );
dynamicsWorld->removeCollisionObject(obj);
delete obj;
}
//delete collision shapes
for (int j=0;j<collisionShapes.size();j++)
for (int j = 0; j < collisionShapes.size(); j++)
{
btCollisionShape* shape = collisionShapes[j];
collisionShapes[j] = 0;
@@ -183,4 +178,3 @@ int main(int argc, char** argv)
//next line is optional: it will be cleared by the destructor when the array goes out of scope
collisionShapes.clear();
}

View File

@@ -12,20 +12,16 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_SCALAR_H
#define BT_SCALAR_H
#ifdef BT_MANAGED_CODE
//Aligned data types not supported in managed code
#pragma unmanaged
#endif
#include <math.h>
#include <stdlib.h>//size_t for MSVC 6.0
#include <stdlib.h> //size_t for MSVC 6.0
#include <float.h>
/* SVN $Revision$ on $Date$ from http://bullet.googlecode.com*/
@@ -36,15 +32,14 @@ inline int btGetVersion()
return BT_BULLET_VERSION;
}
// clang and most formatting tools don't support indentation of preprocessor guards, so turn it off
// clang-format off
#if defined(DEBUG) || defined (_DEBUG)
#define BT_DEBUG
#define BT_DEBUG
#endif
#ifdef _WIN32
#if defined(__MINGW32__) || defined(__CYGWIN__) || (defined (_MSC_VER) && _MSC_VER < 1300)
#define SIMD_FORCE_INLINE inline
#define ATTRIBUTE_ALIGNED16(a) a
#define ATTRIBUTE_ALIGNED64(a) a
@@ -54,7 +49,7 @@ inline int btGetVersion()
#define ATTRIBUTE_ALIGNED16(a) __declspec() a
#define ATTRIBUTE_ALIGNED64(a) __declspec() a
#define ATTRIBUTE_ALIGNED128(a) __declspec () a
#else
#else//__MINGW32__
//#define BT_HAS_ALIGNED_ALLOCATOR
#pragma warning(disable : 4324) // disable padding warning
// #pragma warning(disable:4530) // Disable the exception disable but used in MSCV Stl warning.
@@ -102,7 +97,7 @@ inline int btGetVersion()
#endif //__MINGW32__
#ifdef BT_DEBUG
#ifdef BT_DEBUG
#ifdef _MSC_VER
#include <stdio.h>
#define btAssert(x) { if(!(x)){printf("Assert "__FILE__ ":%u (%s)\n", __LINE__, #x);__debugbreak(); }}
@@ -110,18 +105,18 @@ inline int btGetVersion()
#include <assert.h>
#define btAssert assert
#endif//_MSC_VER
#else
#else
#define btAssert(x)
#endif
#endif
//btFullAssert is optional, slows down a lot
#define btFullAssert(x)
#define btLikely(_c) _c
#define btUnlikely(_c) _c
#else
#else//_WIN32
#if defined (__CELLOS_LV2__)
#if defined (__CELLOS_LV2__)
#define SIMD_FORCE_INLINE inline __attribute__((always_inline))
#define ATTRIBUTE_ALIGNED16(a) a __attribute__ ((aligned (16)))
#define ATTRIBUTE_ALIGNED64(a) a __attribute__ ((aligned (64)))
@@ -129,27 +124,27 @@ inline int btGetVersion()
#ifndef assert
#include <assert.h>
#endif
#ifdef BT_DEBUG
#ifdef __SPU__
#include <spu_printf.h>
#define printf spu_printf
#ifdef BT_DEBUG
#ifdef __SPU__
#include <spu_printf.h>
#define printf spu_printf
#define btAssert(x) {if(!(x)){printf("Assert "__FILE__ ":%u ("#x")\n", __LINE__);spu_hcmpeq(0,0);}}
#else
#else
#define btAssert assert
#endif
#endif
#else
#else//BT_DEBUG
#define btAssert(x)
#endif
#endif//BT_DEBUG
//btFullAssert is optional, slows down a lot
#define btFullAssert(x)
#define btLikely(_c) _c
#define btUnlikely(_c) _c
#else
#else//defined (__CELLOS_LV2__)
#ifdef USE_LIBSPE2
#ifdef USE_LIBSPE2
#define SIMD_FORCE_INLINE __inline
#define ATTRIBUTE_ALIGNED16(a) a __attribute__ ((aligned (16)))
@@ -158,11 +153,11 @@ inline int btGetVersion()
#ifndef assert
#include <assert.h>
#endif
#ifdef BT_DEBUG
#ifdef BT_DEBUG
#define btAssert assert
#else
#else
#define btAssert(x)
#endif
#endif
//btFullAssert is optional, slows down a lot
#define btFullAssert(x)
@@ -171,10 +166,10 @@ inline int btGetVersion()
#define btUnlikely(_c) __builtin_expect((_c), 0)
#else
#else//USE_LIBSPE2
//non-windows systems
#if (defined (__APPLE__) && (!defined (BT_USE_DOUBLE_PRECISION)))
#if (defined (__APPLE__) && (!defined (BT_USE_DOUBLE_PRECISION)))
#if defined (__i386__) || defined (__x86_64__)
#define BT_USE_SIMD_VECTOR3
#define BT_USE_SSE
@@ -205,7 +200,7 @@ inline int btGetVersion()
#endif//__arm__
#define SIMD_FORCE_INLINE inline __attribute__ ((always_inline))
///@todo: check out alignment methods for other platforms/compilers
///@todo: check out alignment methods for other platforms/compilers
#define ATTRIBUTE_ALIGNED16(a) a __attribute__ ((aligned (16)))
#define ATTRIBUTE_ALIGNED64(a) a __attribute__ ((aligned (64)))
#define ATTRIBUTE_ALIGNED128(a) a __attribute__ ((aligned (128)))
@@ -236,7 +231,7 @@ inline int btGetVersion()
#define btLikely(_c) _c
#define btUnlikely(_c) _c
#else
#else//__APPLE__
#define SIMD_FORCE_INLINE inline
///@todo: check out alignment methods for other platforms/compilers
@@ -250,105 +245,105 @@ inline int btGetVersion()
#include <assert.h>
#endif
#if defined(DEBUG) || defined (_DEBUG)
#if defined(DEBUG) || defined (_DEBUG)
#define btAssert assert
#else
#else
#define btAssert(x)
#endif
#endif
//btFullAssert is optional, slows down a lot
#define btFullAssert(x)
#define btLikely(_c) _c
#define btUnlikely(_c) _c
#endif //__APPLE__
#endif // LIBSPE2
#endif //__CELLOS_LV2__
#endif
#endif //__APPLE__
#endif // LIBSPE2
#endif //__CELLOS_LV2__
#endif//_WIN32
///The btScalar type abstracts floating point numbers, to easily switch between double and single floating point precision.
#if defined(BT_USE_DOUBLE_PRECISION)
typedef double btScalar;
//this number could be bigger in double precision
#define BT_LARGE_FLOAT 1e30
typedef double btScalar;
//this number could be bigger in double precision
#define BT_LARGE_FLOAT 1e30
#else
typedef float btScalar;
//keep BT_LARGE_FLOAT*BT_LARGE_FLOAT < FLT_MAX
#define BT_LARGE_FLOAT 1e18f
typedef float btScalar;
//keep BT_LARGE_FLOAT*BT_LARGE_FLOAT < FLT_MAX
#define BT_LARGE_FLOAT 1e18f
#endif
#ifdef BT_USE_SSE
typedef __m128 btSimdFloat4;
#endif//BT_USE_SSE
typedef __m128 btSimdFloat4;
#endif //BT_USE_SSE
#if defined (BT_USE_SSE)
//#if defined BT_USE_SSE_IN_API && defined (BT_USE_SSE)
#ifdef _WIN32
#if defined(BT_USE_SSE)
//#if defined BT_USE_SSE_IN_API && defined (BT_USE_SSE)
#ifdef _WIN32
#ifndef BT_NAN
static int btNanMask = 0x7F800001;
#define BT_NAN (*(float*)&btNanMask)
#endif
#ifndef BT_NAN
static int btNanMask = 0x7F800001;
#define BT_NAN (*(float *)&btNanMask)
#endif
#ifndef BT_INFINITY
static int btInfinityMask = 0x7F800000;
#define BT_INFINITY (*(float*)&btInfinityMask)
inline int btGetInfinityMask()//suppress stupid compiler warning
{
#ifndef BT_INFINITY
static int btInfinityMask = 0x7F800000;
#define BT_INFINITY (*(float *)&btInfinityMask)
inline int btGetInfinityMask() //suppress stupid compiler warning
{
return btInfinityMask;
}
#endif
}
#endif
//use this, in case there are clashes (such as xnamath.h)
#ifndef BT_NO_SIMD_OPERATOR_OVERLOADS
inline __m128 operator + (const __m128 A, const __m128 B)
{
//use this, in case there are clashes (such as xnamath.h)
#ifndef BT_NO_SIMD_OPERATOR_OVERLOADS
inline __m128 operator+(const __m128 A, const __m128 B)
{
return _mm_add_ps(A, B);
}
}
inline __m128 operator - (const __m128 A, const __m128 B)
{
inline __m128 operator-(const __m128 A, const __m128 B)
{
return _mm_sub_ps(A, B);
}
}
inline __m128 operator * (const __m128 A, const __m128 B)
{
inline __m128 operator*(const __m128 A, const __m128 B)
{
return _mm_mul_ps(A, B);
}
#endif //BT_NO_SIMD_OPERATOR_OVERLOADS
}
#endif //BT_NO_SIMD_OPERATOR_OVERLOADS
#define btCastfTo128i(a) (_mm_castps_si128(a))
#define btCastfTo128d(a) (_mm_castps_pd(a))
#define btCastiTo128f(a) (_mm_castsi128_ps(a))
#define btCastdTo128f(a) (_mm_castpd_ps(a))
#define btCastdTo128i(a) (_mm_castpd_si128(a))
#define btAssign128(r0,r1,r2,r3) _mm_setr_ps(r0,r1,r2,r3)
#define btCastfTo128i(a) (_mm_castps_si128(a))
#define btCastfTo128d(a) (_mm_castps_pd(a))
#define btCastiTo128f(a) (_mm_castsi128_ps(a))
#define btCastdTo128f(a) (_mm_castpd_ps(a))
#define btCastdTo128i(a) (_mm_castpd_si128(a))
#define btAssign128(r0, r1, r2, r3) _mm_setr_ps(r0, r1, r2, r3)
#else//_WIN32
#else //_WIN32
#define btCastfTo128i(a) ((__m128i)(a))
#define btCastfTo128d(a) ((__m128d)(a))
#define btCastiTo128f(a) ((__m128) (a))
#define btCastdTo128f(a) ((__m128) (a))
#define btCastdTo128i(a) ((__m128i)(a))
#define btAssign128(r0,r1,r2,r3) (__m128){r0,r1,r2,r3}
#define BT_INFINITY INFINITY
#define BT_NAN NAN
#endif//_WIN32
#else
#define btCastfTo128i(a) ((__m128i)(a))
#define btCastfTo128d(a) ((__m128d)(a))
#define btCastiTo128f(a) ((__m128)(a))
#define btCastdTo128f(a) ((__m128)(a))
#define btCastdTo128i(a) ((__m128i)(a))
#define btAssign128(r0, r1, r2, r3) \
(__m128) { r0, r1, r2, r3 }
#define BT_INFINITY INFINITY
#define BT_NAN NAN
#endif //_WIN32
#else//BT_USE_SSE
#ifdef BT_USE_NEON
#ifdef BT_USE_NEON
#include <arm_neon.h>
typedef float32x4_t btSimdFloat4;
#define BT_INFINITY INFINITY
#define BT_NAN NAN
#define btAssign128(r0,r1,r2,r3) (float32x4_t){r0,r1,r2,r3}
#else//BT_USE_NEON
#define btAssign128(r0, r1, r2, r3) \
(float32x4_t) { r0, r1, r2, r3 }
#else //BT_USE_NEON
#ifndef BT_INFINITY
struct btInfMaskConverter
@@ -357,122 +352,132 @@ inline __m128 operator * (const __m128 A, const __m128 B)
float mask;
int intmask;
};
btInfMaskConverter(int mask=0x7F800000)
:intmask(mask)
btInfMaskConverter(int mask = 0x7F800000)
: intmask(mask)
{
}
};
static btInfMaskConverter btInfinityMask = 0x7F800000;
#define BT_INFINITY (btInfinityMask.mask)
inline int btGetInfinityMask()//suppress stupid compiler warning
inline int btGetInfinityMask() //suppress stupid compiler warning
{
return btInfinityMask.intmask;
}
#endif
#endif//BT_USE_NEON
#endif //BT_USE_NEON
#endif //BT_USE_SSE
#ifdef BT_USE_NEON
#include <arm_neon.h>
typedef float32x4_t btSimdFloat4;
#define BT_INFINITY INFINITY
#define BT_NAN NAN
#define btAssign128(r0,r1,r2,r3) (float32x4_t){r0,r1,r2,r3}
#endif
#include <arm_neon.h>
typedef float32x4_t btSimdFloat4;
#define BT_INFINITY INFINITY
#define BT_NAN NAN
#define btAssign128(r0, r1, r2, r3) \
(float32x4_t) { r0, r1, r2, r3 }
#endif//BT_USE_NEON
#define BT_DECLARE_ALIGNED_ALLOCATOR() \
SIMD_FORCE_INLINE void* operator new(size_t sizeInBytes) { return btAlignedAlloc(sizeInBytes,16); } \
SIMD_FORCE_INLINE void operator delete(void* ptr) { btAlignedFree(ptr); } \
SIMD_FORCE_INLINE void* operator new(size_t, void* ptr) { return ptr; } \
SIMD_FORCE_INLINE void operator delete(void*, void*) { } \
SIMD_FORCE_INLINE void* operator new[](size_t sizeInBytes) { return btAlignedAlloc(sizeInBytes,16); } \
SIMD_FORCE_INLINE void operator delete[](void* ptr) { btAlignedFree(ptr); } \
SIMD_FORCE_INLINE void* operator new[](size_t, void* ptr) { return ptr; } \
SIMD_FORCE_INLINE void operator delete[](void*, void*) { } \
SIMD_FORCE_INLINE void *operator new(size_t sizeInBytes) { return btAlignedAlloc(sizeInBytes, 16); } \
SIMD_FORCE_INLINE void operator delete(void *ptr) { btAlignedFree(ptr); } \
SIMD_FORCE_INLINE void *operator new(size_t, void *ptr) { return ptr; } \
SIMD_FORCE_INLINE void operator delete(void *, void *) {} \
SIMD_FORCE_INLINE void *operator new[](size_t sizeInBytes) { return btAlignedAlloc(sizeInBytes, 16); } \
SIMD_FORCE_INLINE void operator delete[](void *ptr) { btAlignedFree(ptr); } \
SIMD_FORCE_INLINE void *operator new[](size_t, void *ptr) { return ptr; } \
SIMD_FORCE_INLINE void operator delete[](void *, void *) {}
#if defined(BT_USE_DOUBLE_PRECISION) || defined(BT_FORCE_DOUBLE_FUNCTIONS)
SIMD_FORCE_INLINE btScalar btSqrt(btScalar x) { return sqrt(x); }
SIMD_FORCE_INLINE btScalar btFabs(btScalar x) { return fabs(x); }
SIMD_FORCE_INLINE btScalar btCos(btScalar x) { return cos(x); }
SIMD_FORCE_INLINE btScalar btSin(btScalar x) { return sin(x); }
SIMD_FORCE_INLINE btScalar btTan(btScalar x) { return tan(x); }
SIMD_FORCE_INLINE btScalar btAcos(btScalar x) { if (x<btScalar(-1)) x=btScalar(-1); if (x>btScalar(1)) x=btScalar(1); return acos(x); }
SIMD_FORCE_INLINE btScalar btAsin(btScalar x) { if (x<btScalar(-1)) x=btScalar(-1); if (x>btScalar(1)) x=btScalar(1); return asin(x); }
SIMD_FORCE_INLINE btScalar btAtan(btScalar x) { return atan(x); }
SIMD_FORCE_INLINE btScalar btAtan2(btScalar x, btScalar y) { return atan2(x, y); }
SIMD_FORCE_INLINE btScalar btExp(btScalar x) { return exp(x); }
SIMD_FORCE_INLINE btScalar btLog(btScalar x) { return log(x); }
SIMD_FORCE_INLINE btScalar btPow(btScalar x,btScalar y) { return pow(x,y); }
SIMD_FORCE_INLINE btScalar btFmod(btScalar x,btScalar y) { return fmod(x,y); }
SIMD_FORCE_INLINE btScalar btSqrt(btScalar x)
{
return sqrt(x);
}
SIMD_FORCE_INLINE btScalar btFabs(btScalar x) { return fabs(x); }
SIMD_FORCE_INLINE btScalar btCos(btScalar x) { return cos(x); }
SIMD_FORCE_INLINE btScalar btSin(btScalar x) { return sin(x); }
SIMD_FORCE_INLINE btScalar btTan(btScalar x) { return tan(x); }
SIMD_FORCE_INLINE btScalar btAcos(btScalar x)
{
if (x < btScalar(-1)) x = btScalar(-1);
if (x > btScalar(1)) x = btScalar(1);
return acos(x);
}
SIMD_FORCE_INLINE btScalar btAsin(btScalar x)
{
if (x < btScalar(-1)) x = btScalar(-1);
if (x > btScalar(1)) x = btScalar(1);
return asin(x);
}
SIMD_FORCE_INLINE btScalar btAtan(btScalar x) { return atan(x); }
SIMD_FORCE_INLINE btScalar btAtan2(btScalar x, btScalar y) { return atan2(x, y); }
SIMD_FORCE_INLINE btScalar btExp(btScalar x) { return exp(x); }
SIMD_FORCE_INLINE btScalar btLog(btScalar x) { return log(x); }
SIMD_FORCE_INLINE btScalar btPow(btScalar x, btScalar y) { return pow(x, y); }
SIMD_FORCE_INLINE btScalar btFmod(btScalar x, btScalar y) { return fmod(x, y); }
#else
#else//BT_USE_DOUBLE_PRECISION
SIMD_FORCE_INLINE btScalar btSqrt(btScalar y)
{
#ifdef USE_APPROXIMATION
#ifdef __LP64__
float xhalf = 0.5f*y;
int i = *(int*)&y;
i = 0x5f375a86 - (i>>1);
y = *(float*)&i;
y = y*(1.5f - xhalf*y*y);
y = y*(1.5f - xhalf*y*y);
y = y*(1.5f - xhalf*y*y);
y=1/y;
SIMD_FORCE_INLINE btScalar btSqrt(btScalar y)
{
#ifdef USE_APPROXIMATION
#ifdef __LP64__
float xhalf = 0.5f * y;
int i = *(int *)&y;
i = 0x5f375a86 - (i >> 1);
y = *(float *)&i;
y = y * (1.5f - xhalf * y * y);
y = y * (1.5f - xhalf * y * y);
y = y * (1.5f - xhalf * y * y);
y = 1 / y;
return y;
#else
#else
double x, z, tempf;
unsigned long *tfptr = ((unsigned long *)&tempf) + 1;
tempf = y;
*tfptr = (0xbfcdd90a - *tfptr)>>1; /* estimate of 1/sqrt(y) */
*tfptr = (0xbfcdd90a - *tfptr) >> 1; /* estimate of 1/sqrt(y) */
x = tempf;
z = y*btScalar(0.5);
x = (btScalar(1.5)*x)-(x*x)*(x*z); /* iteration formula */
x = (btScalar(1.5)*x)-(x*x)*(x*z);
x = (btScalar(1.5)*x)-(x*x)*(x*z);
x = (btScalar(1.5)*x)-(x*x)*(x*z);
x = (btScalar(1.5)*x)-(x*x)*(x*z);
return x*y;
#endif
#else
z = y * btScalar(0.5);
x = (btScalar(1.5) * x) - (x * x) * (x * z); /* iteration formula */
x = (btScalar(1.5) * x) - (x * x) * (x * z);
x = (btScalar(1.5) * x) - (x * x) * (x * z);
x = (btScalar(1.5) * x) - (x * x) * (x * z);
x = (btScalar(1.5) * x) - (x * x) * (x * z);
return x * y;
#endif
#else
return sqrtf(y);
#endif
}
SIMD_FORCE_INLINE btScalar btFabs(btScalar x) { return fabsf(x); }
SIMD_FORCE_INLINE btScalar btCos(btScalar x) { return cosf(x); }
SIMD_FORCE_INLINE btScalar btSin(btScalar x) { return sinf(x); }
SIMD_FORCE_INLINE btScalar btTan(btScalar x) { return tanf(x); }
SIMD_FORCE_INLINE btScalar btAcos(btScalar x) {
if (x<btScalar(-1))
x=btScalar(-1);
if (x>btScalar(1))
x=btScalar(1);
#endif
}
SIMD_FORCE_INLINE btScalar btFabs(btScalar x) { return fabsf(x); }
SIMD_FORCE_INLINE btScalar btCos(btScalar x) { return cosf(x); }
SIMD_FORCE_INLINE btScalar btSin(btScalar x) { return sinf(x); }
SIMD_FORCE_INLINE btScalar btTan(btScalar x) { return tanf(x); }
SIMD_FORCE_INLINE btScalar btAcos(btScalar x)
{
if (x < btScalar(-1))
x = btScalar(-1);
if (x > btScalar(1))
x = btScalar(1);
return acosf(x);
}
SIMD_FORCE_INLINE btScalar btAsin(btScalar x) {
if (x<btScalar(-1))
x=btScalar(-1);
if (x>btScalar(1))
x=btScalar(1);
}
SIMD_FORCE_INLINE btScalar btAsin(btScalar x)
{
if (x < btScalar(-1))
x = btScalar(-1);
if (x > btScalar(1))
x = btScalar(1);
return asinf(x);
}
SIMD_FORCE_INLINE btScalar btAtan(btScalar x) { return atanf(x); }
SIMD_FORCE_INLINE btScalar btAtan2(btScalar x, btScalar y) { return atan2f(x, y); }
SIMD_FORCE_INLINE btScalar btExp(btScalar x) { return expf(x); }
SIMD_FORCE_INLINE btScalar btLog(btScalar x) { return logf(x); }
SIMD_FORCE_INLINE btScalar btPow(btScalar x,btScalar y) { return powf(x,y); }
SIMD_FORCE_INLINE btScalar btFmod(btScalar x,btScalar y) { return fmodf(x,y); }
}
SIMD_FORCE_INLINE btScalar btAtan(btScalar x) { return atanf(x); }
SIMD_FORCE_INLINE btScalar btAtan2(btScalar x, btScalar y) { return atan2f(x, y); }
SIMD_FORCE_INLINE btScalar btExp(btScalar x) { return expf(x); }
SIMD_FORCE_INLINE btScalar btLog(btScalar x) { return logf(x); }
SIMD_FORCE_INLINE btScalar btPow(btScalar x, btScalar y) { return powf(x, y); }
SIMD_FORCE_INLINE btScalar btFmod(btScalar x, btScalar y) { return fmodf(x, y); }
#endif
#endif//BT_USE_DOUBLE_PRECISION
#define SIMD_PI btScalar(3.1415926535897932384626433832795029)
#define SIMD_2_PI (btScalar(2.0) * SIMD_PI)
@@ -480,36 +485,40 @@ SIMD_FORCE_INLINE btScalar btFmod(btScalar x,btScalar y) { return fmodf(x,y); }
#define SIMD_RADS_PER_DEG (SIMD_2_PI / btScalar(360.0))
#define SIMD_DEGS_PER_RAD (btScalar(360.0) / SIMD_2_PI)
#define SIMDSQRT12 btScalar(0.7071067811865475244008443621048490)
#define btRecipSqrt(x) ((btScalar)(btScalar(1.0)/btSqrt(btScalar(x)))) /* reciprocal square root */
#define btRecip(x) (btScalar(1.0)/btScalar(x))
#define btRecipSqrt(x) ((btScalar)(btScalar(1.0) / btSqrt(btScalar(x)))) /* reciprocal square root */
#define btRecip(x) (btScalar(1.0) / btScalar(x))
#ifdef BT_USE_DOUBLE_PRECISION
#define SIMD_EPSILON DBL_EPSILON
#define SIMD_INFINITY DBL_MAX
#define BT_ONE 1.0
#define BT_ZERO 0.0
#define BT_TWO 2.0
#define BT_HALF 0.5
#define SIMD_EPSILON DBL_EPSILON
#define SIMD_INFINITY DBL_MAX
#define BT_ONE 1.0
#define BT_ZERO 0.0
#define BT_TWO 2.0
#define BT_HALF 0.5
#else
#define SIMD_EPSILON FLT_EPSILON
#define SIMD_INFINITY FLT_MAX
#define BT_ONE 1.0f
#define BT_ZERO 0.0f
#define BT_TWO 2.0f
#define BT_HALF 0.5f
#define SIMD_EPSILON FLT_EPSILON
#define SIMD_INFINITY FLT_MAX
#define BT_ONE 1.0f
#define BT_ZERO 0.0f
#define BT_TWO 2.0f
#define BT_HALF 0.5f
#endif
// clang-format on
SIMD_FORCE_INLINE btScalar btAtan2Fast(btScalar y, btScalar x)
{
btScalar coeff_1 = SIMD_PI / 4.0f;
btScalar coeff_2 = 3.0f * coeff_1;
btScalar abs_y = btFabs(y);
btScalar angle;
if (x >= 0.0f) {
if (x >= 0.0f)
{
btScalar r = (x - abs_y) / (x + abs_y);
angle = coeff_1 - coeff_1 * r;
} else {
}
else
{
btScalar r = (x + abs_y) / (abs_y - x);
angle = coeff_2 - coeff_1 * r;
}
@@ -518,22 +527,28 @@ SIMD_FORCE_INLINE btScalar btAtan2Fast(btScalar y, btScalar x)
SIMD_FORCE_INLINE bool btFuzzyZero(btScalar x) { return btFabs(x) < SIMD_EPSILON; }
SIMD_FORCE_INLINE bool btEqual(btScalar a, btScalar eps) {
SIMD_FORCE_INLINE bool btEqual(btScalar a, btScalar eps)
{
return (((a) <= eps) && !((a) < -eps));
}
SIMD_FORCE_INLINE bool btGreaterEqual (btScalar a, btScalar eps) {
SIMD_FORCE_INLINE bool btGreaterEqual(btScalar a, btScalar eps)
{
return (!((a) <= eps));
}
SIMD_FORCE_INLINE int btIsNegative(btScalar x) {
SIMD_FORCE_INLINE int btIsNegative(btScalar x)
{
return x < btScalar(0.0) ? 1 : 0;
}
SIMD_FORCE_INLINE btScalar btRadians(btScalar x) { return x * SIMD_RADS_PER_DEG; }
SIMD_FORCE_INLINE btScalar btDegrees(btScalar x) { return x * SIMD_DEGS_PER_RAD; }
#define BT_DECLARE_HANDLE(name) typedef struct name##__ { int unused; } *name
#define BT_DECLARE_HANDLE(name) \
typedef struct name##__ \
{ \
int unused; \
} * name
#ifndef btFsel
SIMD_FORCE_INLINE btScalar btFsel(btScalar a, btScalar b, btScalar c)
@@ -541,21 +556,18 @@ SIMD_FORCE_INLINE btScalar btFsel(btScalar a, btScalar b, btScalar c)
return a >= 0 ? b : c;
}
#endif
#define btFsels(a,b,c) (btScalar)btFsel(a,b,c)
#define btFsels(a, b, c) (btScalar) btFsel(a, b, c)
SIMD_FORCE_INLINE bool btMachineIsLittleEndian()
{
long int i = 1;
const char *p = (const char *) &i;
const char *p = (const char *)&i;
if (p[0] == 1) // Lowest address contains the least significant byte
return true;
else
return false;
}
///btSelect avoids branches, which makes performance much better for consoles like Playstation 3 and XBox 360
///Thanks Phil Knight. See also http://www.cellperformance.com/articles/2006/04/more_techniques_for_eliminatin_1.html
SIMD_FORCE_INLINE unsigned btSelect(unsigned condition, unsigned valueIfConditionNonZero, unsigned valueIfConditionZero)
@@ -583,14 +595,14 @@ SIMD_FORCE_INLINE float btSelect(unsigned condition, float valueIfConditionNonZe
#endif
}
template<typename T> SIMD_FORCE_INLINE void btSwap(T& a, T& b)
template <typename T>
SIMD_FORCE_INLINE void btSwap(T &a, T &b)
{
T tmp = a;
a = b;
b = tmp;
}
//PCK: endian swapping functions
SIMD_FORCE_INLINE unsigned btSwapEndian(unsigned val)
{
@@ -609,7 +621,7 @@ SIMD_FORCE_INLINE unsigned btSwapEndian(int val)
SIMD_FORCE_INLINE unsigned short btSwapEndian(short val)
{
return btSwapEndian((unsigned short) val);
return btSwapEndian((unsigned short)val);
}
///btSwapFloat uses using char pointers to swap the endianness
@@ -646,9 +658,8 @@ SIMD_FORCE_INLINE float btUnswapEndianFloat(unsigned int a)
return d;
}
// swap using char pointers
SIMD_FORCE_INLINE void btSwapEndianDouble(double d, unsigned char* dst)
SIMD_FORCE_INLINE void btSwapEndianDouble(double d, unsigned char *dst)
{
unsigned char *src = (unsigned char *)&d;
@@ -660,7 +671,6 @@ SIMD_FORCE_INLINE void btSwapEndianDouble(double d, unsigned char* dst)
dst[5] = src[2];
dst[6] = src[1];
dst[7] = src[0];
}
// unswap using char pointers
@@ -681,10 +691,10 @@ SIMD_FORCE_INLINE double btUnswapEndianDouble(const unsigned char *src)
return d;
}
template<typename T>
SIMD_FORCE_INLINE void btSetZero(T* a, int n)
template <typename T>
SIMD_FORCE_INLINE void btSetZero(T *a, int n)
{
T* acurr = a;
T *acurr = a;
size_t ncurr = n;
while (ncurr > 0)
{
@@ -693,16 +703,18 @@ SIMD_FORCE_INLINE void btSetZero(T* a, int n)
}
}
SIMD_FORCE_INLINE btScalar btLargeDot(const btScalar *a, const btScalar *b, int n)
{
btScalar p0,q0,m0,p1,q1,m1,sum;
btScalar p0, q0, m0, p1, q1, m1, sum;
sum = 0;
n -= 2;
while (n >= 0) {
p0 = a[0]; q0 = b[0];
while (n >= 0)
{
p0 = a[0];
q0 = b[0];
m0 = p0 * q0;
p1 = a[1]; q1 = b[1];
p1 = a[1];
q1 = b[1];
m1 = p1 * q1;
sum += m0;
sum += m1;
@@ -711,7 +723,8 @@ SIMD_FORCE_INLINE btScalar btLargeDot(const btScalar *a, const btScalar *b, int
n -= 2;
}
n += 2;
while (n > 0) {
while (n > 0)
{
sum += (*a) * (*b);
a++;
b++;
@@ -720,16 +733,15 @@ SIMD_FORCE_INLINE btScalar btLargeDot(const btScalar *a, const btScalar *b, int
return sum;
}
// returns normalized value in range [-SIMD_PI, SIMD_PI]
SIMD_FORCE_INLINE btScalar btNormalizeAngle(btScalar angleInRadians)
{
angleInRadians = btFmod(angleInRadians, SIMD_2_PI);
if(angleInRadians < -SIMD_PI)
if (angleInRadians < -SIMD_PI)
{
return angleInRadians + SIMD_2_PI;
}
else if(angleInRadians > SIMD_PI)
else if (angleInRadians > SIMD_PI)
{
return angleInRadians - SIMD_2_PI;
}
@@ -739,13 +751,11 @@ SIMD_FORCE_INLINE btScalar btNormalizeAngle(btScalar angleInRadians)
}
}
///rudimentary class to provide type info
struct btTypedObject
{
btTypedObject(int objectType)
:m_objectType(objectType)
: m_objectType(objectType)
{
}
int m_objectType;
@@ -755,29 +765,24 @@ struct btTypedObject
}
};
///align a pointer to the provided alignment, upwards
template <typename T>T* btAlignPointer(T* unalignedPtr, size_t alignment)
template <typename T>
T *btAlignPointer(T *unalignedPtr, size_t alignment)
{
struct btConvertPointerSizeT
{
union
{
T* ptr;
union {
T *ptr;
size_t integer;
};
};
btConvertPointerSizeT converter;
const size_t bit_mask = ~(alignment - 1);
converter.ptr = unalignedPtr;
converter.integer += alignment-1;
converter.integer += alignment - 1;
converter.integer &= bit_mask;
return converter.ptr;
}
#endif //BT_SCALAR_H