add DeepMimic helper utils

This commit is contained in:
erwincoumans
2018-11-23 18:01:39 -08:00
parent 7669fc92c5
commit 5f0dcb575f
6 changed files with 344 additions and 0 deletions

View File

@@ -0,0 +1,124 @@
import re as RE
class ArgParser(object):
global_parser = None
def __init__(self):
self._table = dict()
return
def clear(self):
self._table.clear()
return
def load_args(self, arg_strs):
succ = True
vals = []
curr_key = ''
for str in arg_strs:
if not (self._is_comment(str)):
is_key = self._is_key(str)
if (is_key):
if (curr_key != ''):
if (curr_key not in self._table):
self._table[curr_key] = vals
vals = []
curr_key = str[2::]
else:
vals.append(str)
if (curr_key != ''):
if (curr_key not in self._table):
self._table[curr_key] = vals
vals = []
return succ
def load_file(self, filename):
succ = False
with open(filename, 'r') as file:
lines = RE.split(r'[\n\r]+', file.read())
file.close()
arg_strs = []
for line in lines:
if (len(line) > 0 and not self._is_comment(line)):
arg_strs += line.split()
succ = self.load_args(arg_strs)
return succ
def has_key(self, key):
return key in self._table
def parse_string(self, key, default=''):
str = default
if self.has_key(key):
str = self._table[key][0]
return str
def parse_strings(self, key, default=[]):
arr = default
if self.has_key(key):
arr = self._table[key]
return arr
def parse_int(self, key, default=0):
val = default
if self.has_key(key):
val = int(self._table[key][0])
return val
def parse_ints(self, key, default=[]):
arr = default
if self.has_key(key):
arr = [int(str) for str in self._table[key]]
return arr
def parse_float(self, key, default=0.0):
val = default
if self.has_key(key):
val = float(self._table[key][0])
return val
def parse_floats(self, key, default=[]):
arr = default
if self.has_key(key):
arr = [float(str) for str in self._table[key]]
return arr
def parse_bool(self, key, default=False):
val = default
if self.has_key(key):
val = self._parse_bool(self._table[key][0])
return val
def parse_bools(self, key, default=[]):
arr = default
if self.has_key(key):
arr = [self._parse_bool(str) for str in self._table[key]]
return arr
def _is_comment(self, str):
is_comment = False
if (len(str) > 0):
is_comment = str[0] == '#'
return is_comment
def _is_key(self, str):
is_key = False
if (len(str) >= 3):
is_key = str[0] == '-' and str[1] == '-'
return is_key
def _parse_bool(self, str):
val = False
if (str == 'true' or str == 'True' or str == '1'
or str == 'T' or str == 't'):
val = True
return val

View File

@@ -0,0 +1,9 @@
from pybullet_utils.logger import Logger
logger = Logger()
logger.configure_output_file("e:/mylog.txt")
for i in range (10):
logger.log_tabular("Iteration", 1)
Logger.print2("hello world")
logger.print_tabular()
logger.dump_tabular()

View File

@@ -0,0 +1,128 @@
import pybullet_utils.mpi_util as MPIUtil
"""
Some simple logging functionality, inspired by rllab's logging.
Assumes that each diagnostic gets logged each iteration
Call logz.configure_output_file() to start logging to a
tab-separated-values file (some_file_name.txt)
To load the learning curves, you can do, for example
A = np.genfromtxt('/tmp/expt_1468984536/log.txt',delimiter='\t',dtype=None, names=True)
A['EpRewMean']
"""
import os.path as osp, shutil, time, atexit, os, subprocess
class Logger:
def print2(str):
if (MPIUtil.is_root_proc()):
print(str)
return
def __init__(self):
self.output_file = None
self.first_row = True
self.log_headers = []
self.log_current_row = {}
self._dump_str_template = ""
return
def reset(self):
self.first_row = True
self.log_headers = []
self.log_current_row = {}
if self.output_file is not None:
self.output_file = open(output_path, 'w')
return
def configure_output_file(self, filename=None):
"""
Set output directory to d, or to /tmp/somerandomnumber if d is None
"""
self.first_row = True
self.log_headers = []
self.log_current_row = {}
output_path = filename or "output/log_%i.txt"%int(time.time())
out_dir = os.path.dirname(output_path)
if not os.path.exists(out_dir) and MPIUtil.is_root_proc():
os.makedirs(out_dir)
if (MPIUtil.is_root_proc()):
self.output_file = open(output_path, 'w')
assert osp.exists(output_path)
atexit.register(self.output_file.close)
Logger.print2("Logging data to " + self.output_file.name)
return
def log_tabular(self, key, val):
"""
Log a value of some diagnostic
Call this once for each diagnostic quantity, each iteration
"""
if self.first_row and key not in self.log_headers:
self.log_headers.append(key)
else:
assert key in self.log_headers, "Trying to introduce a new key %s that you didn't include in the first iteration"%key
self.log_current_row[key] = val
return
def get_num_keys(self):
return len(self.log_headers)
def print_tabular(self):
"""
Print all of the diagnostics from the current iteration
"""
if (MPIUtil.is_root_proc()):
vals = []
Logger.print2("-"*37)
for key in self.log_headers:
val = self.log_current_row.get(key, "")
if isinstance(val, float):
valstr = "%8.3g"%val
elif isinstance(val, int):
valstr = str(val)
else:
valstr = val
Logger.print2("| %15s | %15s |"%(key, valstr))
vals.append(val)
Logger.print2("-" * 37)
return
def dump_tabular(self):
"""
Write all of the diagnostics from the current iteration
"""
if (MPIUtil.is_root_proc()):
if (self.first_row):
self._dump_str_template = self._build_str_template()
vals = []
for key in self.log_headers:
val = self.log_current_row.get(key, "")
vals.append(val)
if self.output_file is not None:
if self.first_row:
header_str = self._dump_str_template.format(*self.log_headers)
self.output_file.write(header_str + "\n")
val_str = self._dump_str_template.format(*map(str,vals))
self.output_file.write(val_str + "\n")
self.output_file.flush()
self.log_current_row.clear()
self.first_row=False
return
def _build_str_template(self):
num_keys = self.get_num_keys()
template = "{:<25}" * num_keys
return template

View File

@@ -0,0 +1,18 @@
import numpy as np
RAD_TO_DEG = 57.2957795
DEG_TO_RAD = 1.0 / RAD_TO_DEG
INVALID_IDX = -1
def lerp(x, y, t):
return (1 - t) * x + t * y
def log_lerp(x, y, t):
return np.exp(lerp(np.log(x), np.log(y), t))
def flatten(arr_list):
return np.concatenate([np.reshape(a, [-1]) for a in arr_list], axis=0)
def flip_coin(p):
rand_num = np.random.binomial(1, p, 1)
return rand_num[0] == 1

View File

@@ -0,0 +1,52 @@
import numpy as np
from mpi4py import MPI
ROOT_PROC_RANK = 0
def get_num_procs():
return MPI.COMM_WORLD.Get_size()
def get_proc_rank():
return MPI.COMM_WORLD.Get_rank()
def is_root_proc():
rank = get_proc_rank()
return rank == ROOT_PROC_RANK
def bcast(x):
MPI.COMM_WORLD.Bcast(x, root=ROOT_PROC_RANK)
return
def reduce_sum(x):
return reduce_all(x, MPI.SUM)
def reduce_prod(x):
return reduce_all(x, MPI.PROD)
def reduce_avg(x):
buffer = reduce_sum(x)
buffer /= get_num_procs()
return buffer
def reduce_min(x):
return reduce_all(x, MPI.MIN)
def reduce_max(x):
return reduce_all(x, MPI.MAX)
def reduce_all(x, op):
is_array = isinstance(x, np.ndarray)
x_buf = x if is_array else np.array([x])
buffer = np.zeros_like(x_buf)
MPI.COMM_WORLD.Allreduce(x_buf, buffer, op=op)
buffer = buffer if is_array else buffer[0]
return buffer
def gather_all(x):
is_array = isinstance(x, np.ndarray)
x_buf = np.array([x])
buffer = np.zeros_like(x_buf)
buffer = np.repeat(buffer, get_num_procs(), axis=0)
MPI.COMM_WORLD.Allgather(x_buf, buffer)
buffer = list(buffer)
return buffer

View File

@@ -0,0 +1,13 @@
import random
import numpy as np
def set_global_seeds(seed):
try:
import tensorflow as tf
except ImportError:
pass
else:
tf.set_random_seed(seed)
np.random.seed(seed)
random.seed(seed)
return