add Human3.6M support for deep_mimic env

This commit is contained in:
Somedaywilldo
2019-02-13 00:13:56 +08:00
parent b5a707de1d
commit 59d58ce430
11 changed files with 3090 additions and 0 deletions

View File

@@ -0,0 +1,43 @@
# Support for Human3.6M Dataset
Developer: Somedaywilldo (somedaywilldo@foxmail.com)
### Inverse Kinect and Reference Rendering
If you want to learn movements directly from coordinates, you can use **inverse_kinect.py** and **reder_reference.py**, currently it just support a dataset created by [VideoPose3D](https://github.com/facebookresearch/VideoPose3D).
Download the pre-prosessed Human3.6M dataset of Videopose3D at [here](https://www.dropbox.com/s/z5bwig0h6mww590/data_3d_h36m.npz?dl=0).
After downloading the **data_3d_h36m.npz** file to this directory, then you can try to run this command:
```shell
$ python render_reference.py \
--dataset_path=<path to data_3d_h36m.npz> \
--subject=S11 \
--action=Walking \
--json_path=<path to save Walking.json> \
--fps=24 \
--loop=wrap \
--draw_gt
```
"--draw_gt" will draw the ground truth using **pybullet.addUserDebugLine()**, the right part of the humanoid lines will be red, other parts will be black. This is just for debugging, the render process will be much faster without the '--draw_gt' flag.
If no errors shows, it should be look like this [video](https://www.youtube.com/watch?v=goew_FmUtOE).
### Contact
Inverse kinect and reference rendering module is developed by Somedaywilldo.
Email: somedaywilldo@foxmail.com
### Reference
[1] DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills [[Link](https://arxiv.org/abs/1804.02717)]
[2] 3D human pose estimation in video with temporal convolutions and semi-supervised training [[Link](https://arxiv.org/abs/1811.11742)]

View File

@@ -0,0 +1,26 @@
import numpy as np
from quaternion import qrot, qinverse
def normalize_screen_coordinates(X, w, h):
assert X.shape[-1] == 2
# Normalize so that [0, w] is mapped to [-1, 1], while preserving the aspect ratio
return X/w*2 - [1, h/w]
def image_coordinates(X, w, h):
assert X.shape[-1] == 2
# Reverse camera frame normalization
return (X + [1, h/w])*w/2
def world_to_camera(X, R, t):
Rt = qinverse(R)
Q = np.tile(Rt, (*X.shape[:-1], 1))
V = X - t
return qrot(Q, V)
def camera_to_world(X, R, t):
Q = np.tile(R, (*X.shape[:-1], 1))
V = X
return qrot(Q, V) + t

View File

@@ -0,0 +1,56 @@
from inverse_kinematics import *
from h36m_dataset import Human36mDataset
from camera import *
import numpy as np
# In[2]:
joint_info = {
'joint_name':['root', 'right_hip', 'right_knee', 'right_ankle', 'left_hip', 'left_knee', 'left_ankle', 'chest', 'neck', 'nose', 'eye', 'left_shoulder', 'left_elbow', 'left_wrist', 'right_shoulder', 'right_elbow', 'right_wrist'],
'father':[0, 0, 1, 2, 0, 4, 5, 0, 7, 8, 9, 8, 11, 12, 8, 14, 15],
'side':['middle', 'right', 'right', 'right', 'left', 'left', 'left', 'middle', 'middle', 'middle', 'middle', 'left', 'left', 'left', 'right', 'right', 'right']
}
# In[3]:
def init_fb_h36m_dataset(dataset_path):
dataset = Human36mDataset(dataset_path)
print('Preparing Facebook Human3.6M Dataset...')
for subject in dataset.subjects():
for action in dataset[subject].keys():
anim = dataset[subject][action]
positions_3d = []
for cam in anim['cameras']:
pos_3d = world_to_camera(anim['positions'], R=cam['orientation'], t=cam['translation'])
pos_3d[:, 1:] -= pos_3d[:, :1] # Remove global offset, but keep trajectory in first position
positions_3d.append(pos_3d)
anim['positions_3d'] = positions_3d
return dataset
def pose3D_from_fb_h36m(dataset, subject, action, shift):
pose_seq = dataset[subject][action]['positions_3d'][0].copy()
trajectory = pose_seq[:, :1]
pose_seq[:, 1:] += trajectory
# Invert camera transformation
cam = dataset.cameras()[subject][0]
pose_seq = camera_to_world(pose_seq,
R=cam['orientation'],
t=cam['translation'])
x = pose_seq[:,:,0:1]
y = pose_seq[:,:,1:2] * -1
z = pose_seq[:,:,2:3]
pose_seq = np.concatenate((x,z,y),axis=2)
# plus shift
pose_seq += np.array([[shift for i in range(pose_seq.shape[1])] for j in range(pose_seq.shape[0])])
return pose_seq
def rot_seq_to_deepmimic_json(rot_seq, loop, json_path):
to_json = {"Loop": loop, "Frames":[]}
rot_seq = np.around(rot_seq, decimals=6)
to_json["Frames"] = rot_seq.tolist()
# In[14]:
to_file = json.dumps(to_json)
file = open(json_path,"w")
file.write(to_file)
file.close()

View File

@@ -0,0 +1,248 @@
import numpy as np
import copy
from skeleton import Skeleton
from mocap_dataset import MocapDataset
from camera import normalize_screen_coordinates, image_coordinates
h36m_skeleton = Skeleton(parents=[-1, 0, 1, 2, 3, 4, 0, 6, 7, 8, 9, 0, 11, 12, 13, 14, 12,
16, 17, 18, 19, 20, 19, 22, 12, 24, 25, 26, 27, 28, 27, 30],
joints_left=[6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 22, 23],
joints_right=[1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29, 30, 31])
h36m_cameras_intrinsic_params = [
{
'id': '54138969',
'center': [512.54150390625, 515.4514770507812],
'focal_length': [1145.0494384765625, 1143.7811279296875],
'radial_distortion': [-0.20709891617298126, 0.24777518212795258, -0.0030751503072679043],
'tangential_distortion': [-0.0009756988729350269, -0.00142447161488235],
'res_w': 1000,
'res_h': 1002,
'azimuth': 70, # Only used for visualization
},
{
'id': '55011271',
'center': [508.8486328125, 508.0649108886719],
'focal_length': [1149.6756591796875, 1147.5916748046875],
'radial_distortion': [-0.1942136287689209, 0.2404085397720337, 0.006819975562393665],
'tangential_distortion': [-0.0016190266469493508, -0.0027408944442868233],
'res_w': 1000,
'res_h': 1000,
'azimuth': -70, # Only used for visualization
},
{
'id': '58860488',
'center': [519.8158569335938, 501.40264892578125],
'focal_length': [1149.1407470703125, 1148.7989501953125],
'radial_distortion': [-0.2083381861448288, 0.25548800826072693, -0.0024604974314570427],
'tangential_distortion': [0.0014843869721516967, -0.0007599993259645998],
'res_w': 1000,
'res_h': 1000,
'azimuth': 110, # Only used for visualization
},
{
'id': '60457274',
'center': [514.9682006835938, 501.88201904296875],
'focal_length': [1145.5113525390625, 1144.77392578125],
'radial_distortion': [-0.198384091258049, 0.21832367777824402, -0.008947807364165783],
'tangential_distortion': [-0.0005872055771760643, -0.0018133620033040643],
'res_w': 1000,
'res_h': 1002,
'azimuth': -110, # Only used for visualization
},
]
h36m_cameras_extrinsic_params = {
'S1': [
{
'orientation': [0.1407056450843811, -0.1500701755285263, -0.755240797996521, 0.6223280429840088],
'translation': [1841.1070556640625, 4955.28466796875, 1563.4454345703125],
},
{
'orientation': [0.6157187819480896, -0.764836311340332, -0.14833825826644897, 0.11794740706682205],
'translation': [1761.278564453125, -5078.0068359375, 1606.2650146484375],
},
{
'orientation': [0.14651472866535187, -0.14647851884365082, 0.7653023600578308, -0.6094175577163696],
'translation': [-1846.7777099609375, 5215.04638671875, 1491.972412109375],
},
{
'orientation': [0.5834008455276489, -0.7853162288665771, 0.14548823237419128, -0.14749594032764435],
'translation': [-1794.7896728515625, -3722.698974609375, 1574.8927001953125],
},
],
'S2': [
{},
{},
{},
{},
],
'S3': [
{},
{},
{},
{},
],
'S4': [
{},
{},
{},
{},
],
'S5': [
{
'orientation': [0.1467377245426178, -0.162370964884758, -0.7551892995834351, 0.6178938746452332],
'translation': [2097.3916015625, 4880.94482421875, 1605.732421875],
},
{
'orientation': [0.6159758567810059, -0.7626792192459106, -0.15728192031383514, 0.1189815029501915],
'translation': [2031.7008056640625, -5167.93310546875, 1612.923095703125],
},
{
'orientation': [0.14291371405124664, -0.12907841801643372, 0.7678384780883789, -0.6110143065452576],
'translation': [-1620.5948486328125, 5171.65869140625, 1496.43701171875],
},
{
'orientation': [0.5920479893684387, -0.7814217805862427, 0.1274748593568802, -0.15036417543888092],
'translation': [-1637.1737060546875, -3867.3173828125, 1547.033203125],
},
],
'S6': [
{
'orientation': [0.1337897777557373, -0.15692396461963654, -0.7571090459823608, 0.6198879480361938],
'translation': [1935.4517822265625, 4950.24560546875, 1618.0838623046875],
},
{
'orientation': [0.6147197484970093, -0.7628812789916992, -0.16174767911434174, 0.11819244921207428],
'translation': [1969.803955078125, -5128.73876953125, 1632.77880859375],
},
{
'orientation': [0.1529948115348816, -0.13529130816459656, 0.7646096348762512, -0.6112781167030334],
'translation': [-1769.596435546875, 5185.361328125, 1476.993408203125],
},
{
'orientation': [0.5916101336479187, -0.7804774045944214, 0.12832270562648773, -0.1561593860387802],
'translation': [-1721.668701171875, -3884.13134765625, 1540.4879150390625],
},
],
'S7': [
{
'orientation': [0.1435241848230362, -0.1631336808204651, -0.7548328638076782, 0.6188824772834778],
'translation': [1974.512939453125, 4926.3544921875, 1597.8326416015625],
},
{
'orientation': [0.6141672730445862, -0.7638262510299683, -0.1596645563840866, 0.1177929937839508],
'translation': [1937.0584716796875, -5119.7900390625, 1631.5665283203125],
},
{
'orientation': [0.14550060033798218, -0.12874816358089447, 0.7660516500473022, -0.6127139329910278],
'translation': [-1741.8111572265625, 5208.24951171875, 1464.8245849609375],
},
{
'orientation': [0.5912848114967346, -0.7821764349937439, 0.12445473670959473, -0.15196487307548523],
'translation': [-1734.7105712890625, -3832.42138671875, 1548.5830078125],
},
],
'S8': [
{
'orientation': [0.14110587537288666, -0.15589867532253265, -0.7561917304992676, 0.619644045829773],
'translation': [2150.65185546875, 4896.1611328125, 1611.9046630859375],
},
{
'orientation': [0.6169601678848267, -0.7647668123245239, -0.14846350252628326, 0.11158157885074615],
'translation': [2219.965576171875, -5148.453125, 1613.0440673828125],
},
{
'orientation': [0.1471444070339203, -0.13377119600772858, 0.7670128345489502, -0.6100369691848755],
'translation': [-1571.2215576171875, 5137.0185546875, 1498.1761474609375],
},
{
'orientation': [0.5927824378013611, -0.7825870513916016, 0.12147816270589828, -0.14631995558738708],
'translation': [-1476.913330078125, -3896.7412109375, 1547.97216796875],
},
],
'S9': [
{
'orientation': [0.15540587902069092, -0.15548215806484222, -0.7532095313072205, 0.6199594736099243],
'translation': [2044.45849609375, 4935.1171875, 1481.2275390625],
},
{
'orientation': [0.618784487247467, -0.7634735107421875, -0.14132238924503326, 0.11933968216180801],
'translation': [1990.959716796875, -5123.810546875, 1568.8048095703125],
},
{
'orientation': [0.13357827067375183, -0.1367100477218628, 0.7689454555511475, -0.6100738644599915],
'translation': [-1670.9921875, 5211.98583984375, 1528.387939453125],
},
{
'orientation': [0.5879399180412292, -0.7823407053947449, 0.1427614390850067, -0.14794869720935822],
'translation': [-1696.04345703125, -3827.099853515625, 1591.4127197265625],
},
],
'S11': [
{
'orientation': [0.15232472121715546, -0.15442320704460144, -0.7547563314437866, 0.6191070079803467],
'translation': [2098.440185546875, 4926.5546875, 1500.278564453125],
},
{
'orientation': [0.6189449429512024, -0.7600917220115662, -0.15300633013248444, 0.1255258321762085],
'translation': [2083.182373046875, -4912.1728515625, 1561.07861328125],
},
{
'orientation': [0.14943228662014008, -0.15650227665901184, 0.7681233882904053, -0.6026304364204407],
'translation': [-1609.8153076171875, 5177.3359375, 1537.896728515625],
},
{
'orientation': [0.5894251465797424, -0.7818877100944519, 0.13991211354732513, -0.14715361595153809],
'translation': [-1590.738037109375, -3854.1689453125, 1578.017578125],
},
],
}
class Human36mDataset(MocapDataset):
def __init__(self, path, remove_static_joints=True):
super().__init__(fps=50, skeleton=h36m_skeleton)
self._cameras = copy.deepcopy(h36m_cameras_extrinsic_params)
for cameras in self._cameras.values():
for i, cam in enumerate(cameras):
cam.update(h36m_cameras_intrinsic_params[i])
for k, v in cam.items():
if k not in ['id', 'res_w', 'res_h']:
cam[k] = np.array(v, dtype='float32')
# Normalize camera frame
cam['center'] = normalize_screen_coordinates(cam['center'], w=cam['res_w'], h=cam['res_h']).astype('float32')
cam['focal_length'] = cam['focal_length']/cam['res_w']*2
if 'translation' in cam:
cam['translation'] = cam['translation']/1000 # mm to meters
# Add intrinsic parameters vector
cam['intrinsic'] = np.concatenate((cam['focal_length'],
cam['center'],
cam['radial_distortion'],
cam['tangential_distortion']))
# Load serialized dataset
data = np.load(path)['positions_3d'].item()
self._data = {}
for subject, actions in data.items():
self._data[subject] = {}
for action_name, positions in actions.items():
self._data[subject][action_name] = {
'positions': positions,
'cameras': self._cameras[subject],
}
if remove_static_joints:
# Bring the skeleton to 17 joints instead of the original 32
self.remove_joints([4, 5, 9, 10, 11, 16, 20, 21, 22, 23, 24, 28, 29, 30, 31])
# Rewire shoulders to the correct parents
self._skeleton._parents[11] = 8
self._skeleton._parents[14] = 8
def supports_semi_supervised(self):
return True

View File

@@ -0,0 +1,691 @@
import os, inspect
import math
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
from pybullet_utils.bullet_client import BulletClient
import pybullet_data
jointTypes = ["JOINT_REVOLUTE","JOINT_PRISMATIC",
"JOINT_SPHERICAL","JOINT_PLANAR","JOINT_FIXED"]
class HumanoidPose(object):
def __init__(self):
pass
def Reset(self):
self._basePos = [0,0,0]
self._baseLinVel = [0,0,0]
self._baseOrn = [0,0,0,1]
self._baseAngVel = [0,0,0]
self._chestRot = [0,0,0,1]
self._chestVel = [0,0,0]
self._neckRot = [0,0,0,1]
self._neckVel = [0,0,0]
self._rightHipRot = [0,0,0,1]
self._rightHipVel = [0,0,0]
self._rightKneeRot = [0]
self._rightKneeVel = [0]
self._rightAnkleRot = [0,0,0,1]
self._rightAnkleVel = [0,0,0]
self._rightShoulderRot = [0,0,0,1]
self._rightShoulderVel = [0,0,0]
self._rightElbowRot = [0]
self._rightElbowVel = [0]
self._leftHipRot = [0,0,0,1]
self._leftHipVel = [0,0,0]
self._leftKneeRot = [0]
self._leftKneeVel = [0]
self._leftAnkleRot = [0,0,0,1]
self._leftAnkleVel = [0,0,0]
self._leftShoulderRot = [0,0,0,1]
self._leftShoulderVel = [0,0,0]
self._leftElbowRot = [0]
self._leftElbowVel = [0]
def ComputeLinVel(self,posStart, posEnd, deltaTime):
vel = [(posEnd[0]-posStart[0])/deltaTime,(posEnd[1]-posStart[1])/deltaTime,(posEnd[2]-posStart[2])/deltaTime]
return vel
def ComputeAngVel(self,ornStart, ornEnd, deltaTime, bullet_client):
dorn = bullet_client.getDifferenceQuaternion(ornStart,ornEnd)
axis,angle = bullet_client.getAxisAngleFromQuaternion(dorn)
angVel = [(axis[0]*angle)/deltaTime,(axis[1]*angle)/deltaTime,(axis[2]*angle)/deltaTime]
return angVel
def NormalizeQuaternion(self, orn):
length2 = orn[0]*orn[0]+orn[1]*orn[1]+orn[2]*orn[2]+orn[3]*orn[3]
if (length2>0):
length = math.sqrt(length2)
#print("Normalize? length=",length)
def PostProcessMotionData(self, frameData):
baseOrn1Start = [frameData[5],frameData[6], frameData[7],frameData[4]]
self.NormalizeQuaternion(baseOrn1Start)
chestRotStart = [frameData[9],frameData[10],frameData[11],frameData[8]]
neckRotStart = [frameData[13],frameData[14],frameData[15],frameData[12]]
rightHipRotStart = [frameData[17],frameData[18],frameData[19],frameData[16]]
rightAnkleRotStart = [frameData[22],frameData[23],frameData[24],frameData[21]]
rightShoulderRotStart = [frameData[26],frameData[27],frameData[28],frameData[25]]
leftHipRotStart = [frameData[31],frameData[32],frameData[33],frameData[30]]
leftAnkleRotStart = [frameData[36],frameData[37],frameData[38],frameData[35]]
leftShoulderRotStart = [frameData[40],frameData[41],frameData[42],frameData[39]]
def Slerp(self, frameFraction, frameData, frameDataNext,bullet_client ):
keyFrameDuration = frameData[0]
basePos1Start = [frameData[1],frameData[2],frameData[3]]
basePos1End = [frameDataNext[1],frameDataNext[2],frameDataNext[3]]
self._basePos = [basePos1Start[0]+frameFraction*(basePos1End[0]-basePos1Start[0]),
basePos1Start[1]+frameFraction*(basePos1End[1]-basePos1Start[1]),
basePos1Start[2]+frameFraction*(basePos1End[2]-basePos1Start[2])]
self._baseLinVel = self.ComputeLinVel(basePos1Start,basePos1End, keyFrameDuration)
baseOrn1Start = [frameData[5],frameData[6], frameData[7],frameData[4]]
baseOrn1Next = [frameDataNext[5],frameDataNext[6], frameDataNext[7],frameDataNext[4]]
self._baseOrn = bullet_client.getQuaternionSlerp(baseOrn1Start,baseOrn1Next,frameFraction)
self._baseAngVel = self.ComputeAngVel(baseOrn1Start,baseOrn1Next, keyFrameDuration, bullet_client)
##pre-rotate to make z-up
#y2zPos=[0,0,0.0]
#y2zOrn = p.getQuaternionFromEuler([1.57,0,0])
#basePos,baseOrn = p.multiplyTransforms(y2zPos, y2zOrn,basePos1,baseOrn1)
chestRotStart = [frameData[9],frameData[10],frameData[11],frameData[8]]
chestRotEnd = [frameDataNext[9],frameDataNext[10],frameDataNext[11],frameDataNext[8]]
self._chestRot = bullet_client.getQuaternionSlerp(chestRotStart,chestRotEnd,frameFraction)
self._chestVel = self.ComputeAngVel(chestRotStart,chestRotEnd,keyFrameDuration,bullet_client)
neckRotStart = [frameData[13],frameData[14],frameData[15],frameData[12]]
neckRotEnd= [frameDataNext[13],frameDataNext[14],frameDataNext[15],frameDataNext[12]]
self._neckRot = bullet_client.getQuaternionSlerp(neckRotStart,neckRotEnd,frameFraction)
self._neckVel = self.ComputeAngVel(neckRotStart,neckRotEnd,keyFrameDuration,bullet_client)
rightHipRotStart = [frameData[17],frameData[18],frameData[19],frameData[16]]
rightHipRotEnd = [frameDataNext[17],frameDataNext[18],frameDataNext[19],frameDataNext[16]]
self._rightHipRot = bullet_client.getQuaternionSlerp(rightHipRotStart,rightHipRotEnd,frameFraction)
self._rightHipVel = self.ComputeAngVel(rightHipRotStart,rightHipRotEnd,keyFrameDuration,bullet_client)
rightKneeRotStart = [frameData[20]]
rightKneeRotEnd = [frameDataNext[20]]
self._rightKneeRot = [rightKneeRotStart[0]+frameFraction*(rightKneeRotEnd[0]-rightKneeRotStart[0])]
self._rightKneeVel = [(rightKneeRotEnd[0]-rightKneeRotStart[0])/keyFrameDuration]
rightAnkleRotStart = [frameData[22],frameData[23],frameData[24],frameData[21]]
rightAnkleRotEnd = [frameDataNext[22],frameDataNext[23],frameDataNext[24],frameDataNext[21]]
self._rightAnkleRot = bullet_client.getQuaternionSlerp(rightAnkleRotStart,rightAnkleRotEnd,frameFraction)
self._rightAnkleVel = self.ComputeAngVel(rightAnkleRotStart,rightAnkleRotEnd,keyFrameDuration,bullet_client)
rightShoulderRotStart = [frameData[26],frameData[27],frameData[28],frameData[25]]
rightShoulderRotEnd = [frameDataNext[26],frameDataNext[27],frameDataNext[28],frameDataNext[25]]
self._rightShoulderRot = bullet_client.getQuaternionSlerp(rightShoulderRotStart,rightShoulderRotEnd,frameFraction)
self._rightShoulderVel = self.ComputeAngVel(rightShoulderRotStart,rightShoulderRotEnd, keyFrameDuration,bullet_client)
rightElbowRotStart = [frameData[29]]
rightElbowRotEnd = [frameDataNext[29]]
self._rightElbowRot = [rightElbowRotStart[0]+frameFraction*(rightElbowRotEnd[0]-rightElbowRotStart[0])]
self._rightElbowVel = [(rightElbowRotEnd[0]-rightElbowRotStart[0])/keyFrameDuration]
leftHipRotStart = [frameData[31],frameData[32],frameData[33],frameData[30]]
leftHipRotEnd = [frameDataNext[31],frameDataNext[32],frameDataNext[33],frameDataNext[30]]
self._leftHipRot = bullet_client.getQuaternionSlerp(leftHipRotStart,leftHipRotEnd,frameFraction)
self._leftHipVel = self.ComputeAngVel(leftHipRotStart, leftHipRotEnd,keyFrameDuration,bullet_client)
leftKneeRotStart = [frameData[34]]
leftKneeRotEnd = [frameDataNext[34]]
self._leftKneeRot = [leftKneeRotStart[0] +frameFraction*(leftKneeRotEnd[0]-leftKneeRotStart[0]) ]
self._leftKneeVel = [(leftKneeRotEnd[0]-leftKneeRotStart[0])/keyFrameDuration]
leftAnkleRotStart = [frameData[36],frameData[37],frameData[38],frameData[35]]
leftAnkleRotEnd = [frameDataNext[36],frameDataNext[37],frameDataNext[38],frameDataNext[35]]
self._leftAnkleRot = bullet_client.getQuaternionSlerp(leftAnkleRotStart,leftAnkleRotEnd,frameFraction)
self._leftAnkleVel = self.ComputeAngVel(leftAnkleRotStart,leftAnkleRotEnd,keyFrameDuration,bullet_client)
leftShoulderRotStart = [frameData[40],frameData[41],frameData[42],frameData[39]]
leftShoulderRotEnd = [frameDataNext[40],frameDataNext[41],frameDataNext[42],frameDataNext[39]]
self._leftShoulderRot = bullet_client.getQuaternionSlerp(leftShoulderRotStart,leftShoulderRotEnd,frameFraction)
self._leftShoulderVel = self.ComputeAngVel(leftShoulderRotStart,leftShoulderRotEnd,keyFrameDuration,bullet_client)
leftElbowRotStart = [frameData[43]]
leftElbowRotEnd = [frameDataNext[43]]
self._leftElbowRot = [leftElbowRotStart[0]+frameFraction*(leftElbowRotEnd[0]-leftElbowRotStart[0])]
self._leftElbowVel = [(leftElbowRotEnd[0]-leftElbowRotStart[0])/keyFrameDuration]
class Humanoid(object):
def __init__(self, pybullet_client, motion_data, baseShift):
"""Constructs a humanoid and reset it to the initial states.
Args:
pybullet_client: The instance of BulletClient to manage different
simulations.
"""
self._baseShift = baseShift
self._pybullet_client = pybullet_client
self.kin_client = BulletClient(pybullet_client.DIRECT)# use SHARED_MEMORY for visual debugging, start a GUI physics server first
self.kin_client.resetSimulation()
self.kin_client.setAdditionalSearchPath(pybullet_data.getDataPath())
self.kin_client.configureDebugVisualizer(self.kin_client.COV_ENABLE_Y_AXIS_UP,1)
self.kin_client.setGravity(0,-9.8,0)
self._motion_data = motion_data
print("LOADING humanoid!")
self._humanoid = self._pybullet_client.loadURDF(
"humanoid/humanoid.urdf", [0,0.9,0],globalScaling=0.25, useFixedBase=False)
self._kinematicHumanoid = self.kin_client.loadURDF(
"humanoid/humanoid.urdf", [0,0.9,0],globalScaling=0.25, useFixedBase=False)
#print("human #joints=", self._pybullet_client.getNumJoints(self._humanoid))
pose = HumanoidPose()
for i in range (self._motion_data.NumFrames()-1):
frameData = self._motion_data._motion_data['Frames'][i]
pose.PostProcessMotionData(frameData)
self._pybullet_client.resetBasePositionAndOrientation(self._humanoid,self._baseShift,[0,0,0,1])
self._pybullet_client.changeDynamics(self._humanoid, -1, linearDamping=0, angularDamping=0)
for j in range (self._pybullet_client.getNumJoints(self._humanoid)):
ji = self._pybullet_client.getJointInfo(self._humanoid,j)
self._pybullet_client.changeDynamics(self._humanoid, j, linearDamping=0, angularDamping=0)
self._pybullet_client.changeVisualShape(self._humanoid, j , rgbaColor=[1,1,1,1])
#print("joint[",j,"].type=",jointTypes[ji[2]])
#print("joint[",j,"].name=",ji[1])
self._initial_state = self._pybullet_client.saveState()
self._allowed_body_parts=[11,14]
self.Reset()
def Reset(self):
self._pybullet_client.restoreState(self._initial_state)
self.SetSimTime(0)
pose = self.InitializePoseFromMotionData()
self.ApplyPose(pose, True, True, self._humanoid, self._pybullet_client)
def RenderReference(self, t):
self.SetSimTime(t)
frameData = self._motion_data._motion_data['Frames'][self._frame]
frameDataNext = self._motion_data._motion_data['Frames'][self._frameNext]
pose = HumanoidPose()
pose.Slerp(self._frameFraction, frameData, frameDataNext, self._pybullet_client)
self.ApplyPose(pose, True, True, self._humanoid, self._pybullet_client)
def CalcCycleCount(self, simTime, cycleTime):
phases = simTime / cycleTime;
count = math.floor(phases)
loop = True
#count = (loop) ? count : cMathUtil::Clamp(count, 0, 1);
return count
def SetSimTime(self, t):
self._simTime = t
#print("SetTimeTime time =",t)
keyFrameDuration = self._motion_data.KeyFrameDuraction()
cycleTime = keyFrameDuration*(self._motion_data.NumFrames()-1)
#print("self._motion_data.NumFrames()=",self._motion_data.NumFrames())
#print("cycleTime=",cycleTime)
cycles = self.CalcCycleCount(t, cycleTime)
#print("cycles=",cycles)
frameTime = t - cycles*cycleTime
if (frameTime<0):
frameTime += cycleTime
#print("keyFrameDuration=",keyFrameDuration)
#print("frameTime=",frameTime)
self._frame = int(frameTime/keyFrameDuration)
#print("self._frame=",self._frame)
self._frameNext = self._frame+1
if (self._frameNext >= self._motion_data.NumFrames()):
self._frameNext = self._frame
self._frameFraction = (frameTime - self._frame*keyFrameDuration)/(keyFrameDuration)
#print("self._frameFraction=",self._frameFraction)
def Terminates(self):
#check if any non-allowed body part hits the ground
terminates=False
pts = self._pybullet_client.getContactPoints()
for p in pts:
part = -1
if (p[1]==self._humanoid):
part=p[3]
if (p[2]==self._humanoid):
part=p[4]
if (part >=0 and part not in self._allowed_body_parts):
terminates=True
return terminates
def BuildHeadingTrans(self, rootOrn):
#align root transform 'forward' with world-space x axis
eul = self._pybullet_client.getEulerFromQuaternion(rootOrn)
refDir = [1,0,0]
rotVec = self._pybullet_client.rotateVector(rootOrn, refDir)
heading = math.atan2(-rotVec[2], rotVec[0])
heading2=eul[1]
#print("heading=",heading)
headingOrn = self._pybullet_client.getQuaternionFromAxisAngle([0,1,0],-heading)
return headingOrn
def GetPhase(self):
keyFrameDuration = self._motion_data.KeyFrameDuraction()
cycleTime = keyFrameDuration*(self._motion_data.NumFrames()-1)
phase = self._simTime / cycleTime
phase = math.fmod(phase,1.0)
if (phase<0):
phase += 1
return phase
def BuildOriginTrans(self):
rootPos,rootOrn = self._pybullet_client.getBasePositionAndOrientation(self._humanoid)
#print("rootPos=",rootPos, " rootOrn=",rootOrn)
invRootPos=[-rootPos[0], 0, -rootPos[2]]
#invOrigTransPos, invOrigTransOrn = self._pybullet_client.invertTransform(rootPos,rootOrn)
headingOrn = self.BuildHeadingTrans(rootOrn)
#print("headingOrn=",headingOrn)
headingMat = self._pybullet_client.getMatrixFromQuaternion(headingOrn)
#print("headingMat=",headingMat)
#dummy, rootOrnWithoutHeading = self._pybullet_client.multiplyTransforms([0,0,0],headingOrn, [0,0,0], rootOrn)
#dummy, invOrigTransOrn = self._pybullet_client.multiplyTransforms([0,0,0],rootOrnWithoutHeading, invOrigTransPos, invOrigTransOrn)
invOrigTransPos, invOrigTransOrn = self._pybullet_client.multiplyTransforms( [0,0,0],headingOrn, invRootPos,[0,0,0,1])
#print("invOrigTransPos=",invOrigTransPos)
#print("invOrigTransOrn=",invOrigTransOrn)
invOrigTransMat = self._pybullet_client.getMatrixFromQuaternion(invOrigTransOrn)
#print("invOrigTransMat =",invOrigTransMat )
return invOrigTransPos, invOrigTransOrn
def InitializePoseFromMotionData(self):
frameData = self._motion_data._motion_data['Frames'][self._frame]
frameDataNext = self._motion_data._motion_data['Frames'][self._frameNext]
pose = HumanoidPose()
pose.Slerp(self._frameFraction, frameData, frameDataNext, self._pybullet_client)
return pose
def ApplyAction(self, action):
#turn action into pose
pose = HumanoidPose()
pose.Reset()
index=0
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
pose._chestRot = self._pybullet_client.getQuaternionFromAxisAngle(axis,angle)
#print("pose._chestRot=",pose._chestRot)
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
pose._neckRot = self._pybullet_client.getQuaternionFromAxisAngle(axis,angle)
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
pose._rightHipRot = self._pybullet_client.getQuaternionFromAxisAngle(axis,angle)
angle = action[index]
index+=1
pose._rightKneeRot = [angle]
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
pose._rightAnkleRot = self._pybullet_client.getQuaternionFromAxisAngle(axis,angle)
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
pose._rightShoulderRot = self._pybullet_client.getQuaternionFromAxisAngle(axis,angle)
angle = action[index]
index+=1
pose._rightElbowRot = [angle]
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
pose._leftHipRot = self._pybullet_client.getQuaternionFromAxisAngle(axis,angle)
angle = action[index]
index+=1
pose._leftKneeRot = [angle]
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
pose._leftAnkleRot = self._pybullet_client.getQuaternionFromAxisAngle(axis,angle)
angle = action[index]
axis = [action[index+1],action[index+2],action[index+3]]
index+=4
pose._leftShoulderRot = self._pybullet_client.getQuaternionFromAxisAngle(axis,angle)
angle = action[index]
index+=1
pose._leftElbowRot = [angle]
#print("index=",index)
initializeBase = False
initializeVelocities = False
self.ApplyPose(pose, initializeBase, initializeVelocities, self._humanoid, self._pybullet_client)
def ApplyPose(self, pose, initializeBase, initializeVelocities, humanoid,bc):
#todo: get tunable parametes from a json file or from URDF (kd, maxForce)
if (initializeBase):
bc.changeVisualShape(humanoid, 2 , rgbaColor=[1,0,0,1])
basePos=[pose._basePos[0]+self._baseShift[0],pose._basePos[1]+self._baseShift[1],pose._basePos[2]+self._baseShift[2]]
bc.resetBasePositionAndOrientation(humanoid,
basePos, pose._baseOrn)
if initializeVelocities:
bc.resetBaseVelocity(humanoid, pose._baseLinVel, pose._baseAngVel)
#print("resetBaseVelocity=",pose._baseLinVel)
else:
bc.changeVisualShape(humanoid, 2 , rgbaColor=[1,1,1,1])
kp=0.03
chest=1
neck=2
rightShoulder=3
rightElbow=4
leftShoulder=6
leftElbow = 7
rightHip = 9
rightKnee=10
rightAnkle=11
leftHip = 12
leftKnee=13
leftAnkle=14
controlMode = bc.POSITION_CONTROL
if (initializeBase):
if initializeVelocities:
bc.resetJointStateMultiDof(humanoid,chest,pose._chestRot, pose._chestVel)
bc.resetJointStateMultiDof(humanoid,neck,pose._neckRot, pose._neckVel)
bc.resetJointStateMultiDof(humanoid,rightHip,pose._rightHipRot, pose._rightHipVel)
bc.resetJointStateMultiDof(humanoid,rightKnee,pose._rightKneeRot, pose._rightKneeVel)
bc.resetJointStateMultiDof(humanoid,rightAnkle,pose._rightAnkleRot, pose._rightAnkleVel)
bc.resetJointStateMultiDof(humanoid,rightShoulder,pose._rightShoulderRot, pose._rightShoulderVel)
bc.resetJointStateMultiDof(humanoid,rightElbow, pose._rightElbowRot, pose._rightElbowVel)
bc.resetJointStateMultiDof(humanoid,leftHip, pose._leftHipRot, pose._leftHipVel)
bc.resetJointStateMultiDof(humanoid,leftKnee, pose._leftKneeRot, pose._leftKneeVel)
bc.resetJointStateMultiDof(humanoid,leftAnkle, pose._leftAnkleRot, pose._leftAnkleVel)
bc.resetJointStateMultiDof(humanoid,leftShoulder, pose._leftShoulderRot, pose._leftShoulderVel)
bc.resetJointStateMultiDof(humanoid,leftElbow, pose._leftElbowRot, pose._leftElbowVel)
else:
bc.resetJointStateMultiDof(humanoid,chest,pose._chestRot)
bc.resetJointStateMultiDof(humanoid,neck,pose._neckRot)
bc.resetJointStateMultiDof(humanoid,rightHip,pose._rightHipRot)
bc.resetJointStateMultiDof(humanoid,rightKnee,pose._rightKneeRot)
bc.resetJointStateMultiDof(humanoid,rightAnkle,pose._rightAnkleRot)
bc.resetJointStateMultiDof(humanoid,rightShoulder,pose._rightShoulderRot)
bc.resetJointStateMultiDof(humanoid,rightElbow, pose._rightElbowRot)
bc.resetJointStateMultiDof(humanoid,leftHip, pose._leftHipRot)
bc.resetJointStateMultiDof(humanoid,leftKnee, pose._leftKneeRot)
bc.resetJointStateMultiDof(humanoid,leftAnkle, pose._leftAnkleRot)
bc.resetJointStateMultiDof(humanoid,leftShoulder, pose._leftShoulderRot)
bc.resetJointStateMultiDof(humanoid,leftElbow, pose._leftElbowRot)
bc.setJointMotorControlMultiDof(humanoid,chest,controlMode, targetPosition=pose._chestRot,positionGain=kp, force=[200])
bc.setJointMotorControlMultiDof(humanoid,neck,controlMode,targetPosition=pose._neckRot,positionGain=kp, force=[50])
bc.setJointMotorControlMultiDof(humanoid,rightHip,controlMode,targetPosition=pose._rightHipRot,positionGain=kp, force=[200])
bc.setJointMotorControlMultiDof(humanoid,rightKnee,controlMode,targetPosition=pose._rightKneeRot,positionGain=kp, force=[150])
bc.setJointMotorControlMultiDof(humanoid,rightAnkle,controlMode,targetPosition=pose._rightAnkleRot,positionGain=kp, force=[90])
bc.setJointMotorControlMultiDof(humanoid,rightShoulder,controlMode,targetPosition=pose._rightShoulderRot,positionGain=kp, force=[100])
bc.setJointMotorControlMultiDof(humanoid,rightElbow, controlMode,targetPosition=pose._rightElbowRot,positionGain=kp, force=[60])
bc.setJointMotorControlMultiDof(humanoid,leftHip, controlMode,targetPosition=pose._leftHipRot,positionGain=kp, force=[200])
bc.setJointMotorControlMultiDof(humanoid,leftKnee, controlMode,targetPosition=pose._leftKneeRot,positionGain=kp, force=[150])
bc.setJointMotorControlMultiDof(humanoid,leftAnkle, controlMode,targetPosition=pose._leftAnkleRot,positionGain=kp, force=[90])
bc.setJointMotorControlMultiDof(humanoid,leftShoulder, controlMode,targetPosition=pose._leftShoulderRot,positionGain=kp, force=[100])
bc.setJointMotorControlMultiDof(humanoid,leftElbow, controlMode,targetPosition=pose._leftElbowRot,positionGain=kp, force=[60])
#debug space
#if (False):
# for j in range (bc.getNumJoints(self._humanoid)):
# js = bc.getJointState(self._humanoid, j)
# bc.resetJointState(self._humanoidDebug, j,js[0])
# jsm = bc.getJointStateMultiDof(self._humanoid, j)
# if (len(jsm[0])>0):
# bc.resetJointStateMultiDof(self._humanoidDebug,j,jsm[0])
def GetState(self):
stateVector = []
phase = self.GetPhase()
#print("phase=",phase)
stateVector.append(phase)
rootTransPos, rootTransOrn=self.BuildOriginTrans()
basePos,baseOrn = self._pybullet_client.getBasePositionAndOrientation(self._humanoid)
rootPosRel, dummy = self._pybullet_client.multiplyTransforms(rootTransPos, rootTransOrn, basePos,[0,0,0,1])
#print("!!!rootPosRel =",rootPosRel )
#print("rootTransPos=",rootTransPos)
#print("basePos=",basePos)
localPos,localOrn = self._pybullet_client.multiplyTransforms( rootTransPos, rootTransOrn , basePos,baseOrn )
localPos=[localPos[0]-rootPosRel[0],localPos[1]-rootPosRel[1],localPos[2]-rootPosRel[2]]
#print("localPos=",localPos)
stateVector.append(rootPosRel[1])
self.pb2dmJoints=[0,1,2,9,10,11,3,4,5,12,13,14,6,7,8]
for pbJoint in range (self._pybullet_client.getNumJoints(self._humanoid)):
j = self.pb2dmJoints[pbJoint]
#print("joint order:",j)
ls = self._pybullet_client.getLinkState(self._humanoid, j, computeForwardKinematics=True)
linkPos = ls[0]
linkOrn = ls[1]
linkPosLocal, linkOrnLocal = self._pybullet_client.multiplyTransforms(rootTransPos, rootTransOrn, linkPos,linkOrn)
if (linkOrnLocal[3]<0):
linkOrnLocal=[-linkOrnLocal[0],-linkOrnLocal[1],-linkOrnLocal[2],-linkOrnLocal[3]]
linkPosLocal=[linkPosLocal[0]-rootPosRel[0],linkPosLocal[1]-rootPosRel[1],linkPosLocal[2]-rootPosRel[2]]
for l in linkPosLocal:
stateVector.append(l)
#re-order the quaternion, DeepMimic uses w,x,y,z
stateVector.append(linkOrnLocal[3])
stateVector.append(linkOrnLocal[0])
stateVector.append(linkOrnLocal[1])
stateVector.append(linkOrnLocal[2])
for pbJoint in range (self._pybullet_client.getNumJoints(self._humanoid)):
j = self.pb2dmJoints[pbJoint]
ls = self._pybullet_client.getLinkState(self._humanoid, j, computeLinkVelocity=True)
linkLinVel = ls[6]
linkAngVel = ls[7]
for l in linkLinVel:
stateVector.append(l)
for l in linkAngVel:
stateVector.append(l)
#print("stateVector len=",len(stateVector))
#for st in range (len(stateVector)):
# print("state[",st,"]=",stateVector[st])
return stateVector
def GetReward(self):
#from DeepMimic double cSceneImitate::CalcRewardImitate
pose_w = 0.5
vel_w = 0.05
end_eff_w = 0 #0.15
root_w = 0 #0.2
com_w = 0.1
total_w = pose_w + vel_w + end_eff_w + root_w + com_w
pose_w /= total_w
vel_w /= total_w
end_eff_w /= total_w
root_w /= total_w
com_w /= total_w
pose_scale = 2
vel_scale = 0.1
end_eff_scale = 40
root_scale = 5
com_scale = 10
err_scale = 1
reward = 0
pose_err = 0
vel_err = 0
end_eff_err = 0
root_err = 0
com_err = 0
heading_err = 0
#create a mimic reward, comparing the dynamics humanoid with a kinematic one
pose = self.InitializePoseFromMotionData()
#print("self._kinematicHumanoid=",self._kinematicHumanoid)
#print("kinematicHumanoid #joints=",self.kin_client.getNumJoints(self._kinematicHumanoid))
self.ApplyPose(pose, True, True, self._kinematicHumanoid, self.kin_client)
#const Eigen::VectorXd& pose0 = sim_char.GetPose();
#const Eigen::VectorXd& vel0 = sim_char.GetVel();
#const Eigen::VectorXd& pose1 = kin_char.GetPose();
#const Eigen::VectorXd& vel1 = kin_char.GetVel();
#tMatrix origin_trans = sim_char.BuildOriginTrans();
#tMatrix kin_origin_trans = kin_char.BuildOriginTrans();
#
#tVector com0_world = sim_char.CalcCOM();
#tVector com_vel0_world = sim_char.CalcCOMVel();
#tVector com1_world;
#tVector com_vel1_world;
#cRBDUtil::CalcCoM(joint_mat, body_defs, pose1, vel1, com1_world, com_vel1_world);
#
root_id = 0
#tVector root_pos0 = cKinTree::GetRootPos(joint_mat, pose0);
#tVector root_pos1 = cKinTree::GetRootPos(joint_mat, pose1);
#tQuaternion root_rot0 = cKinTree::GetRootRot(joint_mat, pose0);
#tQuaternion root_rot1 = cKinTree::GetRootRot(joint_mat, pose1);
#tVector root_vel0 = cKinTree::GetRootVel(joint_mat, vel0);
#tVector root_vel1 = cKinTree::GetRootVel(joint_mat, vel1);
#tVector root_ang_vel0 = cKinTree::GetRootAngVel(joint_mat, vel0);
#tVector root_ang_vel1 = cKinTree::GetRootAngVel(joint_mat, vel1);
mJointWeights = [0.20833,0.10416, 0.0625, 0.10416,
0.0625, 0.041666666666666671, 0.0625, 0.0416,
0.00, 0.10416, 0.0625, 0.0416, 0.0625, 0.0416, 0.0000]
num_end_effs = 0
num_joints = 15
root_rot_w = mJointWeights[root_id]
#pose_err += root_rot_w * cKinTree::CalcRootRotErr(joint_mat, pose0, pose1)
#vel_err += root_rot_w * cKinTree::CalcRootAngVelErr(joint_mat, vel0, vel1)
for j in range (num_joints):
curr_pose_err = 0
curr_vel_err = 0
w = mJointWeights[j];
simJointInfo = self._pybullet_client.getJointStateMultiDof(self._humanoid, j)
#print("simJointInfo.pos=",simJointInfo[0])
#print("simJointInfo.vel=",simJointInfo[1])
kinJointInfo = self.kin_client.getJointStateMultiDof(self._kinematicHumanoid,j)
#print("kinJointInfo.pos=",kinJointInfo[0])
#print("kinJointInfo.vel=",kinJointInfo[1])
if (len(simJointInfo[0])==1):
angle = simJointInfo[0][0]-kinJointInfo[0][0]
curr_pose_err = angle*angle
velDiff = simJointInfo[1][0]-kinJointInfo[1][0]
curr_vel_err = velDiff*velDiff
if (len(simJointInfo[0])==4):
#print("quaternion diff")
diffQuat = self._pybullet_client.getDifferenceQuaternion(simJointInfo[0],kinJointInfo[0])
axis,angle = self._pybullet_client.getAxisAngleFromQuaternion(diffQuat)
curr_pose_err = angle*angle
diffVel = [simJointInfo[1][0]-kinJointInfo[1][0],simJointInfo[1][1]-kinJointInfo[1][1],simJointInfo[1][2]-kinJointInfo[1][2]]
curr_vel_err = diffVel[0]*diffVel[0]+diffVel[1]*diffVel[1]+diffVel[2]*diffVel[2]
pose_err += w * curr_pose_err
vel_err += w * curr_vel_err
# bool is_end_eff = sim_char.IsEndEffector(j)
# if (is_end_eff)
# {
# tVector pos0 = sim_char.CalcJointPos(j)
# tVector pos1 = cKinTree::CalcJointWorldPos(joint_mat, pose1, j)
# double ground_h0 = mGround->SampleHeight(pos0)
# double ground_h1 = kin_char.GetOriginPos()[1]
#
# tVector pos_rel0 = pos0 - root_pos0
# tVector pos_rel1 = pos1 - root_pos1
# pos_rel0[1] = pos0[1] - ground_h0
# pos_rel1[1] = pos1[1] - ground_h1
#
# pos_rel0 = origin_trans * pos_rel0
# pos_rel1 = kin_origin_trans * pos_rel1
#
# curr_end_err = (pos_rel1 - pos_rel0).squaredNorm()
# end_eff_err += curr_end_err;
# ++num_end_effs;
# }
#}
#if (num_end_effs > 0):
# end_eff_err /= num_end_effs
#
#double root_ground_h0 = mGround->SampleHeight(sim_char.GetRootPos())
#double root_ground_h1 = kin_char.GetOriginPos()[1]
#root_pos0[1] -= root_ground_h0
#root_pos1[1] -= root_ground_h1
#root_pos_err = (root_pos0 - root_pos1).squaredNorm()
#
#root_rot_err = cMathUtil::QuatDiffTheta(root_rot0, root_rot1)
#root_rot_err *= root_rot_err
#root_vel_err = (root_vel1 - root_vel0).squaredNorm()
#root_ang_vel_err = (root_ang_vel1 - root_ang_vel0).squaredNorm()
#root_err = root_pos_err
# + 0.1 * root_rot_err
# + 0.01 * root_vel_err
# + 0.001 * root_ang_vel_err
#com_err = 0.1 * (com_vel1_world - com_vel0_world).squaredNorm()
#print("pose_err=",pose_err)
#print("vel_err=",vel_err)
pose_reward = math.exp(-err_scale * pose_scale * pose_err)
vel_reward = math.exp(-err_scale * vel_scale * vel_err)
end_eff_reward = math.exp(-err_scale * end_eff_scale * end_eff_err)
root_reward = math.exp(-err_scale * root_scale * root_err)
com_reward = math.exp(-err_scale * com_scale * com_err)
reward = pose_w * pose_reward + vel_w * vel_reward + end_eff_w * end_eff_reward + root_w * root_reward + com_w * com_reward
#print("reward = %f (pose_reward=%f, vel_reward=%f, end_eff_reward=%f, root_reward=%f, com_reward=%f)\n", reward,
# pose_reward,vel_reward,end_eff_reward, root_reward, com_reward);
return reward
def GetBasePosition(self):
pos,orn = self._pybullet_client.getBasePositionAndOrientation(self._humanoid)
return pos

View File

@@ -0,0 +1,150 @@
# coding: utf-8
import numpy as np
from math import *
import pickle
import json
# import quaternion
from transformation import *
from pyquaternion import Quaternion
def get_angle(vec1, vec2):
cos_theta = np.dot(vec1, vec2)/(np.linalg.norm(vec1) * np.linalg.norm(vec2))
return acos(cos_theta)
def get_quaternion(ox, oy, oz, x, y, z):
# given transformed axis in x-y-z order return a quaternion
ox /= np.linalg.norm(ox)
oy /= np.linalg.norm(oy)
oz /= np.linalg.norm(oz)
set1 = np.vstack((ox,oy,oz))
x /= np.linalg.norm(x)
y /= np.linalg.norm(y)
z /= np.linalg.norm(z)
set2 = np.vstack((x,y,z))
rot_mat = superimposition_matrix(set1, set2, scale=False, usesvd=True)
rot_qua = quaternion_from_matrix(rot_mat)
return rot_qua
# 3D coord to deepmimic rotations
def coord_to_rot(frameNum, frame, frame_duration):
eps = 0.001
axis_rotate_rate = 0.3
frame = np.array(frame)
tmp = [[] for i in range(15)]
# duration of frame in seconds (1D),
tmp[0] = [frame_duration]
# root position (3D),
tmp[1] = frame[0]
# root rotation (4D),
root_y = (frame[7] - frame[0])
root_z = (frame[1] - frame[0])
root_x = np.cross(root_y, root_z)
x = np.array([1.0,0,0])
y = np.array([0,1.0,0])
z = np.array([0,0,1.0])
rot_qua = get_quaternion(root_x, root_y, root_z, x, y, z)
tmp[2] = list(rot_qua)
# chest rotation (4D),
chest_y = (frame[8] - frame[7])
chest_z = (frame[14] - frame[8])
chest_x = np.cross(chest_y, chest_z)
rot_qua = get_quaternion(chest_x, chest_y, chest_z, root_x, root_y, root_z)
tmp[3] = list(rot_qua)
# neck rotation (4D),
neck_y = (frame[10] - frame[8])
neck_z = np.cross(frame[10]-frame[9], frame[8]-frame[9])
neck_x = np.cross(neck_y, neck_z)
rot_qua = get_quaternion(neck_x, neck_y, neck_z, chest_x, chest_y, chest_z)
tmp[4] = list(rot_qua)
# right hip rotation (4D),
r_hip_y = (frame[1] - frame[2])
r_hip_z = np.cross(frame[1]-frame[2], frame[3]-frame[2])
r_hip_x = np.cross(r_hip_y, r_hip_z)
rot_qua = get_quaternion(r_hip_x, r_hip_y, r_hip_z, root_x, root_y, root_z)
tmp[5] = list(rot_qua)
# right knee rotation (1D),
vec1 = frame[1] - frame[2]
vec2 = frame[3] - frame[2]
angle1 = get_angle(vec1, vec2)
tmp[6] = [angle1-pi]
# right ankle rotation (4D),
tmp[7] = [1,0,0,0]
# right shoulder rotation (4D),
r_shou_y = (frame[14] - frame[15])
r_shou_z = np.cross(frame[16]-frame[15], frame[14]-frame[15])
r_shou_x = np.cross(r_shou_y, r_shou_z)
rot_qua = get_quaternion(r_shou_x, r_shou_y, r_shou_z, chest_x, chest_y, chest_z)
tmp[8] = list(rot_qua)
# right elbow rotation (1D),
vec1 = frame[14] - frame[15]
vec2 = frame[16] - frame[15]
angle1 = get_angle(vec1, vec2)
tmp[9] = [pi-angle1]
# left hip rotation (4D),
l_hip_y = (frame[4] - frame[5])
l_hip_z = np.cross(frame[4]-frame[5], frame[6]-frame[5])
l_hip_x = np.cross(l_hip_y, l_hip_z)
rot_qua = get_quaternion(l_hip_x, l_hip_y, l_hip_z, root_x, root_y, root_z)
tmp[10] = list(rot_qua)
# left knee rotation (1D),
vec1 = frame[4] - frame[5]
vec2 = frame[6] - frame[5]
angle1 = get_angle(vec1, vec2)
tmp[11] = [angle1-pi]
# left ankle rotation (4D),
tmp[12] = [1,0,0,0]
# left shoulder rotation (4D),
l_shou_y = (frame[11] - frame[12])
l_shou_z = np.cross(frame[13]-frame[12], frame[11]-frame[12])
l_shou_x = np.cross(l_shou_y, l_shou_z)
rot_qua = get_quaternion(l_shou_x, l_shou_y, l_shou_z, chest_x, chest_y, chest_z)
tmp[13] = list(rot_qua)
# left elbow rotation (1D)
vec1 = frame[11] - frame[12]
vec2 = frame[13] - frame[12]
angle1 = get_angle(vec1, vec2)
tmp[14] = [pi-angle1]
ret = []
for i in tmp:
ret += list(i)
return np.array(ret)
# In[6]:
def coord_seq_to_rot_seq(coord_seq, frame_duration):
ret = []
for i in range(len(coord_seq)):
tmp = coord_to_rot( i, coord_seq[i], frame_duration)
ret.append(list(tmp))
return ret

View File

@@ -0,0 +1,36 @@
import numpy as np
from skeleton import Skeleton
class MocapDataset:
def __init__(self, fps, skeleton):
self._skeleton = skeleton
self._fps = fps
self._data = None # Must be filled by subclass
self._cameras = None # Must be filled by subclass
def remove_joints(self, joints_to_remove):
kept_joints = self._skeleton.remove_joints(joints_to_remove)
for subject in self._data.keys():
for action in self._data[subject].keys():
s = self._data[subject][action]
s['positions'] = s['positions'][:, kept_joints]
def __getitem__(self, key):
return self._data[key]
def subjects(self):
return self._data.keys()
def fps(self):
return self._fps
def skeleton(self):
return self._skeleton
def cameras(self):
return self._cameras
def supports_semi_supervised(self):
# This method can be overridden
return False

View File

@@ -0,0 +1,30 @@
import numpy as np
def qrot(q, v):
"""
Rotate vector(s) v about the rotation described by quaternion(s) q.
Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v,
where * denotes any number of dimensions.
Returns a tensor of shape (*, 3).
"""
assert q.shape[-1] == 4
assert v.shape[-1] == 3
assert q.shape[:-1] == v.shape[:-1]
qvec = q[..., 1:]
uv = np.cross(qvec, v)
uuv = np.cross(qvec, uv)
return (v + 2 * (q[..., :1] * uv + uuv))
def qinverse(q, inplace=False):
# We assume the quaternion to be normalized
if inplace:
q[..., 1:] *= -1
return q
else:
w = q[..., :1]
xyz = q[..., 1:]
return np.hstack((w, -xyz))

View File

@@ -0,0 +1,144 @@
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
print('parent:', parentdir)
import pybullet_data
import pybullet
import time
import random
from pybullet_utils.bullet_client import BulletClient
from deep_mimic.env.motion_capture_data import MotionCaptureData
# from pybullet_envs.deep_mimic.env.humanoid_stable_pd import HumanoidStablePd
from humanoid import Humanoid
from humanoid import HumanoidPose
# from env.humanoid_stable_pd
from deepmimic_json_generator import *
import pybullet as p
import numpy as np
import argparse
parser = argparse.ArgumentParser(description='Arguments for loading reference for learning.')
# General arguments
parser.add_argument('--dataset_path', default='data/data_3d_h36m.npz', type=str, help='target dataset') # h36m or humaneva
parser.add_argument('--json_path', default='data/Walking.json', type=str, help='json file path for storing the deepmimic-format json created by inverse-kinect.')
parser.add_argument('--fps', default=24, type=int, help='frame per second')
parser.add_argument('--subject', default='S11', type=str, help='camera subject.')
parser.add_argument('--action', default='Walking', type=str, help='name of the action.')
parser.add_argument('--loop', default='wrap', type=str, help='loop information in deepmimic, wrap or none.')
parser.add_argument('--draw_gt', action='store_true', help='draw ground truth or not.')
args = parser.parse_args()
dataset_path = args.dataset_path
json_path = args.json_path
fps = args.fps
subject = args.subject
action = args.action
loop = args.loop
draw_gt = args.draw_gt
def draw_ground_truth(coord_seq, frame, duration, shift):
global joint_info
joint = coord_seq[frame]
shift = np.array(shift)
for i in range(1, 17):
# print(x[11], x[14])
joint_fa = joint_info['father'][i]
if joint_info['side'][i] == 'right':
p.addUserDebugLine(lineFromXYZ=joint[i]+shift,
lineToXYZ=joint[joint_fa]+shift,
lineColorRGB=(255,0,0),
lineWidth=1,
lifeTime=duration)
else:
p.addUserDebugLine(lineFromXYZ=joint[i]+shift,
lineToXYZ=joint[joint_fa]+shift,
lineColorRGB=(0,0,0),
lineWidth=1,
lifeTime=duration)
dataset = init_fb_h36m_dataset(dataset_path)
ground_truth = pose3D_from_fb_h36m(dataset,
subject = subject,
action = action,
shift = [1.0,0.0,0.0])
rot_seq = coord_seq_to_rot_seq(coord_seq = ground_truth,
frame_duration = 1/fps)
rot_seq_to_deepmimic_json( rot_seq = rot_seq,
loop = loop,
json_path = json_path)
bc = BulletClient(connection_mode=pybullet.GUI)
bc.setAdditionalSearchPath(pybullet_data.getDataPath())
bc.configureDebugVisualizer(bc.COV_ENABLE_Y_AXIS_UP,1)
bc.setGravity(0,-9.8,0)
motion=MotionCaptureData()
motionPath = json_path
motion.Load(motionPath)
print("numFrames = ", motion.NumFrames())
simTimeId= bc.addUserDebugParameter("simTime",0,motion.NumFrames()-1.1,0)
y2zOrn = bc.getQuaternionFromEuler([-1.57,0,0])
bc.loadURDF("plane.urdf",[0,-0.04,0], y2zOrn)
humanoid = Humanoid(bc, motion, [0,0,0]) #这是初始位置的坐标
print(p.getBasePositionAndOrientation(humanoid._humanoid))
simTime = 0
keyFrameDuration = motion.KeyFrameDuraction()
print("keyFrameDuration=",keyFrameDuration)
for utNum in range(motion.NumFrames()):
bc.stepSimulation()
humanoid.RenderReference(utNum * keyFrameDuration)
if draw_gt:
draw_ground_truth(coord_seq = ground_truth,
frame = utNum,
duration = keyFrameDuration,
shift = [-1.0, 0.0, 1.0])
time.sleep(0.001)
stage = 0
def Reset(humanoid):
global simTime
humanoid.Reset()
simTime = 0
humanoid.SetSimTime(simTime)
pose = humanoid.InitializePoseFromMotionData()
humanoid.ApplyPose(pose, True, True, humanoid._humanoid,bc)
Reset(humanoid)
p.disconnect()

View File

@@ -0,0 +1,81 @@
import numpy as np
class Skeleton:
def __init__(self, parents, joints_left, joints_right):
assert len(joints_left) == len(joints_right)
self._parents = np.array(parents)
self._joints_left = joints_left
self._joints_right = joints_right
self._compute_metadata()
def num_joints(self):
return len(self._parents)
def parents(self):
return self._parents
def has_children(self):
return self._has_children
def children(self):
return self._children
def remove_joints(self, joints_to_remove):
"""
Remove the joints specified in 'joints_to_remove'.
"""
valid_joints = []
for joint in range(len(self._parents)):
if joint not in joints_to_remove:
valid_joints.append(joint)
for i in range(len(self._parents)):
while self._parents[i] in joints_to_remove:
self._parents[i] = self._parents[self._parents[i]]
index_offsets = np.zeros(len(self._parents), dtype=int)
new_parents = []
for i, parent in enumerate(self._parents):
if i not in joints_to_remove:
new_parents.append(parent - index_offsets[parent])
else:
index_offsets[i:] += 1
self._parents = np.array(new_parents)
if self._joints_left is not None:
new_joints_left = []
for joint in self._joints_left:
if joint in valid_joints:
new_joints_left.append(joint - index_offsets[joint])
self._joints_left = new_joints_left
if self._joints_right is not None:
new_joints_right = []
for joint in self._joints_right:
if joint in valid_joints:
new_joints_right.append(joint - index_offsets[joint])
self._joints_right = new_joints_right
self._compute_metadata()
return valid_joints
def joints_left(self):
return self._joints_left
def joints_right(self):
return self._joints_right
def _compute_metadata(self):
self._has_children = np.zeros(len(self._parents)).astype(bool)
for i, parent in enumerate(self._parents):
if parent != -1:
self._has_children[parent] = True
self._children = []
for i, parent in enumerate(self._parents):
self._children.append([])
for i, parent in enumerate(self._parents):
if parent != -1:
self._children[parent].append(i)

File diff suppressed because it is too large Load Diff