enable stable PD plugin in premake4.lua PyBullet
add a normalize in the setRotation axis/angle to be sure. Add more code from the DeepMimic project, training doesn't work yet.
This commit is contained in:
65
examples/pybullet/gym/pybullet_envs/deep_mimic/testrl.py
Normal file
65
examples/pybullet/gym/pybullet_envs/deep_mimic/testrl.py
Normal file
@@ -0,0 +1,65 @@
|
||||
import json
|
||||
from learning.rl_world import RLWorld
|
||||
from learning.ppo_agent import PPOAgent
|
||||
|
||||
import pybullet_data
|
||||
from pybullet_utils.arg_parser import ArgParser
|
||||
from pybullet_utils.logger import Logger
|
||||
from pybullet_envs.deep_mimic.env.pybullet_deep_mimic_env import PyBulletDeepMimicEnv
|
||||
import sys
|
||||
import random
|
||||
|
||||
def build_arg_parser(args):
|
||||
arg_parser = ArgParser()
|
||||
arg_parser.load_args(args)
|
||||
|
||||
arg_file = arg_parser.parse_string('arg_file', '')
|
||||
if (arg_file != ''):
|
||||
path = pybullet_data.getDataPath()+"/args/"+arg_file
|
||||
succ = arg_parser.load_file(path)
|
||||
Logger.print2(arg_file)
|
||||
assert succ, Logger.print2('Failed to load args from: ' + arg_file)
|
||||
return arg_parser
|
||||
|
||||
args = sys.argv[1:]
|
||||
arg_parser = build_arg_parser(args)
|
||||
|
||||
render=True
|
||||
env = PyBulletDeepMimicEnv (args,render)
|
||||
|
||||
world = RLWorld(env, arg_parser)
|
||||
|
||||
motion_file = arg_parser.parse_string("motion_file")
|
||||
print("motion_file=",motion_file)
|
||||
bodies = arg_parser.parse_ints("fall_contact_bodies")
|
||||
print("bodies=",bodies)
|
||||
int_output_path = arg_parser.parse_string("int_output_path")
|
||||
print("int_output_path=",int_output_path)
|
||||
|
||||
agent_files = arg_parser.parse_string("agent_files")
|
||||
|
||||
AGENT_TYPE_KEY = "AgentType"
|
||||
|
||||
print("agent_file=",agent_files)
|
||||
with open(agent_files) as data_file:
|
||||
json_data = json.load(data_file)
|
||||
print("json_data=",json_data)
|
||||
assert AGENT_TYPE_KEY in json_data
|
||||
agent_type = json_data[AGENT_TYPE_KEY]
|
||||
print("agent_type=",agent_type)
|
||||
agent = PPOAgent(world, id, json_data)
|
||||
|
||||
agent.set_enable_training(True)
|
||||
world.reset()
|
||||
|
||||
while (world.env._pybullet_client.isConnected()):
|
||||
|
||||
timeStep = 1./600.
|
||||
world.update(timeStep)
|
||||
reward = world.env.calc_reward(agent_id=0)
|
||||
#print("reward=",reward)
|
||||
|
||||
end_episode = world.env.is_episode_end()
|
||||
if (end_episode):
|
||||
world.end_episode()
|
||||
world.reset()
|
||||
Reference in New Issue
Block a user