@@ -401,15 +401,18 @@ bool BulletURDFImporter::getRootTransformInWorld(btTransform& rootTransformInWor
|
||||
return true;
|
||||
}
|
||||
|
||||
static btCollisionShape* createConvexHullFromShapes(std::vector<tinyobj::shape_t>& shapes)
|
||||
static btCollisionShape* createConvexHullFromShapes(std::vector<tinyobj::shape_t>& shapes, const btVector3& geomScale)
|
||||
{
|
||||
btCompoundShape* compound = new btCompoundShape();
|
||||
compound->setMargin(gUrdfDefaultCollisionMargin);
|
||||
|
||||
btTransform identity;
|
||||
identity.setIdentity();
|
||||
|
||||
for (int s = 0; s<(int)shapes.size(); s++)
|
||||
{
|
||||
btConvexHullShape* convexHull = new btConvexHullShape();
|
||||
convexHull->setMargin(gUrdfDefaultCollisionMargin);
|
||||
tinyobj::shape_t& shape = shapes[s];
|
||||
int faceCount = shape.mesh.indices.size();
|
||||
|
||||
@@ -420,17 +423,18 @@ static btCollisionShape* createConvexHullFromShapes(std::vector<tinyobj::shape_t
|
||||
pt.setValue(shape.mesh.positions[shape.mesh.indices[f] * 3 + 0],
|
||||
shape.mesh.positions[shape.mesh.indices[f] * 3 + 1],
|
||||
shape.mesh.positions[shape.mesh.indices[f] * 3 + 2]);
|
||||
convexHull->addPoint(pt,false);
|
||||
|
||||
convexHull->addPoint(pt*geomScale,false);
|
||||
|
||||
pt.setValue(shape.mesh.positions[shape.mesh.indices[f + 1] * 3 + 0],
|
||||
shape.mesh.positions[shape.mesh.indices[f + 1] * 3 + 1],
|
||||
shape.mesh.positions[shape.mesh.indices[f + 1] * 3 + 2]);
|
||||
convexHull->addPoint(pt, false);
|
||||
convexHull->addPoint(pt*geomScale, false);
|
||||
|
||||
pt.setValue(shape.mesh.positions[shape.mesh.indices[f + 2] * 3 + 0],
|
||||
shape.mesh.positions[shape.mesh.indices[f + 2] * 3 + 1],
|
||||
shape.mesh.positions[shape.mesh.indices[f + 2] * 3 + 2]);
|
||||
convexHull->addPoint(pt, false);
|
||||
convexHull->addPoint(pt*geomScale, false);
|
||||
}
|
||||
|
||||
convexHull->recalcLocalAabb();
|
||||
@@ -464,16 +468,18 @@ btCollisionShape* convertURDFToCollisionShape(const UrdfCollision* collision, co
|
||||
vertices.push_back(vert);
|
||||
|
||||
}
|
||||
btConvexHullShape* cylZShape = new btConvexHullShape(&vertices[0].x(), vertices.size(), sizeof(btVector3));
|
||||
cylZShape->setMargin(gUrdfDefaultCollisionMargin);
|
||||
cylZShape->initializePolyhedralFeatures();
|
||||
btConvexHullShape* convexHull = new btConvexHullShape(&vertices[0].x(), vertices.size(), sizeof(btVector3));
|
||||
convexHull->setMargin(gUrdfDefaultCollisionMargin);
|
||||
convexHull->initializePolyhedralFeatures();
|
||||
convexHull->optimizeConvexHull();
|
||||
|
||||
//btConvexShape* cylZShape = new btConeShapeZ(cyl->radius,cyl->length);//(vexHullShape(&vertices[0].x(), vertices.size(), sizeof(btVector3));
|
||||
|
||||
//btVector3 halfExtents(cyl->radius,cyl->radius,cyl->length/2.);
|
||||
//btCylinderShapeZ* cylZShape = new btCylinderShapeZ(halfExtents);
|
||||
|
||||
|
||||
shape = cylZShape;
|
||||
shape = convexHull;
|
||||
break;
|
||||
}
|
||||
case URDF_GEOM_BOX:
|
||||
@@ -555,7 +561,8 @@ btCollisionShape* convertURDFToCollisionShape(const UrdfCollision* collision, co
|
||||
std::vector<tinyobj::shape_t> shapes;
|
||||
std::string err = tinyobj::LoadObj(shapes, fullPath, collisionPathPrefix);
|
||||
//create a convex hull for each shape, and store it in a btCompoundShape
|
||||
shape = createConvexHullFromShapes(shapes);
|
||||
|
||||
shape = createConvexHullFromShapes(shapes, collision->m_geometry.m_meshScale);
|
||||
return shape;
|
||||
}
|
||||
break;
|
||||
@@ -685,13 +692,11 @@ btCollisionShape* convertURDFToCollisionShape(const UrdfCollision* collision, co
|
||||
shape = trimesh;
|
||||
} else
|
||||
{
|
||||
//btConvexHullShape* cylZShape = new btConvexHullShape(&glmesh->m_vertices->at(0).xyzw[0], glmesh->m_numvertices, sizeof(GLInstanceVertex));
|
||||
btConvexHullShape* cylZShape = new btConvexHullShape(&convertedVerts[0].getX(), convertedVerts.size(), sizeof(btVector3));
|
||||
//cylZShape->initializePolyhedralFeatures();
|
||||
//btVector3 halfExtents(cyl->radius,cyl->radius,cyl->length/2.);
|
||||
//btCylinderShapeZ* cylZShape = new btCylinderShapeZ(halfExtents);
|
||||
cylZShape->setMargin(gUrdfDefaultCollisionMargin);
|
||||
shape = cylZShape;
|
||||
btConvexHullShape* convexHull = new btConvexHullShape(&convertedVerts[0].getX(), convertedVerts.size(), sizeof(btVector3));
|
||||
convexHull->optimizeConvexHull();
|
||||
//convexHull->initializePolyhedralFeatures();
|
||||
convexHull->setMargin(gUrdfDefaultCollisionMargin);
|
||||
shape = convexHull;
|
||||
}
|
||||
} else
|
||||
{
|
||||
|
||||
@@ -1057,12 +1057,15 @@ bool UrdfParser::parseJoint(UrdfJoint& joint, TiXmlElement *config, ErrorLogger*
|
||||
TiXmlElement *limit_xml = axis_xml->FirstChildElement("limit");
|
||||
if (limit_xml)
|
||||
{
|
||||
if (!parseJointLimits(joint, limit_xml,logger))
|
||||
{
|
||||
logger->reportError("Could not parse limit element for joint:");
|
||||
logger->reportError(joint.m_name.c_str());
|
||||
return false;
|
||||
}
|
||||
if (joint.m_type != URDFContinuousJoint)
|
||||
{
|
||||
if (!parseJointLimits(joint, limit_xml,logger))
|
||||
{
|
||||
logger->reportError("Could not parse limit element for joint:");
|
||||
logger->reportError(joint.m_name.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (joint.m_type == URDFRevoluteJoint)
|
||||
{
|
||||
|
||||
@@ -78,7 +78,6 @@ public:
|
||||
|
||||
|
||||
|
||||
m_ikHelper.createKukaIIWA();
|
||||
|
||||
bool connected = m_robotSim.connect(m_guiHelper);
|
||||
b3Printf("robotSim connected = %d",connected);
|
||||
@@ -114,6 +113,7 @@ public:
|
||||
*/
|
||||
}
|
||||
|
||||
if (0)
|
||||
{
|
||||
b3RobotSimLoadFileArgs args("");
|
||||
args.m_fileName = "kiva_shelf/model.sdf";
|
||||
@@ -195,11 +195,13 @@ public:
|
||||
ikargs.m_endEffectorTargetPosition[1] = targetPosDataOut.m_floats[1];
|
||||
ikargs.m_endEffectorTargetPosition[2] = targetPosDataOut.m_floats[2];
|
||||
|
||||
ikargs.m_flags |= B3_HAS_IK_TARGET_ORIENTATION;
|
||||
|
||||
ikargs.m_endEffectorTargetOrientation[0] = targetOriDataOut.m_floats[0];
|
||||
ikargs.m_endEffectorTargetOrientation[1] = targetOriDataOut.m_floats[1];
|
||||
ikargs.m_endEffectorTargetOrientation[2] = targetOriDataOut.m_floats[2];
|
||||
ikargs.m_endEffectorTargetOrientation[3] = targetOriDataOut.m_floats[3];
|
||||
ikargs.m_dt = dt;
|
||||
ikargs.m_endEffectorLinkIndex = 6;
|
||||
|
||||
if (m_robotSim.calculateInverseKinematics(ikargs,ikresults))
|
||||
{
|
||||
@@ -208,8 +210,10 @@ public:
|
||||
{
|
||||
b3JointMotorArgs t(CONTROL_MODE_POSITION_VELOCITY_PD);
|
||||
t.m_targetPosition = ikresults.m_calculatedJointPositions[i];
|
||||
t.m_maxTorqueValue = 1000;
|
||||
t.m_maxTorqueValue = 100;
|
||||
t.m_kp= 1;
|
||||
t.m_targetVelocity = 0;
|
||||
t.m_kp = 0.5;
|
||||
m_robotSim.setJointMotorControl(m_kukaIndex,i,t);
|
||||
|
||||
}
|
||||
|
||||
@@ -480,12 +480,25 @@ int b3GetStatusInverseKinematicsJointPositions(b3SharedMemoryStatusHandle status
|
||||
*/
|
||||
bool b3RobotSimAPI::calculateInverseKinematics(const struct b3RobotSimInverseKinematicArgs& args, struct b3RobotSimInverseKinematicsResults& results)
|
||||
{
|
||||
btAssert(args.m_endEffectorLinkIndex>=0);
|
||||
btAssert(args.m_bodyUniqueId>=0);
|
||||
|
||||
|
||||
b3SharedMemoryCommandHandle command = b3CalculateInverseKinematicsCommandInit(m_data->m_physicsClient,args.m_bodyUniqueId, args.m_endEffectorTargetPosition,args.m_endEffectorTargetOrientation,args.m_dt);
|
||||
b3SharedMemoryCommandHandle command = b3CalculateInverseKinematicsCommandInit(m_data->m_physicsClient,args.m_bodyUniqueId);
|
||||
if (args.m_flags & B3_HAS_IK_TARGET_ORIENTATION)
|
||||
{
|
||||
b3CalculateInverseKinematicsAddTargetPositionWithOrientation(command,args.m_endEffectorLinkIndex,args.m_endEffectorTargetPosition,args.m_endEffectorTargetOrientation);
|
||||
} else
|
||||
{
|
||||
b3CalculateInverseKinematicsAddTargetPurePosition(command,args.m_endEffectorLinkIndex,args.m_endEffectorTargetPosition);
|
||||
}
|
||||
|
||||
|
||||
b3SharedMemoryStatusHandle statusHandle;
|
||||
statusHandle = b3SubmitClientCommandAndWaitStatus(m_data->m_physicsClient, command);
|
||||
|
||||
|
||||
|
||||
int numPos=0;
|
||||
|
||||
bool result = b3GetStatusInverseKinematicsJointPositions(statusHandle,
|
||||
|
||||
@@ -94,15 +94,22 @@ struct b3RobotSimInverseKinematicArgs
|
||||
// int m_numPositions;
|
||||
double m_endEffectorTargetPosition[3];
|
||||
double m_endEffectorTargetOrientation[4];
|
||||
double m_dt;
|
||||
int m_endEffectorLinkIndex;
|
||||
int m_flags;
|
||||
|
||||
b3RobotSimInverseKinematicArgs()
|
||||
:m_bodyUniqueId(-1),
|
||||
// m_currentJointPositions(0),
|
||||
// m_numPositions(0),
|
||||
m_endEffectorLinkIndex(-1),
|
||||
m_flags(0)
|
||||
{
|
||||
m_endEffectorTargetPosition[0]=0;
|
||||
m_endEffectorTargetPosition[1]=0;
|
||||
m_endEffectorTargetPosition[2]=0;
|
||||
|
||||
m_endEffectorTargetOrientation[0]=0;
|
||||
m_endEffectorTargetOrientation[1]=0;
|
||||
m_endEffectorTargetOrientation[2]=0;
|
||||
m_endEffectorTargetOrientation[3]=1;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -16,7 +16,7 @@ struct IKTrajectoryHelperInternalData
|
||||
{
|
||||
VectorR3 m_endEffectorTargetPosition;
|
||||
|
||||
Tree m_ikTree;
|
||||
|
||||
b3AlignedObjectArray<Node*> m_ikNodes;
|
||||
Jacobian* m_ikJacobian;
|
||||
|
||||
@@ -37,82 +37,22 @@ IKTrajectoryHelper::~IKTrajectoryHelper()
|
||||
delete m_data;
|
||||
}
|
||||
|
||||
bool IKTrajectoryHelper::createFromMultiBody(class btMultiBody* mb)
|
||||
{
|
||||
//todo: implement proper conversion. For now, we only 'detect' a likely KUKA iiwa and hardcode its creation
|
||||
if (mb->getNumLinks()==7)
|
||||
{
|
||||
createKukaIIWA();
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void IKTrajectoryHelper::createKukaIIWA()
|
||||
{
|
||||
const VectorR3& unitx = VectorR3::UnitX;
|
||||
const VectorR3& unity = VectorR3::UnitY;
|
||||
const VectorR3& unitz = VectorR3::UnitZ;
|
||||
const VectorR3 unit1(sqrt(14.0) / 8.0, 1.0 / 8.0, 7.0 / 8.0);
|
||||
const VectorR3& zero = VectorR3::Zero;
|
||||
|
||||
float minTheta = -4 * PI;
|
||||
float maxTheta = 4 * PI;
|
||||
|
||||
m_data->m_ikNodes.resize(8);//7DOF+additional endeffector
|
||||
|
||||
m_data->m_ikNodes[0] = new Node(VectorR3(0.100000, 0.000000, 0.087500), unitz, 0.08, JOINT, -1e30, 1e30, RADIAN(0.));
|
||||
m_data->m_ikTree.InsertRoot(m_data->m_ikNodes[0]);
|
||||
|
||||
m_data->m_ikNodes[1] = new Node(VectorR3(0.100000, -0.000000, 0.290000), unity, 0.08, JOINT, -0.5, 0.4, RADIAN(0.));
|
||||
m_data->m_ikTree.InsertLeftChild(m_data->m_ikNodes[0], m_data->m_ikNodes[1]);
|
||||
|
||||
m_data->m_ikNodes[2] = new Node(VectorR3(0.100000, -0.000000, 0.494500), unitz, 0.08, JOINT, minTheta, maxTheta, RADIAN(0.));
|
||||
m_data->m_ikTree.InsertLeftChild(m_data->m_ikNodes[1], m_data->m_ikNodes[2]);
|
||||
|
||||
m_data->m_ikNodes[3] = new Node(VectorR3(0.100000, 0.000000, 0.710000), -unity, 0.08, JOINT, minTheta, maxTheta, RADIAN(0.));
|
||||
m_data->m_ikTree.InsertLeftChild(m_data->m_ikNodes[2], m_data->m_ikNodes[3]);
|
||||
|
||||
m_data->m_ikNodes[4] = new Node(VectorR3(0.100000, 0.000000, 0.894500), unitz, 0.08, JOINT, minTheta, maxTheta, RADIAN(0.));
|
||||
m_data->m_ikTree.InsertLeftChild(m_data->m_ikNodes[3], m_data->m_ikNodes[4]);
|
||||
|
||||
m_data->m_ikNodes[5] = new Node(VectorR3(0.100000, 0.000000, 1.110000), unity, 0.08, JOINT, minTheta, maxTheta, RADIAN(0.));
|
||||
m_data->m_ikTree.InsertLeftChild(m_data->m_ikNodes[4], m_data->m_ikNodes[5]);
|
||||
|
||||
m_data->m_ikNodes[6] = new Node(VectorR3(0.100000, 0.000000, 1.191000), unitz, 0.08, JOINT, minTheta, maxTheta, RADIAN(0.));
|
||||
m_data->m_ikTree.InsertLeftChild(m_data->m_ikNodes[5], m_data->m_ikNodes[6]);
|
||||
|
||||
m_data->m_ikNodes[7] = new Node(VectorR3(0.100000, 0.000000, 1.20000), zero, 0.08, EFFECTOR);
|
||||
m_data->m_ikTree.InsertLeftChild(m_data->m_ikNodes[6], m_data->m_ikNodes[7]);
|
||||
|
||||
m_data->m_ikJacobian = new Jacobian(&m_data->m_ikTree);
|
||||
// Reset(m_ikTree,m_ikJacobian);
|
||||
|
||||
m_data->m_ikTree.Init();
|
||||
m_data->m_ikTree.Compute();
|
||||
m_data->m_ikJacobian->Reset();
|
||||
|
||||
|
||||
}
|
||||
|
||||
bool IKTrajectoryHelper::computeIK(const double endEffectorTargetPosition[3],
|
||||
const double endEffectorTargetOrientation[4],
|
||||
const double endEffectorWorldPosition[3],
|
||||
const double endEffectorWorldOrientation[4],
|
||||
const double* q_current, int numQ,
|
||||
double* q_new, int ikMethod, const double* linear_jacobian, const double* angular_jacobian, int jacobian_size, float dt)
|
||||
const double* q_current, int numQ,int endEffectorIndex,
|
||||
double* q_new, int ikMethod, const double* linear_jacobian, const double* angular_jacobian, int jacobian_size, double dampIk)
|
||||
{
|
||||
bool useAngularPart = (ikMethod==IK2_VEL_DLS_WITH_ORIENTATION) ? true : false;
|
||||
|
||||
m_data->m_ikJacobian = new Jacobian(useAngularPart,numQ);
|
||||
|
||||
// Reset(m_ikTree,m_ikJacobian);
|
||||
|
||||
m_data->m_ikJacobian->Reset();
|
||||
|
||||
if (numQ != 7)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
for (int i=0;i<numQ;i++)
|
||||
{
|
||||
m_data->m_ikNodes[i]->SetTheta(q_current[i]);
|
||||
}
|
||||
bool UseJacobianTargets1 = false;
|
||||
|
||||
if ( UseJacobianTargets1 ) {
|
||||
@@ -129,7 +69,7 @@ bool IKTrajectoryHelper::computeIK(const double endEffectorTargetPosition[3],
|
||||
VectorRn deltaS(3);
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
deltaS.Set(i,(endEffectorTargetPosition[i]-endEffectorWorldPosition[i])/dt);
|
||||
deltaS.Set(i,dampIk*(endEffectorTargetPosition[i]-endEffectorWorldPosition[i]));
|
||||
}
|
||||
|
||||
// Set one end effector world orientation from Bullet
|
||||
@@ -139,35 +79,49 @@ bool IKTrajectoryHelper::computeIK(const double endEffectorTargetPosition[3],
|
||||
btQuaternion deltaQ = endQ*startQ.inverse();
|
||||
float angle = deltaQ.getAngle();
|
||||
btVector3 axis = deltaQ.getAxis();
|
||||
float angleDot = angle/dt;
|
||||
float angleDot = angle*dampIk;
|
||||
btVector3 angularVel = angleDot*axis.normalize();
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
deltaR.Set(i,angularVel[i]);
|
||||
}
|
||||
|
||||
VectorRn deltaC(6);
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
deltaC.Set(i,deltaS[i]);
|
||||
deltaC.Set(i+3,deltaR[i]);
|
||||
}
|
||||
m_data->m_ikJacobian->SetDeltaS(deltaC);
|
||||
|
||||
// Set Jacobian from Bullet body Jacobian
|
||||
int nRow = m_data->m_ikJacobian->GetNumRows();
|
||||
int nCol = m_data->m_ikJacobian->GetNumCols();
|
||||
b3Assert(jacobian_size==nRow*nCol);
|
||||
MatrixRmn completeJacobian(nRow,nCol);
|
||||
for (int i = 0; i < nRow/2; ++i)
|
||||
|
||||
{
|
||||
for (int j = 0; j < nCol; ++j)
|
||||
{
|
||||
completeJacobian.Set(i,j,linear_jacobian[i*nCol+j]);
|
||||
completeJacobian.Set(i+nRow/2,j,angular_jacobian[i*nCol+j]);
|
||||
}
|
||||
|
||||
if (useAngularPart)
|
||||
{
|
||||
VectorRn deltaC(6);
|
||||
MatrixRmn completeJacobian(6,numQ);
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
deltaC.Set(i,deltaS[i]);
|
||||
deltaC.Set(i+3,deltaR[i]);
|
||||
for (int j = 0; j < numQ; ++j)
|
||||
{
|
||||
completeJacobian.Set(i,j,linear_jacobian[i*numQ+j]);
|
||||
completeJacobian.Set(i+3,j,angular_jacobian[i*numQ+j]);
|
||||
}
|
||||
}
|
||||
m_data->m_ikJacobian->SetDeltaS(deltaC);
|
||||
m_data->m_ikJacobian->SetJendTrans(completeJacobian);
|
||||
} else
|
||||
{
|
||||
VectorRn deltaC(3);
|
||||
MatrixRmn completeJacobian(3,numQ);
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
deltaC.Set(i,deltaS[i]);
|
||||
for (int j = 0; j < numQ; ++j)
|
||||
{
|
||||
completeJacobian.Set(i,j,linear_jacobian[i*numQ+j]);
|
||||
}
|
||||
}
|
||||
m_data->m_ikJacobian->SetDeltaS(deltaC);
|
||||
m_data->m_ikJacobian->SetJendTrans(completeJacobian);
|
||||
}
|
||||
}
|
||||
m_data->m_ikJacobian->SetJendTrans(completeJacobian);
|
||||
|
||||
// Calculate the change in theta values
|
||||
switch (ikMethod) {
|
||||
@@ -175,6 +129,8 @@ bool IKTrajectoryHelper::computeIK(const double endEffectorTargetPosition[3],
|
||||
m_data->m_ikJacobian->CalcDeltaThetasTranspose(); // Jacobian transpose method
|
||||
break;
|
||||
case IK2_DLS:
|
||||
case IK2_VEL_DLS_WITH_ORIENTATION:
|
||||
case IK2_VEL_DLS:
|
||||
m_data->m_ikJacobian->CalcDeltaThetasDLS(); // Damped least squares method
|
||||
break;
|
||||
case IK2_DLS_SVD:
|
||||
@@ -186,9 +142,6 @@ bool IKTrajectoryHelper::computeIK(const double endEffectorTargetPosition[3],
|
||||
case IK2_SDLS:
|
||||
m_data->m_ikJacobian->CalcDeltaThetasSDLS(); // Selectively damped least squares method
|
||||
break;
|
||||
case IK2_VEL_DLS:
|
||||
m_data->m_ikJacobian->CalcThetasDotDLS(dt); // Damped least square for velocity IK
|
||||
break;
|
||||
default:
|
||||
m_data->m_ikJacobian->ZeroDeltaThetas();
|
||||
break;
|
||||
@@ -206,7 +159,7 @@ bool IKTrajectoryHelper::computeIK(const double endEffectorTargetPosition[3],
|
||||
for (int i=0;i<numQ;i++)
|
||||
{
|
||||
// Use for velocity IK
|
||||
q_new[i] = m_data->m_ikNodes[i]->GetTheta()*dt + q_current[i];
|
||||
q_new[i] = m_data->m_ikJacobian->dTheta[i] + q_current[i];
|
||||
|
||||
// Use for position IK
|
||||
//q_new[i] = m_data->m_ikNodes[i]->GetTheta();
|
||||
|
||||
@@ -8,7 +8,8 @@ enum IK2_Method
|
||||
IK2_DLS,
|
||||
IK2_SDLS ,
|
||||
IK2_DLS_SVD,
|
||||
IK2_VEL_DLS
|
||||
IK2_VEL_DLS,
|
||||
IK2_VEL_DLS_WITH_ORIENTATION,
|
||||
};
|
||||
|
||||
|
||||
@@ -20,17 +21,13 @@ public:
|
||||
IKTrajectoryHelper();
|
||||
virtual ~IKTrajectoryHelper();
|
||||
|
||||
///todo: replace createKukaIIWA with a generic way of create an IK tree
|
||||
void createKukaIIWA();
|
||||
|
||||
bool createFromMultiBody(class btMultiBody* mb);
|
||||
|
||||
|
||||
bool computeIK(const double endEffectorTargetPosition[3],
|
||||
const double endEffectorTargetOrientation[4],
|
||||
const double endEffectorWorldPosition[3],
|
||||
const double endEffectorWorldOrientation[4],
|
||||
const double* q_old, int numQ,
|
||||
double* q_new, int ikMethod, const double* linear_jacobian, const double* angular_jacobian, int jacobian_size, float dt);
|
||||
const double* q_old, int numQ,int endEffectorIndex,
|
||||
double* q_new, int ikMethod, const double* linear_jacobian, const double* angular_jacobian, int jacobian_size, double dampIk=1.);
|
||||
|
||||
};
|
||||
#endif //IK_TRAJECTORY_HELPER_H
|
||||
|
||||
@@ -1319,7 +1319,7 @@ int b3GetStatusJacobian(b3SharedMemoryStatusHandle statusHandle, double* linearJ
|
||||
}
|
||||
|
||||
///compute the joint positions to move the end effector to a desired target using inverse kinematics
|
||||
b3SharedMemoryCommandHandle b3CalculateInverseKinematicsCommandInit(b3PhysicsClientHandle physClient, int bodyIndex, const double targetPosition[3], const double targetOrientation[4], const double dt)
|
||||
b3SharedMemoryCommandHandle b3CalculateInverseKinematicsCommandInit(b3PhysicsClientHandle physClient, int bodyIndex)
|
||||
{
|
||||
PhysicsClient* cl = (PhysicsClient*)physClient;
|
||||
b3Assert(cl);
|
||||
@@ -1330,12 +1330,32 @@ b3SharedMemoryCommandHandle b3CalculateInverseKinematicsCommandInit(b3PhysicsCli
|
||||
command->m_type = CMD_CALCULATE_INVERSE_KINEMATICS;
|
||||
command->m_updateFlags = 0;
|
||||
command->m_calculateInverseKinematicsArguments.m_bodyUniqueId = bodyIndex;
|
||||
//todo
|
||||
// int numJoints = cl->getNumJoints(bodyIndex);
|
||||
// for (int i = 0; i < numJoints;i++)
|
||||
// {
|
||||
// command->m_calculateInverseKinematicsArguments.m_jointPositionsQ[i] = jointPositionsQ[i];
|
||||
// }
|
||||
|
||||
return (b3SharedMemoryCommandHandle)command;
|
||||
|
||||
}
|
||||
|
||||
void b3CalculateInverseKinematicsAddTargetPurePosition(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[3])
|
||||
{
|
||||
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
|
||||
b3Assert(command);
|
||||
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
|
||||
command->m_updateFlags |= IK_HAS_TARGET_POSITION;
|
||||
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
|
||||
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
|
||||
|
||||
|
||||
}
|
||||
void b3CalculateInverseKinematicsAddTargetPositionWithOrientation(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[3], const double targetOrientation[4])
|
||||
{
|
||||
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
|
||||
b3Assert(command);
|
||||
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
|
||||
command->m_updateFlags |= IK_HAS_TARGET_POSITION+IK_HAS_TARGET_ORIENTATION;
|
||||
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
|
||||
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
|
||||
@@ -1345,12 +1365,10 @@ b3SharedMemoryCommandHandle b3CalculateInverseKinematicsCommandInit(b3PhysicsCli
|
||||
command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = targetOrientation[1];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetOrientation[2] = targetOrientation[2];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetOrientation[3] = targetOrientation[3];
|
||||
command->m_calculateInverseKinematicsArguments.m_dt = dt;
|
||||
|
||||
return (b3SharedMemoryCommandHandle)command;
|
||||
|
||||
}
|
||||
|
||||
|
||||
int b3GetStatusInverseKinematicsJointPositions(b3SharedMemoryStatusHandle statusHandle,
|
||||
int* bodyUniqueId,
|
||||
int* dofCount,
|
||||
|
||||
@@ -121,8 +121,9 @@ b3SharedMemoryCommandHandle b3CalculateJacobianCommandInit(b3PhysicsClientHandle
|
||||
int b3GetStatusJacobian(b3SharedMemoryStatusHandle statusHandle, double* linearJacobian, double* angularJacobian);
|
||||
|
||||
///compute the joint positions to move the end effector to a desired target using inverse kinematics
|
||||
b3SharedMemoryCommandHandle b3CalculateInverseKinematicsCommandInit(b3PhysicsClientHandle physClient, int bodyIndex, const double targetPosition[3], const double targetOrientation[4], const double dt);
|
||||
|
||||
b3SharedMemoryCommandHandle b3CalculateInverseKinematicsCommandInit(b3PhysicsClientHandle physClient, int bodyIndex);
|
||||
void b3CalculateInverseKinematicsAddTargetPurePosition(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[3]);
|
||||
void b3CalculateInverseKinematicsAddTargetPositionWithOrientation(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[3], const double targetOrientation[4]);
|
||||
int b3GetStatusInverseKinematicsJointPositions(b3SharedMemoryStatusHandle statusHandle,
|
||||
int* bodyUniqueId,
|
||||
int* dofCount,
|
||||
|
||||
@@ -29,6 +29,8 @@
|
||||
|
||||
btVector3 gLastPickPos(0, 0, 0);
|
||||
bool gEnableRealTimeSimVR=false;
|
||||
int gCreateObjectSimVR = -1;
|
||||
btScalar simTimeScalingFactor = 1;
|
||||
|
||||
struct UrdfLinkNameMapUtil
|
||||
{
|
||||
@@ -387,6 +389,8 @@ struct PhysicsServerCommandProcessorInternalData
|
||||
btMultiBodyFixedConstraint* m_gripperRigidbodyFixed;
|
||||
btMultiBody* m_gripperMultiBody;
|
||||
int m_huskyId;
|
||||
int m_KukaId;
|
||||
int m_sphereId;
|
||||
CommandLogger* m_commandLogger;
|
||||
CommandLogPlayback* m_logPlayback;
|
||||
|
||||
@@ -438,7 +442,9 @@ struct PhysicsServerCommandProcessorInternalData
|
||||
m_gripperRigidbodyFixed(0),
|
||||
m_gripperMultiBody(0),
|
||||
m_allowRealTimeSimulation(false),
|
||||
m_huskyId(0),
|
||||
m_huskyId(-1),
|
||||
m_KukaId(-1),
|
||||
m_sphereId(-1),
|
||||
m_commandLogger(0),
|
||||
m_logPlayback(0),
|
||||
m_physicsDeltaTime(1./240.),
|
||||
@@ -558,6 +564,7 @@ PhysicsServerCommandProcessor::PhysicsServerCommandProcessor()
|
||||
|
||||
createEmptyDynamicsWorld();
|
||||
m_data->m_dynamicsWorld->getSolverInfo().m_linearSlop = 0.0001;
|
||||
m_data->m_dynamicsWorld->getSolverInfo().m_numIterations = 100;
|
||||
|
||||
}
|
||||
|
||||
@@ -746,7 +753,7 @@ void PhysicsServerCommandProcessor::createJointMotors(btMultiBody* mb)
|
||||
|
||||
if (supportsJointMotor(mb,mbLinkIndex))
|
||||
{
|
||||
float maxMotorImpulse = 10000.f;
|
||||
float maxMotorImpulse = 1.f;
|
||||
int dof = 0;
|
||||
btScalar desiredVelocity = 0.f;
|
||||
btMultiBodyJointMotor* motor = new btMultiBodyJointMotor(mb,mbLinkIndex,dof,desiredVelocity,maxMotorImpulse);
|
||||
@@ -1880,13 +1887,15 @@ bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryComm
|
||||
applyJointDamping(i);
|
||||
}
|
||||
|
||||
btScalar deltaTimeScaled = m_data->m_physicsDeltaTime*simTimeScalingFactor;
|
||||
|
||||
if (m_data->m_numSimulationSubSteps > 0)
|
||||
{
|
||||
m_data->m_dynamicsWorld->stepSimulation(m_data->m_physicsDeltaTime, m_data->m_numSimulationSubSteps, m_data->m_physicsDeltaTime / m_data->m_numSimulationSubSteps);
|
||||
m_data->m_dynamicsWorld->stepSimulation(deltaTimeScaled, m_data->m_numSimulationSubSteps, m_data->m_physicsDeltaTime / m_data->m_numSimulationSubSteps);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_data->m_dynamicsWorld->stepSimulation(m_data->m_physicsDeltaTime, 0);
|
||||
m_data->m_dynamicsWorld->stepSimulation(deltaTimeScaled, 0);
|
||||
}
|
||||
|
||||
SharedMemoryStatus& serverCmd =serverStatusOut;
|
||||
@@ -2546,7 +2555,7 @@ bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryComm
|
||||
SharedMemoryStatus& serverCmd = serverStatusOut;
|
||||
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_FAILED;
|
||||
|
||||
InternalBodyHandle* bodyHandle = m_data->getHandle(clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId);
|
||||
InternalBodyHandle* bodyHandle = m_data->getHandle(clientCmd.m_calculateInverseKinematicsArguments.m_bodyUniqueId);
|
||||
if (bodyHandle && bodyHandle->m_multiBody)
|
||||
{
|
||||
IKTrajectoryHelper** ikHelperPtrPtr = m_data->m_inverseKinematicsHelpers.find(bodyHandle->m_multiBody);
|
||||
@@ -2560,41 +2569,40 @@ bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryComm
|
||||
else
|
||||
{
|
||||
IKTrajectoryHelper* tmpHelper = new IKTrajectoryHelper;
|
||||
if (tmpHelper->createFromMultiBody(bodyHandle->m_multiBody))
|
||||
{
|
||||
m_data->m_inverseKinematicsHelpers.insert(bodyHandle->m_multiBody, tmpHelper);
|
||||
ikHelperPtr = tmpHelper;
|
||||
} else
|
||||
{
|
||||
delete tmpHelper;
|
||||
}
|
||||
m_data->m_inverseKinematicsHelpers.insert(bodyHandle->m_multiBody, tmpHelper);
|
||||
ikHelperPtr = tmpHelper;
|
||||
}
|
||||
|
||||
//todo: make this generic. Right now, only support/tested KUKA iiwa
|
||||
int numJoints = 7;
|
||||
int endEffectorLinkIndex = 6;
|
||||
int endEffectorLinkIndex = clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex;
|
||||
|
||||
if (ikHelperPtr && bodyHandle->m_multiBody->getNumLinks()==numJoints)
|
||||
|
||||
if (ikHelperPtr && (endEffectorLinkIndex<bodyHandle->m_multiBody->getNumLinks()))
|
||||
{
|
||||
int numJoints1 = bodyHandle->m_multiBody->getNumLinks();
|
||||
const int numDofs = bodyHandle->m_multiBody->getNumDofs();
|
||||
|
||||
b3AlignedObjectArray<double> jacobian_linear;
|
||||
jacobian_linear.resize(3*7);
|
||||
jacobian_linear.resize(3*numDofs);
|
||||
b3AlignedObjectArray<double> jacobian_angular;
|
||||
jacobian_angular.resize(3*7);
|
||||
jacobian_angular.resize(3*numDofs);
|
||||
int jacSize = 0;
|
||||
|
||||
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
|
||||
|
||||
double q_current[7];
|
||||
|
||||
|
||||
btAlignedObjectArray<double> q_current;
|
||||
q_current.resize(numDofs);
|
||||
|
||||
if (tree)
|
||||
{
|
||||
jacSize = jacobian_linear.size();
|
||||
// Set jacobian value
|
||||
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
|
||||
const int num_dofs = bodyHandle->m_multiBody->getNumDofs();
|
||||
|
||||
btInverseDynamics::vecx nu(num_dofs+baseDofs), qdot(num_dofs + baseDofs), q(num_dofs + baseDofs), joint_force(num_dofs + baseDofs);
|
||||
for (int i = 0; i < num_dofs; i++)
|
||||
|
||||
btInverseDynamics::vecx nu(numDofs+baseDofs), qdot(numDofs + baseDofs), q(numDofs + baseDofs), joint_force(numDofs + baseDofs);
|
||||
for (int i = 0; i < numDofs; i++)
|
||||
{
|
||||
q_current[i] = bodyHandle->m_multiBody->getJointPos(i);
|
||||
q[i+baseDofs] = bodyHandle->m_multiBody->getJointPos(i);
|
||||
@@ -2608,24 +2616,25 @@ bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryComm
|
||||
-1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force))
|
||||
{
|
||||
tree->calculateJacobians(q);
|
||||
btInverseDynamics::mat3x jac_t(3, num_dofs);
|
||||
btInverseDynamics::mat3x jac_r(3,num_dofs);
|
||||
btInverseDynamics::mat3x jac_t(3, numDofs);
|
||||
btInverseDynamics::mat3x jac_r(3,numDofs);
|
||||
tree->getBodyJacobianTrans(endEffectorLinkIndex, &jac_t);
|
||||
tree->getBodyJacobianRot(endEffectorLinkIndex, &jac_r);
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
for (int j = 0; j < num_dofs; ++j)
|
||||
for (int j = 0; j < numDofs; ++j)
|
||||
{
|
||||
jacobian_linear[i*num_dofs+j] = jac_t(i,j);
|
||||
jacobian_angular[i*num_dofs+j] = jac_r(i,j);
|
||||
jacobian_linear[i*numDofs+j] = jac_t(i,j);
|
||||
jacobian_angular[i*numDofs+j] = jac_r(i,j);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
double q_new[7];
|
||||
int ikMethod=IK2_VEL_DLS;
|
||||
btAlignedObjectArray<double> q_new;
|
||||
q_new.resize(numDofs);
|
||||
int ikMethod= (clientCmd.m_updateFlags& IK_HAS_TARGET_ORIENTATION)? IK2_VEL_DLS_WITH_ORIENTATION : IK2_VEL_DLS;
|
||||
|
||||
btVector3DoubleData endEffectorWorldPosition;
|
||||
btVector3DoubleData endEffectorWorldOrientation;
|
||||
@@ -2639,15 +2648,16 @@ bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryComm
|
||||
|
||||
ikHelperPtr->computeIK(clientCmd.m_calculateInverseKinematicsArguments.m_targetPosition, clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation,
|
||||
endEffectorWorldPosition.m_floats, endEffectorWorldOrientation.m_floats,
|
||||
q_current,
|
||||
numJoints, q_new, ikMethod, &jacobian_linear[0], &jacobian_angular[0], jacSize*2,clientCmd.m_calculateInverseKinematicsArguments.m_dt);
|
||||
&q_current[0],
|
||||
numDofs, clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex,
|
||||
&q_new[0], ikMethod, &jacobian_linear[0], &jacobian_angular[0], jacSize*2);
|
||||
|
||||
serverCmd.m_inverseKinematicsResultArgs.m_bodyUniqueId =clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
|
||||
for (int i=0;i<numJoints;i++)
|
||||
for (int i=0;i<numDofs;i++)
|
||||
{
|
||||
serverCmd.m_inverseKinematicsResultArgs.m_jointPositions[i] = q_new[i];
|
||||
}
|
||||
serverCmd.m_inverseKinematicsResultArgs.m_dofCount = numJoints;
|
||||
serverCmd.m_inverseKinematicsResultArgs.m_dofCount = numDofs;
|
||||
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED;
|
||||
}
|
||||
}
|
||||
@@ -2848,8 +2858,12 @@ void PhysicsServerCommandProcessor::replayFromLogFile(const char* fileName)
|
||||
m_data->m_logPlayback = pb;
|
||||
}
|
||||
|
||||
|
||||
btVector3 gVRGripperPos(0,0,0.2);
|
||||
btQuaternion gVRGripperOrn(0,0,0,1);
|
||||
btVector3 gVRController2Pos(0,0,0.2);;
|
||||
btQuaternion gVRController2Orn(0,0,0,1);
|
||||
|
||||
btScalar gVRGripperAnalog = 0;
|
||||
bool gVRGripperClosed = false;
|
||||
|
||||
@@ -2864,14 +2878,29 @@ void PhysicsServerCommandProcessor::stepSimulationRealTime(double dtInSec)
|
||||
{
|
||||
static btAlignedObjectArray<char> gBufferServerToClient;
|
||||
gBufferServerToClient.resize(SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
|
||||
int bodyId = 0;
|
||||
|
||||
|
||||
if (gCreateObjectSimVR >= 0)
|
||||
{
|
||||
gCreateObjectSimVR = -1;
|
||||
btMatrix3x3 mat(gVRGripperOrn);
|
||||
btScalar spawnDistance = 0.1;
|
||||
btVector3 spawnDir = mat.getColumn(0);
|
||||
btVector3 shiftPos = spawnDir*spawnDistance;
|
||||
btVector3 spawnPos = gVRGripperPos + shiftPos;
|
||||
loadUrdf("sphere_small.urdf", spawnPos, gVRGripperOrn, true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
|
||||
m_data->m_sphereId = bodyId;
|
||||
InteralBodyData* parentBody = m_data->getHandle(bodyId);
|
||||
if (parentBody->m_multiBody)
|
||||
{
|
||||
parentBody->m_multiBody->setBaseVel(spawnDir * 3);
|
||||
}
|
||||
}
|
||||
|
||||
if (!m_data->m_hasGround)
|
||||
{
|
||||
m_data->m_hasGround = true;
|
||||
|
||||
int bodyId = 0;
|
||||
|
||||
|
||||
loadUrdf("plane.urdf", btVector3(0, 0, 0), btQuaternion(0, 0, 0, 1), true, true, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
|
||||
@@ -2913,13 +2942,14 @@ void PhysicsServerCommandProcessor::stepSimulationRealTime(double dtInSec)
|
||||
loadUrdf("cube.urdf", btVector3(3, -2, 0.5+i), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
|
||||
}
|
||||
|
||||
loadUrdf("sphere2.urdf", btVector3(-2, 0, 1), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
|
||||
loadUrdf("sphere2.urdf", btVector3(-2, 0, 2), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
|
||||
loadUrdf("sphere2.urdf", btVector3(-2, 0, 3), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
|
||||
loadUrdf("sphere2.urdf", btVector3(-5, 0, 1), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
|
||||
loadUrdf("sphere2.urdf", btVector3(-5, 0, 2), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
|
||||
loadUrdf("sphere2.urdf", btVector3(-5, 0, 3), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
|
||||
loadUrdf("r2d2.urdf", btVector3(2, -2, 1), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
|
||||
|
||||
|
||||
loadUrdf("kuka_iiwa/model.urdf", btVector3(3, 0, 0), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
|
||||
m_data->m_KukaId = bodyId;
|
||||
loadUrdf("cube_small.urdf", btVector3(0.3, 0.6, 0.85), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
|
||||
|
||||
|
||||
@@ -2950,7 +2980,8 @@ void PhysicsServerCommandProcessor::stepSimulationRealTime(double dtInSec)
|
||||
|
||||
}
|
||||
loadSdf("kiva_shelf/model.sdf", &gBufferServerToClient[0], gBufferServerToClient.size(), true);
|
||||
loadUrdf("teddy_vhacd.urdf", btVector3(1, 1, 2), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
|
||||
loadUrdf("teddy_vhacd.urdf", btVector3(-0.1, 0.6, 0.85), btQuaternion(0, 0, 0, 1), true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
|
||||
loadUrdf("sphere_small.urdf", btVector3(-0.1, 0.6, 1.25), gVRGripperOrn, true, false, &bodyId, &gBufferServerToClient[0], gBufferServerToClient.size());
|
||||
|
||||
m_data->m_dynamicsWorld->setGravity(btVector3(0, 0, -10));
|
||||
|
||||
@@ -2989,6 +3020,196 @@ void PhysicsServerCommandProcessor::stepSimulationRealTime(double dtInSec)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
{
|
||||
|
||||
|
||||
|
||||
InternalBodyHandle* bodyHandle = m_data->getHandle(m_data->m_KukaId);
|
||||
if (bodyHandle && bodyHandle->m_multiBody)
|
||||
{
|
||||
|
||||
btVector3 spherePos(0,0,0);
|
||||
InternalBodyHandle* sphereBodyHandle = m_data->getHandle(m_data->m_KukaId);
|
||||
if (sphereBodyHandle && sphereBodyHandle->m_multiBody)
|
||||
{
|
||||
spherePos = sphereBodyHandle->m_multiBody->getBasePos();
|
||||
}
|
||||
|
||||
btMultiBody* mb = bodyHandle->m_multiBody;
|
||||
|
||||
|
||||
btScalar sqLen = (mb->getBaseWorldTransform().getOrigin() - gVRController2Pos).length2();
|
||||
btScalar distanceThreshold = 2;
|
||||
bool closeToKuka=(sqLen<(distanceThreshold*distanceThreshold));
|
||||
|
||||
int numDofs = bodyHandle->m_multiBody->getNumDofs();
|
||||
btAlignedObjectArray<double> q_new;
|
||||
btAlignedObjectArray<double> q_current;
|
||||
q_current.resize(numDofs);
|
||||
for (int i = 0; i < numDofs; i++)
|
||||
{
|
||||
q_current[i] = bodyHandle->m_multiBody->getJointPos(i);
|
||||
}
|
||||
|
||||
q_new.resize(numDofs);
|
||||
static btScalar t=0.f;
|
||||
t+=0.01;
|
||||
double dampIk = 0.99;
|
||||
for (int i=0;i<numDofs;i++)
|
||||
{
|
||||
btScalar desiredPosition = btSin(t*0.1)*SIMD_HALF_PI;
|
||||
q_new[i] = dampIk*q_current[i]+(1-dampIk)*desiredPosition;
|
||||
}
|
||||
|
||||
if (closeToKuka)
|
||||
{
|
||||
dampIk = 1;
|
||||
|
||||
IKTrajectoryHelper** ikHelperPtrPtr = m_data->m_inverseKinematicsHelpers.find(bodyHandle->m_multiBody);
|
||||
IKTrajectoryHelper* ikHelperPtr = 0;
|
||||
|
||||
if (ikHelperPtrPtr)
|
||||
{
|
||||
ikHelperPtr = *ikHelperPtrPtr;
|
||||
}
|
||||
else
|
||||
{
|
||||
IKTrajectoryHelper* tmpHelper = new IKTrajectoryHelper;
|
||||
m_data->m_inverseKinematicsHelpers.insert(bodyHandle->m_multiBody, tmpHelper);
|
||||
ikHelperPtr = tmpHelper;
|
||||
}
|
||||
|
||||
int endEffectorLinkIndex = 6;
|
||||
|
||||
if (ikHelperPtr && (endEffectorLinkIndex<bodyHandle->m_multiBody->getNumLinks()))
|
||||
{
|
||||
int numJoints1 = bodyHandle->m_multiBody->getNumLinks();
|
||||
|
||||
|
||||
b3AlignedObjectArray<double> jacobian_linear;
|
||||
jacobian_linear.resize(3*numDofs);
|
||||
b3AlignedObjectArray<double> jacobian_angular;
|
||||
jacobian_angular.resize(3*numDofs);
|
||||
int jacSize = 0;
|
||||
|
||||
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
|
||||
|
||||
|
||||
if (tree)
|
||||
{
|
||||
jacSize = jacobian_linear.size();
|
||||
// Set jacobian value
|
||||
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
|
||||
|
||||
|
||||
btInverseDynamics::vecx nu(numDofs+baseDofs), qdot(numDofs + baseDofs), q(numDofs + baseDofs), joint_force(numDofs + baseDofs);
|
||||
for (int i = 0; i < numDofs; i++)
|
||||
{
|
||||
q_current[i] = bodyHandle->m_multiBody->getJointPos(i);
|
||||
q[i+baseDofs] = bodyHandle->m_multiBody->getJointPos(i);
|
||||
qdot[i + baseDofs] = 0;
|
||||
nu[i+baseDofs] = 0;
|
||||
}
|
||||
// Set the gravity to correspond to the world gravity
|
||||
btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity());
|
||||
|
||||
if (-1 != tree->setGravityInWorldFrame(id_grav) &&
|
||||
-1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force))
|
||||
{
|
||||
tree->calculateJacobians(q);
|
||||
btInverseDynamics::mat3x jac_t(3, numDofs);
|
||||
btInverseDynamics::mat3x jac_r(3,numDofs);
|
||||
tree->getBodyJacobianTrans(endEffectorLinkIndex, &jac_t);
|
||||
tree->getBodyJacobianRot(endEffectorLinkIndex, &jac_r);
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
for (int j = 0; j < numDofs; ++j)
|
||||
{
|
||||
jacobian_linear[i*numDofs+j] = jac_t(i,j);
|
||||
jacobian_angular[i*numDofs+j] = jac_r(i,j);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//int ikMethod= IK2_VEL_DLS;//IK2_VEL_DLS_WITH_ORIENTATION;//IK2_VEL_DLS;
|
||||
int ikMethod= IK2_VEL_DLS_WITH_ORIENTATION;//IK2_VEL_DLS;
|
||||
|
||||
btVector3DoubleData endEffectorWorldPosition;
|
||||
btVector3DoubleData endEffectorWorldOrientation;
|
||||
btVector3DoubleData targetWorldPosition;
|
||||
btQuaternionDoubleData targetWorldOrientation;
|
||||
|
||||
btVector3 endEffectorPosWorld = bodyHandle->m_multiBody->getLink(endEffectorLinkIndex).m_cachedWorldTransform.getOrigin();
|
||||
btQuaternion endEffectorOriWorld = bodyHandle->m_multiBody->getLink(endEffectorLinkIndex).m_cachedWorldTransform.getRotation();
|
||||
btVector4 endEffectorOri(endEffectorOriWorld.x(),endEffectorOriWorld.y(),endEffectorOriWorld.z(),endEffectorOriWorld.w());
|
||||
|
||||
endEffectorPosWorld.serializeDouble(endEffectorWorldPosition);
|
||||
endEffectorOri.serializeDouble(endEffectorWorldOrientation);
|
||||
gVRController2Pos.serializeDouble(targetWorldPosition);
|
||||
gVRController2Orn.serializeDouble(targetWorldOrientation);
|
||||
|
||||
static btScalar time=0.f;
|
||||
time+=0.01;
|
||||
btVector3 targetPos(0.4-0.4*b3Cos( time), 0, 0.8+0.4*b3Cos( time));
|
||||
targetPos +=mb->getBasePos();
|
||||
btQuaternion fwdOri(btVector3(1,0,0),-SIMD_HALF_PI);
|
||||
(0, 1.0, 0, 0);
|
||||
double downOrn[4] = {0,1,0,0};
|
||||
//double downOrn[4] = {0,1,0,0};
|
||||
|
||||
fwdOri.serializeDouble(targetWorldOrientation);
|
||||
|
||||
ikHelperPtr->computeIK(targetWorldPosition.m_floats, targetWorldOrientation.m_floats,
|
||||
endEffectorWorldPosition.m_floats, endEffectorWorldOrientation.m_floats,
|
||||
&q_current[0],
|
||||
numDofs, endEffectorLinkIndex,
|
||||
&q_new[0], ikMethod, &jacobian_linear[0], &jacobian_angular[0], jacSize*2, dampIk);
|
||||
}
|
||||
}
|
||||
|
||||
//directly set the position of the links, only for debugging IK, don't use this method!
|
||||
//if (0)
|
||||
//{
|
||||
// for (int i=0;i<mb->getNumLinks();i++)
|
||||
// {
|
||||
// mb->setJointPosMultiDof(i,&q_new[i]);
|
||||
// }
|
||||
//} else
|
||||
{
|
||||
int numMotors = 0;
|
||||
//find the joint motors and apply the desired velocity and maximum force/torque
|
||||
{
|
||||
int velIndex = 6;//skip the 3 linear + 3 angular degree of freedom velocity entries of the base
|
||||
int posIndex = 7;//skip 3 positional and 4 orientation (quaternion) positional degrees of freedom of the base
|
||||
for (int link=0;link<mb->getNumLinks();link++)
|
||||
{
|
||||
if (supportsJointMotor(mb,link))
|
||||
{
|
||||
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)mb->getLink(link).m_userPtr;
|
||||
|
||||
if (motor)
|
||||
{
|
||||
btScalar desiredVelocity = 0.f;
|
||||
btScalar desiredPosition = q_new[link];
|
||||
motor->setVelocityTarget(desiredVelocity,1);
|
||||
motor->setPositionTarget(desiredPosition,0.6);
|
||||
btScalar maxImp = 1.f;
|
||||
motor->setMaxAppliedImpulse(maxImp);
|
||||
numMotors++;
|
||||
}
|
||||
}
|
||||
velIndex += mb->getLink(link).m_dofCount;
|
||||
posIndex += mb->getLink(link).m_posVarCount;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
int maxSteps = m_data->m_numSimulationSubSteps+3;
|
||||
if (m_data->m_numSimulationSubSteps)
|
||||
{
|
||||
@@ -2999,7 +3220,7 @@ void PhysicsServerCommandProcessor::stepSimulationRealTime(double dtInSec)
|
||||
gSubStep = m_data->m_physicsDeltaTime;
|
||||
}
|
||||
|
||||
int numSteps = m_data->m_dynamicsWorld->stepSimulation(dtInSec,maxSteps, gSubStep);
|
||||
int numSteps = m_data->m_dynamicsWorld->stepSimulation(dtInSec*simTimeScalingFactor,maxSteps, gSubStep);
|
||||
gDroppedSimulationSteps += numSteps > maxSteps ? numSteps - maxSteps : 0;
|
||||
|
||||
if (numSteps)
|
||||
|
||||
@@ -21,8 +21,13 @@ btVector3 gVRTeleportPos(0,0,0);
|
||||
btQuaternion gVRTeleportOrn(0, 0, 0,1);
|
||||
extern btVector3 gVRGripperPos;
|
||||
extern btQuaternion gVRGripperOrn;
|
||||
extern btVector3 gVRController2Pos;
|
||||
extern btQuaternion gVRController2Orn;
|
||||
extern btScalar gVRGripperAnalog;
|
||||
extern bool gEnableRealTimeSimVR;
|
||||
extern int gCreateObjectSimVR;
|
||||
static int gGraspingController = -1;
|
||||
extern btScalar simTimeScalingFactor;
|
||||
|
||||
extern bool gVRGripperClosed;
|
||||
|
||||
@@ -54,6 +59,7 @@ enum MultiThreadedGUIHelperCommunicationEnums
|
||||
eGUIHelperRegisterGraphicsInstance,
|
||||
eGUIHelperCreateCollisionShapeGraphicsObject,
|
||||
eGUIHelperCreateCollisionObjectGraphicsObject,
|
||||
eGUIHelperCreateRigidBodyGraphicsObject,
|
||||
eGUIHelperRemoveAllGraphicsInstances,
|
||||
eGUIHelperCopyCameraImageData,
|
||||
};
|
||||
@@ -305,7 +311,20 @@ public:
|
||||
return m_cs;
|
||||
}
|
||||
|
||||
virtual void createRigidBodyGraphicsObject(btRigidBody* body,const btVector3& color){}
|
||||
btRigidBody* m_body;
|
||||
btVector3 m_color3;
|
||||
virtual void createRigidBodyGraphicsObject(btRigidBody* body,const btVector3& color)
|
||||
{
|
||||
m_body = body;
|
||||
m_color3 = color;
|
||||
m_cs->lock();
|
||||
m_cs->setSharedParam(1,eGUIHelperCreateRigidBodyGraphicsObject);
|
||||
m_cs->unlock();
|
||||
while (m_cs->getSharedParam(1)!=eGUIHelperIdle)
|
||||
{
|
||||
b3Clock::usleep(1000);
|
||||
}
|
||||
}
|
||||
|
||||
btCollisionObject* m_obj;
|
||||
btVector3 m_color2;
|
||||
@@ -776,6 +795,14 @@ void PhysicsServerExample::stepSimulation(float deltaTime)
|
||||
m_multiThreadedHelper->getCriticalSection()->unlock();
|
||||
break;
|
||||
}
|
||||
case eGUIHelperCreateRigidBodyGraphicsObject:
|
||||
{
|
||||
m_multiThreadedHelper->m_childGuiHelper->createRigidBodyGraphicsObject(m_multiThreadedHelper->m_body,m_multiThreadedHelper->m_color3);
|
||||
m_multiThreadedHelper->getCriticalSection()->lock();
|
||||
m_multiThreadedHelper->getCriticalSection()->setSharedParam(1,eGUIHelperIdle);
|
||||
m_multiThreadedHelper->getCriticalSection()->unlock();
|
||||
break;
|
||||
}
|
||||
case eGUIHelperRegisterTexture:
|
||||
{
|
||||
|
||||
@@ -937,10 +964,15 @@ void PhysicsServerExample::renderScene()
|
||||
}
|
||||
}
|
||||
|
||||
if (gDebugRenderToggle)
|
||||
if (m_guiHelper->getAppInterface()->m_renderer->getActiveCamera()->isVRCamera())
|
||||
{
|
||||
gEnableRealTimeSimVR = true;
|
||||
}
|
||||
|
||||
if (gDebugRenderToggle)
|
||||
if (m_guiHelper->getAppInterface()->m_renderer->getActiveCamera()->isVRCamera())
|
||||
{
|
||||
|
||||
B3_PROFILE("Draw Debug HUD");
|
||||
//some little experiment to add text/HUD to a VR camera (HTC Vive/Oculus Rift)
|
||||
|
||||
@@ -970,7 +1002,7 @@ void PhysicsServerExample::renderScene()
|
||||
count = 0;
|
||||
sprintf(line0, "Graphics FPS (worse) = %f, frame %d", worseFps, frameCount / 2);
|
||||
|
||||
sprintf(line1, "Physics Steps = %d, Dropped = %d, dt %f, Substep %f)", gNumSteps, gDroppedSimulationSteps, gDtInSec, gSubStep);
|
||||
sprintf(line1, "Physics Steps = %d, Drop = %d, time scale=%f, dt %f, Substep %f)", gNumSteps, gDroppedSimulationSteps, simTimeScalingFactor,gDtInSec, gSubStep);
|
||||
gDroppedSimulationSteps = 0;
|
||||
|
||||
worseFps = 1000000;
|
||||
@@ -996,15 +1028,25 @@ void PhysicsServerExample::renderScene()
|
||||
m[14]=+gVRTeleportPos[2];
|
||||
viewTr.setFromOpenGLMatrix(m);
|
||||
btTransform viewTrInv = viewTr.inverse();
|
||||
float upMag = -.6;
|
||||
|
||||
btVector3 side = viewTrInv.getBasis().getColumn(0);
|
||||
btVector3 up = viewTrInv.getBasis().getColumn(1);
|
||||
up+=0.6*side;
|
||||
m_guiHelper->getAppInterface()->drawText3D(line0,pos[0]+upMag*up[0],pos[1]+upMag*up[1],pos[2]+upMag*up[2],1);
|
||||
btVector3 fwd = viewTrInv.getBasis().getColumn(2);
|
||||
|
||||
|
||||
float upMag = 0;
|
||||
float sideMag = 2.2;
|
||||
float fwdMag = -4;
|
||||
|
||||
m_guiHelper->getAppInterface()->drawText3D(line0,pos[0]+upMag*up[0]-sideMag*side[0]+fwdMag*fwd[0],pos[1]+upMag*up[1]-sideMag*side[1]+fwdMag*fwd[1],pos[2]+upMag*up[2]-sideMag*side[2]+fwdMag*fwd[2],1);
|
||||
//btVector3 fwd = viewTrInv.getBasis().getColumn(2);
|
||||
|
||||
upMag = -0.7;
|
||||
m_guiHelper->getAppInterface()->drawText3D(line1,pos[0]+upMag*up[0],pos[1]+upMag*up[1],pos[2]+upMag*up[2],1);
|
||||
up = viewTrInv.getBasis().getColumn(1);
|
||||
upMag = -0.3;
|
||||
|
||||
|
||||
|
||||
m_guiHelper->getAppInterface()->drawText3D(line1,pos[0]+upMag*up[0]-sideMag*side[0]+fwdMag*fwd[0],pos[1]+upMag*up[1]-sideMag*side[1]+fwdMag*fwd[1],pos[2]+upMag*up[2]-sideMag*side[2]+fwdMag*fwd[2],1);
|
||||
}
|
||||
|
||||
//m_args[0].m_cs->unlock();
|
||||
@@ -1112,7 +1154,6 @@ class CommonExampleInterface* PhysicsServerCreateFunc(struct CommonExampleOpt
|
||||
}
|
||||
|
||||
|
||||
static int gGraspingController = -1;
|
||||
|
||||
void PhysicsServerExample::vrControllerButtonCallback(int controllerId, int button, int state, float pos[4], float orn[4])
|
||||
{
|
||||
@@ -1130,10 +1171,34 @@ void PhysicsServerExample::vrControllerButtonCallback(int controllerId, int butt
|
||||
{
|
||||
gVRTeleportPos = gLastPickPos;
|
||||
}
|
||||
} else
|
||||
{
|
||||
if (button == 1)
|
||||
{
|
||||
if (state == 1)
|
||||
{
|
||||
gDebugRenderToggle = 1;
|
||||
} else
|
||||
{
|
||||
gDebugRenderToggle = 0;
|
||||
simTimeScalingFactor *= 0.5;
|
||||
if (simTimeScalingFactor==0)
|
||||
{
|
||||
simTimeScalingFactor = 1;
|
||||
}
|
||||
if (simTimeScalingFactor<0.01)
|
||||
{
|
||||
simTimeScalingFactor = 0;
|
||||
}
|
||||
}
|
||||
} else
|
||||
{
|
||||
|
||||
}
|
||||
}
|
||||
if (button==32 && state==0)
|
||||
{
|
||||
gDebugRenderToggle = !gDebugRenderToggle;
|
||||
gCreateObjectSimVR = 1;
|
||||
}
|
||||
|
||||
|
||||
@@ -1183,6 +1248,10 @@ void PhysicsServerExample::vrControllerMoveCallback(int controllerId, float pos[
|
||||
}
|
||||
else
|
||||
{
|
||||
gVRController2Pos.setValue(pos[0] + gVRTeleportPos[0], pos[1] + gVRTeleportPos[1], pos[2] + gVRTeleportPos[2]);
|
||||
btQuaternion orgOrn(orn[0], orn[1], orn[2], orn[3]);
|
||||
gVRController2Orn = orgOrn*btQuaternion(btVector3(0, 0, 1), SIMD_HALF_PI)*btQuaternion(btVector3(0, 1, 0), SIMD_HALF_PI);
|
||||
|
||||
m_args[0].m_vrControllerPos[controllerId].setValue(pos[0] + gVRTeleportPos[0], pos[1] + gVRTeleportPos[1], pos[2] + gVRTeleportPos[2]);
|
||||
m_args[0].m_vrControllerOrn[controllerId].setValue(orn[0], orn[1], orn[2], orn[3]);
|
||||
}
|
||||
|
||||
@@ -393,8 +393,9 @@ struct CalculateJacobianResultArgs
|
||||
|
||||
enum EnumCalculateInverseKinematicsFlags
|
||||
{
|
||||
IK_HAS_TARGET_ORIENTATION=1,
|
||||
IK_HAS_CURRENT_JOINT_POSITIONS=2,
|
||||
IK_HAS_TARGET_POSITION=1,
|
||||
IK_HAS_TARGET_ORIENTATION=2,
|
||||
//IK_HAS_CURRENT_JOINT_POSITIONS=4,//not used yet
|
||||
};
|
||||
|
||||
struct CalculateInverseKinematicsArgs
|
||||
@@ -403,7 +404,7 @@ struct CalculateInverseKinematicsArgs
|
||||
// double m_jointPositionsQ[MAX_DEGREE_OF_FREEDOM];
|
||||
double m_targetPosition[3];
|
||||
double m_targetOrientation[4];//orientation represented as quaternion, x,y,z,w
|
||||
double m_dt;
|
||||
int m_endEffectorLinkIndex;
|
||||
};
|
||||
|
||||
struct CalculateInverseKinematicsResultArgs
|
||||
|
||||
@@ -52,10 +52,11 @@ const double Jacobian::BaseMaxTargetDist = 0.4;
|
||||
|
||||
Jacobian::Jacobian(Tree* tree)
|
||||
{
|
||||
Jacobian::tree = tree;
|
||||
nEffector = tree->GetNumEffector();
|
||||
m_tree = tree;
|
||||
m_nEffector = tree->GetNumEffector();
|
||||
nJoint = tree->GetNumJoint();
|
||||
nRow = 2 * 3 * nEffector; // Include both linear and angular part
|
||||
nRow = 3 * m_nEffector; // Include only the linear part
|
||||
|
||||
nCol = nJoint;
|
||||
|
||||
Jend.SetSize(nRow, nCol); // The Jocobian matrix
|
||||
@@ -77,9 +78,52 @@ Jacobian::Jacobian(Tree* tree)
|
||||
|
||||
// Used by the Selectively Damped Least Squares Method
|
||||
//dT.SetLength(nRow);
|
||||
dSclamp.SetLength(nEffector);
|
||||
errorArray.SetLength(nEffector);
|
||||
Jnorms.SetSize(nEffector, nCol); // Holds the norms of the active J matrix
|
||||
dSclamp.SetLength(m_nEffector);
|
||||
errorArray.SetLength(m_nEffector);
|
||||
Jnorms.SetSize(m_nEffector, nCol); // Holds the norms of the active J matrix
|
||||
|
||||
Reset();
|
||||
}
|
||||
|
||||
|
||||
Jacobian::Jacobian(bool useAngularJacobian,int nDof)
|
||||
{
|
||||
|
||||
m_tree = 0;
|
||||
m_nEffector = 1;
|
||||
|
||||
if (useAngularJacobian)
|
||||
{
|
||||
nRow = 2 * 3 * m_nEffector; // Include both linear and angular part
|
||||
} else
|
||||
{
|
||||
nRow = 3 * m_nEffector; // Include only the linear part
|
||||
}
|
||||
|
||||
nCol = nDof;
|
||||
|
||||
Jend.SetSize(nRow, nCol); // The Jocobian matrix
|
||||
Jend.SetZero();
|
||||
Jtarget.SetSize(nRow, nCol); // The Jacobian matrix based on target positions
|
||||
Jtarget.SetZero();
|
||||
SetJendActive();
|
||||
|
||||
U.SetSize(nRow, nRow); // The U matrix for SVD calculations
|
||||
w .SetLength(Min(nRow, nCol));
|
||||
V.SetSize(nCol, nCol); // The V matrix for SVD calculations
|
||||
|
||||
dS.SetLength(nRow); // (Target positions) - (End effector positions)
|
||||
dTheta.SetLength(nCol); // Changes in joint angles
|
||||
dPreTheta.SetLength(nCol);
|
||||
|
||||
// Used by Jacobian transpose method & DLS & SDLS
|
||||
dT1.SetLength(nRow); // Linearized change in end effector positions based on dTheta
|
||||
|
||||
// Used by the Selectively Damped Least Squares Method
|
||||
//dT.SetLength(nRow);
|
||||
dSclamp.SetLength(m_nEffector);
|
||||
errorArray.SetLength(m_nEffector);
|
||||
Jnorms.SetSize(m_nEffector, nCol); // Holds the norms of the active J matrix
|
||||
|
||||
Reset();
|
||||
}
|
||||
@@ -98,9 +142,12 @@ void Jacobian::Reset()
|
||||
// Compute the J and K matrices (the Jacobians)
|
||||
void Jacobian::ComputeJacobian(VectorR3* targets)
|
||||
{
|
||||
if (m_tree==0)
|
||||
return;
|
||||
|
||||
// Traverse tree to find all end effectors
|
||||
VectorR3 temp;
|
||||
Node* n = tree->GetRoot();
|
||||
Node* n = m_tree->GetRoot();
|
||||
while ( n ) {
|
||||
if ( n->IsEffector() ) {
|
||||
int i = n->GetEffectorNum();
|
||||
@@ -113,10 +160,10 @@ void Jacobian::ComputeJacobian(VectorR3* targets)
|
||||
|
||||
// Find all ancestors (they will usually all be joints)
|
||||
// Set the corresponding entries in the Jacobians J, K.
|
||||
Node* m = tree->GetParent(n);
|
||||
Node* m = m_tree->GetParent(n);
|
||||
while ( m ) {
|
||||
int j = m->GetJointNum();
|
||||
assert ( 0 <=i && i<nEffector && 0<=j && j<nJoint );
|
||||
assert ( 0 <=i && i<m_nEffector && 0<=j && j<nJoint );
|
||||
if ( m->IsFrozen() ) {
|
||||
Jend.SetTriple(i, j, VectorR3::Zero);
|
||||
Jtarget.SetTriple(i, j, VectorR3::Zero);
|
||||
@@ -131,10 +178,10 @@ void Jacobian::ComputeJacobian(VectorR3* targets)
|
||||
temp *= m->GetW(); // cross product with joint rotation axis
|
||||
Jtarget.SetTriple(i, j, temp);
|
||||
}
|
||||
m = tree->GetParent( m );
|
||||
m = m_tree->GetParent( m );
|
||||
}
|
||||
}
|
||||
n = tree->GetSuccessor( n );
|
||||
n = m_tree->GetSuccessor( n );
|
||||
}
|
||||
}
|
||||
|
||||
@@ -156,36 +203,39 @@ void Jacobian::UpdateThetas()
|
||||
{
|
||||
// Traverse the tree to find all joints
|
||||
// Update the joint angles
|
||||
Node* n = tree->GetRoot();
|
||||
Node* n = m_tree->GetRoot();
|
||||
while ( n ) {
|
||||
if ( n->IsJoint() ) {
|
||||
int i = n->GetJointNum();
|
||||
n->AddToTheta( dTheta[i] );
|
||||
|
||||
}
|
||||
n = tree->GetSuccessor( n );
|
||||
n = m_tree->GetSuccessor( n );
|
||||
}
|
||||
|
||||
// Update the positions and rotation axes of all joints/effectors
|
||||
tree->Compute();
|
||||
m_tree->Compute();
|
||||
}
|
||||
|
||||
void Jacobian::UpdateThetaDot()
|
||||
{
|
||||
if (m_tree==0)
|
||||
return;
|
||||
|
||||
// Traverse the tree to find all joints
|
||||
// Update the joint angles
|
||||
Node* n = tree->GetRoot();
|
||||
Node* n = m_tree->GetRoot();
|
||||
while ( n ) {
|
||||
if ( n->IsJoint() ) {
|
||||
int i = n->GetJointNum();
|
||||
n->UpdateTheta( dTheta[i] );
|
||||
|
||||
}
|
||||
n = tree->GetSuccessor( n );
|
||||
n = m_tree->GetSuccessor( n );
|
||||
}
|
||||
|
||||
// Update the positions and rotation axes of all joints/effectors
|
||||
tree->Compute();
|
||||
m_tree->Compute();
|
||||
}
|
||||
|
||||
void Jacobian::CalcDeltaThetas()
|
||||
@@ -279,7 +329,7 @@ void Jacobian::CalcDeltaThetasDLS()
|
||||
|
||||
// Use the next four lines instead of the succeeding two lines for the DLS method with clamped error vector e.
|
||||
// CalcdTClampedFromdS();
|
||||
// VectorRn dTextra(3*nEffector);
|
||||
// VectorRn dTextra(3*m_nEffector);
|
||||
// U.Solve( dT, &dTextra );
|
||||
// J.MultiplyTranspose( dTextra, dTheta );
|
||||
|
||||
@@ -294,31 +344,6 @@ void Jacobian::CalcDeltaThetasDLS()
|
||||
}
|
||||
}
|
||||
|
||||
void Jacobian::CalcThetasDotDLS(float dt)
|
||||
{
|
||||
const MatrixRmn& J = ActiveJacobian();
|
||||
|
||||
MatrixRmn::MultiplyTranspose(J, J, U); // U = J * (J^T)
|
||||
U.AddToDiagonal( DampingLambdaSq );
|
||||
|
||||
// Use the next four lines instead of the succeeding two lines for the DLS method with clamped error vector e.
|
||||
// CalcdTClampedFromdS();
|
||||
// VectorRn dTextra(3*nEffector);
|
||||
// U.Solve( dT, &dTextra );
|
||||
// J.MultiplyTranspose( dTextra, dTheta );
|
||||
|
||||
// Use these two lines for the traditional DLS method
|
||||
U.Solve( dS, &dT1 );
|
||||
J.MultiplyTranspose( dT1, dTheta );
|
||||
|
||||
// Scale back to not exceed maximum angle changes
|
||||
double MaxVelDLS = MaxAngleDLS/dt;
|
||||
double maxChange = dTheta.MaxAbs();
|
||||
if ( maxChange>MaxVelDLS ) {
|
||||
dTheta *= MaxVelDLS/maxChange;
|
||||
}
|
||||
}
|
||||
|
||||
void Jacobian::CalcDeltaThetasDLSwithSVD()
|
||||
{
|
||||
const MatrixRmn& J = ActiveJacobian();
|
||||
@@ -366,7 +391,7 @@ void Jacobian::CalcDeltaThetasSDLS()
|
||||
// Calculate response vector dTheta that is the SDLS solution.
|
||||
// Delta target values are the dS values
|
||||
int nRows = J.GetNumRows();
|
||||
int numEndEffectors = tree->GetNumEffector(); // Equals the number of rows of J divided by three
|
||||
int numEndEffectors = m_tree->GetNumEffector(); // Equals the number of rows of J divided by three
|
||||
int nCols = J.GetNumColumns();
|
||||
dTheta.SetZero();
|
||||
|
||||
@@ -478,7 +503,7 @@ double Jacobian::UpdateErrorArray(VectorR3* targets)
|
||||
|
||||
// Traverse tree to find all end effectors
|
||||
VectorR3 temp;
|
||||
Node* n = tree->GetRoot();
|
||||
Node* n = m_tree->GetRoot();
|
||||
while ( n ) {
|
||||
if ( n->IsEffector() ) {
|
||||
int i = n->GetEffectorNum();
|
||||
@@ -489,7 +514,7 @@ double Jacobian::UpdateErrorArray(VectorR3* targets)
|
||||
errorArray[i] = err;
|
||||
totalError += err;
|
||||
}
|
||||
n = tree->GetSuccessor( n );
|
||||
n = m_tree->GetSuccessor( n );
|
||||
}
|
||||
return totalError;
|
||||
}
|
||||
@@ -498,7 +523,7 @@ void Jacobian::UpdatedSClampValue(VectorR3* targets)
|
||||
{
|
||||
// Traverse tree to find all end effectors
|
||||
VectorR3 temp;
|
||||
Node* n = tree->GetRoot();
|
||||
Node* n = m_tree->GetRoot();
|
||||
while ( n ) {
|
||||
if ( n->IsEffector() ) {
|
||||
int i = n->GetEffectorNum();
|
||||
@@ -517,7 +542,7 @@ void Jacobian::UpdatedSClampValue(VectorR3* targets)
|
||||
dSclamp[i] = BaseMaxTargetDist;
|
||||
}
|
||||
}
|
||||
n = tree->GetSuccessor( n );
|
||||
n = m_tree->GetSuccessor( n );
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -54,6 +54,7 @@ enum UpdateMode {
|
||||
class Jacobian {
|
||||
public:
|
||||
Jacobian(Tree*);
|
||||
Jacobian(bool useAngularJacobian, int nDof);
|
||||
|
||||
void ComputeJacobian(VectorR3* targets);
|
||||
const MatrixRmn& ActiveJacobian() const { return *Jactive; }
|
||||
@@ -69,7 +70,7 @@ public:
|
||||
void CalcDeltaThetasDLS();
|
||||
void CalcDeltaThetasDLSwithSVD();
|
||||
void CalcDeltaThetasSDLS();
|
||||
void CalcThetasDotDLS(float dt);
|
||||
|
||||
|
||||
void UpdateThetas();
|
||||
void UpdateThetaDot();
|
||||
@@ -90,8 +91,8 @@ public:
|
||||
int GetNumCols() {return nCol;}
|
||||
|
||||
public:
|
||||
Tree* tree; // tree associated with this Jacobian matrix
|
||||
int nEffector; // Number of end effectors
|
||||
Tree* m_tree; // tree associated with this Jacobian matrix
|
||||
int m_nEffector; // Number of end effectors
|
||||
int nJoint; // Number of joints
|
||||
int nRow; // Total number of rows the real J (= 3*number of end effectors for now)
|
||||
int nCol; // Total number of columns in the real J (= number of joints for now)
|
||||
|
||||
@@ -1018,6 +1018,24 @@ static int pybullet_internalSetVectord(PyObject* obVec, double vector[3]) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// vector - double[3] which will be set by values from obVec
|
||||
static int pybullet_internalSetVector4(PyObject* obVec, double vector[4]) {
|
||||
int i, len;
|
||||
PyObject* seq;
|
||||
|
||||
seq = PySequence_Fast(obVec, "expected a sequence");
|
||||
len = PySequence_Size(obVec);
|
||||
if (len == 4) {
|
||||
for (i = 0; i < len; i++) {
|
||||
vector[i] = pybullet_internalGetFloatFromSequence(seq, i);
|
||||
}
|
||||
Py_DECREF(seq);
|
||||
return 1;
|
||||
}
|
||||
Py_DECREF(seq);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static PyObject* pybullet_getContactPointData(PyObject* self, PyObject* args) {
|
||||
int size = PySequence_Size(args);
|
||||
int objectUniqueIdA = -1;
|
||||
@@ -1658,22 +1676,25 @@ static PyObject* pybullet_calculateInverseKinematicsKuka(PyObject* self,
|
||||
if (size == 2)
|
||||
{
|
||||
int bodyIndex;
|
||||
int endEffectorLinkIndex;
|
||||
|
||||
PyObject* targetPosObj;
|
||||
|
||||
if (PyArg_ParseTuple(args, "iO", &bodyIndex, &targetPosObj))
|
||||
PyObject* targetOrnObj;
|
||||
|
||||
if (PyArg_ParseTuple(args, "iiOO", &bodyIndex, &endEffectorLinkIndex, &targetPosObj,&targetOrnObj))
|
||||
{
|
||||
double pos[3];
|
||||
double ori[4]={0,1.0,0,0};
|
||||
double dt=0.0001;
|
||||
|
||||
if (pybullet_internalSetVectord(targetPosObj,pos))
|
||||
if (pybullet_internalSetVectord(targetPosObj,pos) && pybullet_internalSetVector4(targetOrnObj,ori))
|
||||
{
|
||||
b3SharedMemoryStatusHandle statusHandle;
|
||||
int numPos=0;
|
||||
int resultBodyIndex;
|
||||
int result;
|
||||
b3SharedMemoryCommandHandle command = b3CalculateInverseKinematicsCommandInit(sm,bodyIndex,
|
||||
pos,ori,dt);
|
||||
|
||||
b3SharedMemoryCommandHandle command = b3CalculateInverseKinematicsCommandInit(sm,bodyIndex);
|
||||
b3CalculateInverseKinematicsAddTargetPositionWithOrientation(command,6,pos,ori);
|
||||
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, command);
|
||||
|
||||
result = b3GetStatusInverseKinematicsJointPositions(statusHandle,
|
||||
|
||||
Reference in New Issue
Block a user