pybullet a bit more refactoring, moving around files.

pybullet: move data to pybullet_data package, with getDataPath() method
This commit is contained in:
Erwin Coumans
2017-08-27 18:08:46 -07:00
parent 97cb6df00c
commit 659e869b86
185 changed files with 149 additions and 68 deletions

View File

@@ -0,0 +1,10 @@
from . import enjoy_kuka_grasping
from . import enjoy_pybullet_cartpole
from . import enjoy_pybullet_racecar
from . import enjoy_pybullet_zed_racecar
from . import train_kuka_cam_grasping
from . import train_kuka_grasping
from . import train_pybullet_cartpole
from . import train_pybullet_racecar
from . import train_pybullet_zed_racecar

View File

@@ -0,0 +1,32 @@
#add parent dir to find package. Only needed for source code build, pip install doesn't need it.
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
import gym
from pybullet_envs.bullet.kukaGymEnv import KukaGymEnv
from baselines import deepq
def main():
env = KukaGymEnv(renders=True)
act = deepq.load("kuka_model.pkl")
print(act)
while True:
obs, done = env.reset(), False
print("===================================")
print("obs")
print(obs)
episode_rew = 0
while not done:
env.render()
obs, rew, done, _ = env.step(act(obs[None])[0])
episode_rew += rew
print("Episode reward", episode_rew)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,35 @@
#add parent dir to find package. Only needed for source code build, pip install doesn't need it.
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
import gym
from baselines import deepq
from pybullet_envs.bullet.cartpole_bullet import CartPoleBulletEnv
def main():
env = gym.make('CartPoleBulletEnv-v0')
act = deepq.load("cartpole_model.pkl")
while True:
obs, done = env.reset(), False
print("obs")
print(obs)
print("type(obs)")
print(type(obs))
episode_rew = 0
while not done:
env.render()
o = obs[None]
aa = act(o)
a = aa[0]
obs, rew, done, _ = env.step(a)
episode_rew += rew
print("Episode reward", episode_rew)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,32 @@
#add parent dir to find package. Only needed for source code build, pip install doesn't need it.
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
import gym
from pybullet_envs.bullet.racecarGymEnv import RacecarGymEnv
from baselines import deepq
def main():
env = RacecarGymEnv(renders=True,isDiscrete=True)
act = deepq.load("racecar_model.pkl")
print(act)
while True:
obs, done = env.reset(), False
print("===================================")
print("obs")
print(obs)
episode_rew = 0
while not done:
env.render()
obs, rew, done, _ = env.step(act(obs[None])[0])
episode_rew += rew
print("Episode reward", episode_rew)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,32 @@
#add parent dir to find package. Only needed for source code build, pip install doesn't need it.
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
import gym
from pybullet_envs.bullet.racecarZEDGymEnv import RacecarZEDGymEnv
from baselines import deepq
def main():
env = RacecarZEDGymEnv(renders=True)
act = deepq.load("racecar_zed_model.pkl")
print(act)
while True:
obs, done = env.reset(), False
print("===================================")
print("obs")
print(obs)
episode_rew = 0
while not done:
env.render()
obs, rew, done, _ = env.step(act(obs[None])[0])
episode_rew += rew
print("Episode reward", episode_rew)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,50 @@
#add parent dir to find package. Only needed for source code build, pip install doesn't need it.
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
import gym
from pybullet_envs.bullet.kukaCamGymEnv import KukaCamGymEnv
from baselines import deepq
import datetime
def callback(lcl, glb):
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
#print("totalt")
#print(totalt)
is_solved = totalt > 2000 and total >= 10
return is_solved
def main():
env = KukaCamGymEnv(renders=True)
model = deepq.models.cnn_to_mlp(
convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)],
hiddens=[256],
dueling=False
)
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=10000000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback
)
print("Saving model to kuka_cam_model.pkl")
act.save("kuka_cam_model.pkl")
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,46 @@
#add parent dir to find package. Only needed for source code build, pip install doesn't need it.
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
import gym
from pybullet_envs.bullet.kukaGymEnv import KukaGymEnv
from baselines import deepq
import datetime
def callback(lcl, glb):
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
#print("totalt")
#print(totalt)
is_solved = totalt > 2000 and total >= 10
return is_solved
def main():
env = KukaGymEnv(renders=False)
model = deepq.models.mlp([64])
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=10000000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback
)
print("Saving model to kuka_model.pkl")
act.save("kuka_model.pkl")
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,39 @@
#add parent dir to find package. Only needed for source code build, pip install doesn't need it.
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
import gym
from pybullet_envs.bullet.cartpole_bullet import CartPoleBulletEnv
from baselines import deepq
def callback(lcl, glb):
# stop training if reward exceeds 199
is_solved = lcl['t'] > 100 and sum(lcl['episode_rewards'][-101:-1]) / 100 >= 199
return is_solved
def main():
env = CartPoleBulletEnv(renders=False)
model = deepq.models.mlp([64])
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=100000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback
)
print("Saving model to cartpole_model.pkl")
act.save("cartpole_model.pkl")
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,44 @@
#add parent dir to find package. Only needed for source code build, pip install doesn't need it.
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
import gym
from pybullet_envs.bullet.racecarGymEnv import RacecarGymEnv
from baselines import deepq
import datetime
def callback(lcl, glb):
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
is_solved = totalt > 2000 and total >= -50
return is_solved
def main():
env = RacecarGymEnv(renders=False,isDiscrete=True)
model = deepq.models.mlp([64])
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=10000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback
)
print("Saving model to racecar_model.pkl")
act.save("racecar_model.pkl")
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,47 @@
#add parent dir to find package. Only needed for source code build, pip install doesn't need it.
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
import gym
from pybullet_envs.bullet.racecarZEDGymEnv import RacecarZEDGymEnv
from baselines import deepq
import datetime
def callback(lcl, glb):
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
is_solved = totalt > 2000 and total >= -50
return is_solved
def main():
env = RacecarZEDGymEnv(renders=False, isDiscrete=True)
model = deepq.models.cnn_to_mlp(
convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)],
hiddens=[256],
dueling=False
)
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=10000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback
)
print("Saving model to racecar_zed_model.pkl")
act.save("racecar_zed_model.pkl")
if __name__ == '__main__':
main()