apply yapf
This commit is contained in:
@@ -175,13 +175,13 @@ def train(env, policy, normalizer, hp, parentPipes, args):
|
||||
if parentPipes:
|
||||
for k in range(hp.nb_directions):
|
||||
parentPipe = parentPipes[k]
|
||||
parentPipe.send([_EXPLORE,[normalizer, policy, hp, "positive", deltas[k]]])
|
||||
parentPipe.send([_EXPLORE, [normalizer, policy, hp, "positive", deltas[k]]])
|
||||
for k in range(hp.nb_directions):
|
||||
positive_rewards[k] = parentPipes[k].recv()[0]
|
||||
|
||||
for k in range(hp.nb_directions):
|
||||
parentPipe = parentPipes[k]
|
||||
parentPipe.send([_EXPLORE,[normalizer, policy, hp, "negative", deltas[k]]])
|
||||
parentPipe.send([_EXPLORE, [normalizer, policy, hp, "negative", deltas[k]]])
|
||||
for k in range(hp.nb_directions):
|
||||
negative_rewards[k] = parentPipes[k].recv()[0]
|
||||
|
||||
@@ -190,19 +190,20 @@ def train(env, policy, normalizer, hp, parentPipes, args):
|
||||
for k in range(hp.nb_directions):
|
||||
positive_rewards[k] = explore(env, normalizer, policy, "positive", deltas[k], hp)
|
||||
|
||||
|
||||
# Getting the negative rewards in the negative/opposite directions
|
||||
for k in range(hp.nb_directions):
|
||||
negative_rewards[k] = explore(env, normalizer, policy, "negative", deltas[k], hp)
|
||||
|
||||
|
||||
# Gathering all the positive/negative rewards to compute the standard deviation of these rewards
|
||||
all_rewards = np.array(positive_rewards + negative_rewards)
|
||||
sigma_r = all_rewards.std()
|
||||
|
||||
# Sorting the rollouts by the max(r_pos, r_neg) and selecting the best directions
|
||||
scores = {k:max(r_pos, r_neg) for k,(r_pos,r_neg) in enumerate(zip(positive_rewards, negative_rewards))}
|
||||
order = sorted(scores.keys(), key = lambda x:-scores[x])[:hp.nb_best_directions]
|
||||
scores = {
|
||||
k: max(r_pos, r_neg)
|
||||
for k, (r_pos, r_neg) in enumerate(zip(positive_rewards, negative_rewards))
|
||||
}
|
||||
order = sorted(scores.keys(), key=lambda x: -scores[x])[:hp.nb_best_directions]
|
||||
rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in order]
|
||||
|
||||
# Updating our policy
|
||||
@@ -212,6 +213,7 @@ def train(env, policy, normalizer, hp, parentPipes, args):
|
||||
reward_evaluation = explore(env, normalizer, policy, None, None, hp)
|
||||
print('Step:', step, 'Reward:', reward_evaluation)
|
||||
|
||||
|
||||
# Running the main code
|
||||
|
||||
|
||||
@@ -226,19 +228,15 @@ if __name__ == "__main__":
|
||||
mp.freeze_support()
|
||||
|
||||
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--env',
|
||||
help='Gym environment name',
|
||||
type=str,
|
||||
default='HalfCheetahBulletEnv-v0')
|
||||
parser.add_argument(
|
||||
'--env', help='Gym environment name', type=str, default='HalfCheetahBulletEnv-v0')
|
||||
parser.add_argument('--seed', help='RNG seed', type=int, default=1)
|
||||
parser.add_argument('--render', help='OpenGL Visualizer', type=int, default=0)
|
||||
parser.add_argument('--movie', help='rgb_array gym movie', type=int, default=0)
|
||||
parser.add_argument('--steps', help='Number of steps', type=int, default=10000)
|
||||
parser.add_argument('--policy', help='Starting policy file (npy)', type=str, default='')
|
||||
parser.add_argument('--logdir',
|
||||
help='Directory root to log policy files (npy)',
|
||||
type=str,
|
||||
default='.')
|
||||
parser.add_argument(
|
||||
'--logdir', help='Directory root to log policy files (npy)', type=str, default='.')
|
||||
parser.add_argument('--mp', help='Enable multiprocessing', type=int, default=1)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
Reference in New Issue
Block a user