add joint/constraint solver support (using CPU, Bullet 2.x solver), in combination with GPU contact solver

This commit is contained in:
erwin coumans
2013-04-23 12:03:55 -07:00
parent dc1984713a
commit 66e5dcf65a
14 changed files with 919 additions and 79 deletions

View File

@@ -18,7 +18,7 @@ subject to the following restrictions:
//#define COMPUTE_IMPULSE_DENOM 1
//It is not necessary (redundant) to refresh contact manifolds, this refresh has been moved to the collision algorithms.
#define DISABLE_JOINTS
//#define DISABLE_JOINTS
#include "b3PgsJacobiSolver.h"
#include "Bullet3Common/b3MinMax.h"
@@ -154,7 +154,7 @@ b3PgsJacobiSolver::~b3PgsJacobiSolver()
{
}
void b3PgsJacobiSolver::solveContacts(int numBodies, b3RigidBodyCL* bodies, btInertiaCL* inertias, int numContacts, b3Contact4* contacts)
void b3PgsJacobiSolver::solveContacts(int numBodies, b3RigidBodyCL* bodies, btInertiaCL* inertias, int numContacts, b3Contact4* contacts, int numConstraints, b3TypedConstraint** constraints)
{
b3ContactSolverInfo infoGlobal;
infoGlobal.m_splitImpulse = false;
@@ -168,7 +168,7 @@ void b3PgsJacobiSolver::solveContacts(int numBodies, b3RigidBodyCL* bodies, btIn
//if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
solveGroup(bodies,inertias,numBodies,contacts,numContacts,0,0,infoGlobal);
solveGroup(bodies,inertias,numBodies,contacts,numContacts,constraints,numConstraints,infoGlobal);
if (!numContacts)
return;
@@ -1088,6 +1088,21 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyCL* bodies,
int totalBodies = 0;
for (int i=0;i<numConstraints;i++)
{
int bodyIndexA = constraints[i]->getRigidBodyA();
int bodyIndexB = constraints[i]->getRigidBodyB();
if (m_usePgs)
{
m_bodyCount[bodyIndexA]=-1;
m_bodyCount[bodyIndexB]=-1;
} else
{
//didn't implement joints with Jacobi version yet
btAssert(0);
}
}
for (int i=0;i<numManifolds;i++)
{
int bodyIndexA = manifoldPtr[i].getBodyA();
@@ -1181,11 +1196,13 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyCL* bodies,
b3SolverConstraint* currentConstraintRow = &m_tmpSolverNonContactConstraintPool[currentRow];
b3TypedConstraint* constraint = constraints[i];
btRigidBody& rbA = constraint->getRigidBodyA();
btRigidBody& rbB = constraint->getRigidBodyB();
b3RigidBodyCL& rbA = bodies[ constraint->getRigidBodyA()];
//btRigidBody& rbA = constraint->getRigidBodyA();
// btRigidBody& rbB = constraint->getRigidBodyB();
b3RigidBodyCL& rbB = bodies[ constraint->getRigidBodyB()];
int solverBodyIdA = getOrInitSolverBody(rbA,);
int solverBodyIdB = getOrInitSolverBody(rbB);
int solverBodyIdA = getOrInitSolverBody(constraint->getRigidBodyA(),bodies,inertias);
int solverBodyIdB = getOrInitSolverBody(constraint->getRigidBodyB(),bodies,inertias);
b3SolverBody* bodyAPtr = &m_tmpSolverBodyPool[solverBodyIdA];
b3SolverBody* bodyBPtr = &m_tmpSolverBodyPool[solverBodyIdB];
@@ -1238,7 +1255,7 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyCL* bodies,
info2.m_lowerLimit = &currentConstraintRow->m_lowerLimit;
info2.m_upperLimit = &currentConstraintRow->m_upperLimit;
info2.m_numIterations = infoGlobal.m_numIterations;
constraints[i]->getInfo2(&info2);
constraints[i]->getInfo2(&info2,bodies);
///finalize the constraint setup
for ( j=0;j<info1.m_numConstraintRows;j++)
@@ -1256,21 +1273,27 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyCL* bodies,
}
solverConstraint.m_originalContactPoint = constraint;
b3Matrix3x3& invInertiaWorldA= inertias[constraint->getRigidBodyA()].m_invInertiaWorld;
{
{
//btVector3 angularFactorA(1,1,1);
const b3Vector3& ftorqueAxis1 = solverConstraint.m_relpos1CrossNormal;
solverConstraint.m_angularComponentA = constraint->getRigidBodyA().getInvInertiaTensorWorld()*ftorqueAxis1*constraint->getRigidBodyA().getAngularFactor();
solverConstraint.m_angularComponentA = invInertiaWorldA*ftorqueAxis1;//*angularFactorA;
}
b3Matrix3x3& invInertiaWorldB= inertias[constraint->getRigidBodyB()].m_invInertiaWorld;
{
const b3Vector3& ftorqueAxis2 = solverConstraint.m_relpos2CrossNormal;
solverConstraint.m_angularComponentB = constraint->getRigidBodyB().getInvInertiaTensorWorld()*ftorqueAxis2*constraint->getRigidBodyB().getAngularFactor();
solverConstraint.m_angularComponentB = invInertiaWorldB*ftorqueAxis2;//*constraint->getRigidBodyB().getAngularFactor();
}
{
b3Vector3 iMJlA = solverConstraint.m_contactNormal*rbA.getInvMass();
b3Vector3 iMJaA = rbA.getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal;
b3Vector3 iMJaA = invInertiaWorldA*solverConstraint.m_relpos1CrossNormal;
b3Vector3 iMJlB = solverConstraint.m_contactNormal*rbB.getInvMass();//sign of normal?
b3Vector3 iMJaB = rbB.getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal;
b3Vector3 iMJaB = invInertiaWorldB*solverConstraint.m_relpos2CrossNormal;
b3Scalar sum = iMJlA.dot(solverConstraint.m_contactNormal);
sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
@@ -1286,8 +1309,8 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyCL* bodies,
///todo: add force/torque accelerators
{
b3Scalar rel_vel;
b3Scalar vel1Dotn = solverConstraint.m_contactNormal.dot(rbA.getLinearVelocity()) + solverConstraint.m_relpos1CrossNormal.dot(rbA.getAngularVelocity());
b3Scalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rbB.getLinearVelocity()) + solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity());
b3Scalar vel1Dotn = solverConstraint.m_contactNormal.dot(rbA.m_linVel) + solverConstraint.m_relpos1CrossNormal.dot(rbA.m_angVel);
b3Scalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rbB.m_linVel) + solverConstraint.m_relpos2CrossNormal.dot(rbB.m_angVel);
rel_vel = vel1Dotn+vel2Dotn;
@@ -1406,20 +1429,6 @@ b3Scalar b3PgsJacobiSolver::solveSingleIteration(int iteration,b3TypedConstraint
if (iteration< infoGlobal.m_numIterations)
{
#ifndef DISABLE_JOINTS
for (int j=0;j<numConstraints;j++)
{
if (constraints[j]->isEnabled())
{
int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA());
int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB());
b3SolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
b3SolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
constraints[j]->solveConstraintObsolete(bodyA,bodyB,infoGlobal.m_timeStep);
}
}
#endif
///solve all contact constraints using SIMD, if available
if (infoGlobal.m_solverMode & SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS)
@@ -1539,19 +1548,6 @@ b3Scalar b3PgsJacobiSolver::solveSingleIteration(int iteration,b3TypedConstraint
if (iteration< infoGlobal.m_numIterations)
{
#ifndef DISABLE_JOINTS
for (int j=0;j<numConstraints;j++)
{
if (constraints[j]->isEnabled())
{
int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA());
int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB());
b3SolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
b3SolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
constraints[j]->solveConstraintObsolete(bodyA,bodyB,infoGlobal.m_timeStep);
}
}
#endif //DISABLE_JOINTS
///solve all contact constraints
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();

View File

@@ -116,8 +116,9 @@ public:
b3PgsJacobiSolver();
virtual ~b3PgsJacobiSolver();
void solveContacts(int numBodies, b3RigidBodyCL* bodies, btInertiaCL* inertias, int numContacts, b3Contact4* contacts);
// void solveContacts(int numBodies, b3RigidBodyCL* bodies, btInertiaCL* inertias, int numContacts, b3Contact4* contacts);
void solveContacts(int numBodies, b3RigidBodyCL* bodies, btInertiaCL* inertias, int numContacts, b3Contact4* contacts, int numConstraints, b3TypedConstraint** constraints);
b3Scalar solveGroup(b3RigidBodyCL* bodies,btInertiaCL* inertias,int numBodies,b3Contact4* manifoldPtr, int numManifolds,b3TypedConstraint** constraints,int numConstraints,const b3ContactSolverInfo& infoGlobal);
///clear internal cached data and reset random seed

View File

@@ -0,0 +1,225 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "b3Point2PointConstraint.h"
#include "Bullet3Collision/NarrowPhaseCollision/b3RigidBodyCL.h"
#include <new>
b3Point2PointConstraint::b3Point2PointConstraint(int rbA,int rbB, const b3Vector3& pivotInA,const b3Vector3& pivotInB)
:b3TypedConstraint(POINT2POINT_CONSTRAINT_TYPE,rbA,rbB),m_pivotInA(pivotInA),m_pivotInB(pivotInB),
m_flags(0),
m_useSolveConstraintObsolete(false)
{
}
/*
b3Point2PointConstraint::b3Point2PointConstraint(int rbA,const b3Vector3& pivotInA)
:b3TypedConstraint(POINT2POINT_CONSTRAINT_TYPE,rbA),m_pivotInA(pivotInA),m_pivotInB(rbA.getCenterOfMassTransform()(pivotInA)),
m_flags(0),
m_useSolveConstraintObsolete(false)
{
}
*/
void b3Point2PointConstraint::buildJacobian()
{
///we need it for both methods
{
m_appliedImpulse = b3Scalar(0.);
}
}
void b3Point2PointConstraint::getInfo1 (btConstraintInfo1* info)
{
getInfo1NonVirtual(info);
}
void b3Point2PointConstraint::getInfo1NonVirtual (btConstraintInfo1* info)
{
if (m_useSolveConstraintObsolete)
{
info->m_numConstraintRows = 0;
info->nub = 0;
} else
{
info->m_numConstraintRows = 3;
info->nub = 3;
}
}
void b3Point2PointConstraint::getInfo2 (btConstraintInfo2* info, const b3RigidBodyCL* bodies)
{
b3Transform trA;
trA.setIdentity();
trA.setOrigin(bodies[m_rbA].m_pos);
trA.setRotation(bodies[m_rbB].m_quat);
b3Transform trB;
trB.setIdentity();
trB.setOrigin(bodies[m_rbB].m_pos);
trB.setRotation(bodies[m_rbB].m_quat);
getInfo2NonVirtual(info, trA,trB);
}
void b3Point2PointConstraint::getInfo2NonVirtual (btConstraintInfo2* info, const b3Transform& body0_trans, const b3Transform& body1_trans)
{
btAssert(!m_useSolveConstraintObsolete);
//retrieve matrices
// anchor points in global coordinates with respect to body PORs.
// set jacobian
info->m_J1linearAxis[0] = 1;
info->m_J1linearAxis[info->rowskip+1] = 1;
info->m_J1linearAxis[2*info->rowskip+2] = 1;
b3Vector3 a1 = body0_trans.getBasis()*getPivotInA();
{
b3Vector3* angular0 = (b3Vector3*)(info->m_J1angularAxis);
b3Vector3* angular1 = (b3Vector3*)(info->m_J1angularAxis+info->rowskip);
b3Vector3* angular2 = (b3Vector3*)(info->m_J1angularAxis+2*info->rowskip);
b3Vector3 a1neg = -a1;
a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
}
if (info->m_J2linearAxis)
{
info->m_J2linearAxis[0] = -1;
info->m_J2linearAxis[info->rowskip+1] = -1;
info->m_J2linearAxis[2*info->rowskip+2] = -1;
}
b3Vector3 a2 = body1_trans.getBasis()*getPivotInB();
{
// b3Vector3 a2n = -a2;
b3Vector3* angular0 = (b3Vector3*)(info->m_J2angularAxis);
b3Vector3* angular1 = (b3Vector3*)(info->m_J2angularAxis+info->rowskip);
b3Vector3* angular2 = (b3Vector3*)(info->m_J2angularAxis+2*info->rowskip);
a2.getSkewSymmetricMatrix(angular0,angular1,angular2);
}
// set right hand side
b3Scalar currERP = (m_flags & BT_P2P_FLAGS_ERP) ? m_erp : info->erp;
b3Scalar k = info->fps * currERP;
int j;
for (j=0; j<3; j++)
{
info->m_constraintError[j*info->rowskip] = k * (a2[j] + body1_trans.getOrigin()[j] - a1[j] - body0_trans.getOrigin()[j]);
//printf("info->m_constraintError[%d]=%f\n",j,info->m_constraintError[j]);
}
if(m_flags & BT_P2P_FLAGS_CFM)
{
for (j=0; j<3; j++)
{
info->cfm[j*info->rowskip] = m_cfm;
}
}
b3Scalar impulseClamp = m_setting.m_impulseClamp;//
for (j=0; j<3; j++)
{
if (m_setting.m_impulseClamp > 0)
{
info->m_lowerLimit[j*info->rowskip] = -impulseClamp;
info->m_upperLimit[j*info->rowskip] = impulseClamp;
}
}
info->m_damping = m_setting.m_damping;
}
void b3Point2PointConstraint::updateRHS(b3Scalar timeStep)
{
(void)timeStep;
}
///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
///If no axis is provided, it uses the default axis for this constraint.
void b3Point2PointConstraint::setParam(int num, b3Scalar value, int axis)
{
if(axis != -1)
{
btAssertConstrParams(0);
}
else
{
switch(num)
{
case BT_CONSTRAINT_ERP :
case BT_CONSTRAINT_STOP_ERP :
m_erp = value;
m_flags |= BT_P2P_FLAGS_ERP;
break;
case BT_CONSTRAINT_CFM :
case BT_CONSTRAINT_STOP_CFM :
m_cfm = value;
m_flags |= BT_P2P_FLAGS_CFM;
break;
default:
btAssertConstrParams(0);
}
}
}
///return the local value of parameter
b3Scalar b3Point2PointConstraint::getParam(int num, int axis) const
{
b3Scalar retVal(SIMD_INFINITY);
if(axis != -1)
{
btAssertConstrParams(0);
}
else
{
switch(num)
{
case BT_CONSTRAINT_ERP :
case BT_CONSTRAINT_STOP_ERP :
btAssertConstrParams(m_flags & BT_P2P_FLAGS_ERP);
retVal = m_erp;
break;
case BT_CONSTRAINT_CFM :
case BT_CONSTRAINT_STOP_CFM :
btAssertConstrParams(m_flags & BT_P2P_FLAGS_CFM);
retVal = m_cfm;
break;
default:
btAssertConstrParams(0);
}
}
return retVal;
}

View File

@@ -0,0 +1,163 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_POINT2POINTCONSTRAINT_H
#define BT_POINT2POINTCONSTRAINT_H
#include "Bullet3Common/b3Vector3.h"
//#include "b3JacobianEntry.h"
#include "b3TypedConstraint.h"
class btRigidBody;
#ifdef BT_USE_DOUBLE_PRECISION
#define btPoint2PointConstraintData btPoint2PointConstraintDoubleData
#define btPoint2PointConstraintDataName "btPoint2PointConstraintDoubleData"
#else
#define btPoint2PointConstraintData btPoint2PointConstraintFloatData
#define btPoint2PointConstraintDataName "btPoint2PointConstraintFloatData"
#endif //BT_USE_DOUBLE_PRECISION
struct btConstraintSetting
{
btConstraintSetting() :
m_tau(b3Scalar(0.3)),
m_damping(b3Scalar(1.)),
m_impulseClamp(b3Scalar(0.))
{
}
b3Scalar m_tau;
b3Scalar m_damping;
b3Scalar m_impulseClamp;
};
enum btPoint2PointFlags
{
BT_P2P_FLAGS_ERP = 1,
BT_P2P_FLAGS_CFM = 2
};
/// point to point constraint between two rigidbodies each with a pivotpoint that descibes the 'ballsocket' location in local space
ATTRIBUTE_ALIGNED16(class) b3Point2PointConstraint : public b3TypedConstraint
{
#ifdef IN_PARALLELL_SOLVER
public:
#endif
b3Vector3 m_pivotInA;
b3Vector3 m_pivotInB;
int m_flags;
b3Scalar m_erp;
b3Scalar m_cfm;
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
///for backwards compatibility during the transition to 'getInfo/getInfo2'
bool m_useSolveConstraintObsolete;
btConstraintSetting m_setting;
b3Point2PointConstraint(int rbA,int rbB, const b3Vector3& pivotInA,const b3Vector3& pivotInB);
b3Point2PointConstraint(int rbA,const b3Vector3& pivotInA);
virtual void buildJacobian();
virtual void getInfo1 (btConstraintInfo1* info);
void getInfo1NonVirtual (btConstraintInfo1* info);
virtual void getInfo2 (btConstraintInfo2* info, const b3RigidBodyCL* bodies);
void getInfo2NonVirtual (btConstraintInfo2* info, const b3Transform& body0_trans, const b3Transform& body1_trans);
void updateRHS(b3Scalar timeStep);
void setPivotA(const b3Vector3& pivotA)
{
m_pivotInA = pivotA;
}
void setPivotB(const b3Vector3& pivotB)
{
m_pivotInB = pivotB;
}
const b3Vector3& getPivotInA() const
{
return m_pivotInA;
}
const b3Vector3& getPivotInB() const
{
return m_pivotInB;
}
///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
///If no axis is provided, it uses the default axis for this constraint.
virtual void setParam(int num, b3Scalar value, int axis = -1);
///return the local value of parameter
virtual b3Scalar getParam(int num, int axis = -1) const;
// virtual int calculateSerializeBufferSize() const;
///fills the dataBuffer and returns the struct name (and 0 on failure)
// virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
};
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
struct btPoint2PointConstraintFloatData
{
btTypedConstraintData m_typeConstraintData;
btVector3FloatData m_pivotInA;
btVector3FloatData m_pivotInB;
};
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
struct btPoint2PointConstraintDoubleData
{
btTypedConstraintData m_typeConstraintData;
btVector3DoubleData m_pivotInA;
btVector3DoubleData m_pivotInB;
};
/*
SIMD_FORCE_INLINE int b3Point2PointConstraint::calculateSerializeBufferSize() const
{
return sizeof(btPoint2PointConstraintData);
}
///fills the dataBuffer and returns the struct name (and 0 on failure)
SIMD_FORCE_INLINE const char* b3Point2PointConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
{
btPoint2PointConstraintData* p2pData = (btPoint2PointConstraintData*)dataBuffer;
b3TypedConstraint::serialize(&p2pData->m_typeConstraintData,serializer);
m_pivotInA.serialize(p2pData->m_pivotInA);
m_pivotInB.serialize(p2pData->m_pivotInB);
return btPoint2PointConstraintDataName;
}
*/
#endif //BT_POINT2POINTCONSTRAINT_H

View File

@@ -259,7 +259,7 @@ ATTRIBUTE_ALIGNED64 (struct) b3SolverBody
void writebackVelocity()
{
if (m_originalBody)
//if (m_originalBody>=0)
{
m_linearVelocity +=m_deltaLinearVelocity;
m_angularVelocity += m_deltaAngularVelocity;

View File

@@ -60,6 +60,8 @@ ATTRIBUTE_ALIGNED16(struct) btJointFeedback
b3Vector3 m_appliedTorqueBodyB;
};
struct b3RigidBodyCL;
///TypedConstraint is the baseclass for Bullet constraints and vehicles
ATTRIBUTE_ALIGNED16(class) b3TypedConstraint : public btTypedObject
@@ -171,7 +173,7 @@ public:
virtual void getInfo1 (btConstraintInfo1* info)=0;
///internal method used by the constraint solver, don't use them directly
virtual void getInfo2 (btConstraintInfo2* info)=0;
virtual void getInfo2 (btConstraintInfo2* info, const b3RigidBodyCL* bodies)=0;
///internal method used by the constraint solver, don't use them directly
void internalSetAppliedImpulse(b3Scalar appliedImpulse)
@@ -321,10 +323,10 @@ public:
///return the local value of parameter
virtual b3Scalar getParam(int num, int axis = -1) const = 0;
virtual int calculateSerializeBufferSize() const;
// virtual int calculateSerializeBufferSize() const;
///fills the dataBuffer and returns the struct name (and 0 on failure)
virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
//virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
};
@@ -377,11 +379,11 @@ struct btTypedConstraintData
};
SIMD_FORCE_INLINE int b3TypedConstraint::calculateSerializeBufferSize() const
/*SIMD_FORCE_INLINE int b3TypedConstraint::calculateSerializeBufferSize() const
{
return sizeof(btTypedConstraintData);
}
*/
class btAngularLimit

View File

@@ -0,0 +1,277 @@
#include "btGpuDynamicsWorld.h"
#include "gpu_rigidbody/host/btRigidBody.h"
#include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.h"
#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
#include "BulletCommon/btQuickprof.h"
#include "gpu_rigidbody/host/btGpuRigidBodyPipeline.h"
#include "gpu_rigidbody/host/btGpuRigidBodyPipeline.h"
#include "gpu_rigidbody/host/btGpuNarrowPhase.h"
#ifdef _WIN32
#include <wiNdOws.h>
#endif
btGpuDynamicsWorld::btGpuDynamicsWorld(btGpuSapBroadphase*bp, btGpuNarrowPhase* np, btGpuRigidBodyPipeline* rb)
:m_gravity(0,-10,0),
m_once(true)
{
m_bp = bp;
m_np=np;
m_rigidBodyPipeline = rb;
}
btGpuDynamicsWorld::~btGpuDynamicsWorld()
{
}
int btGpuDynamicsWorld::stepSimulation( btScalar timeStep,int maxSubSteps, btScalar fixedTimeStep)
{
#ifndef BT_NO_PROFILE
// CProfileManager::Reset();
#endif //BT_NO_PROFILE
BT_PROFILE("stepSimulation");
m_rigidBodyPipeline->stepSimulation(timeStep);
{
BT_PROFILE("scatter transforms into rigidbody (CPU)");
for (int i=0;i<this->m_collisionObjects.size();i++)
{
btVector3 pos;
btQuaternion orn;
cl_mem gpuBodies = m_rigidBodyPipeline->getBodyBuffer();
btTransform newTrans;
newTrans.setOrigin(pos);
newTrans.setRotation(orn);
this->m_collisionObjects[i]->setWorldTransform(newTrans);
}
}
#ifndef BT_NO_PROFILE
//CProfileManager::Increment_Frame_Counter();
#endif //BT_NO_PROFILE
return 1;
}
void btGpuDynamicsWorld::setGravity(const btVector3& gravity)
{
}
int btGpuDynamicsWorld::findOrRegisterCollisionShape(const btCollisionShape* colShape)
{
int index = m_uniqueShapes.findLinearSearch(colShape);
if (index==m_uniqueShapes.size())
{
if (colShape->isPolyhedral())
{
m_uniqueShapes.push_back(colShape);
btPolyhedralConvexShape* convex = (btPolyhedralConvexShape*)colShape;
int numVertices=convex->getNumVertices();
int strideInBytes=sizeof(btVector3);
btAlignedObjectArray<btVector3> tmpVertices;
tmpVertices.resize(numVertices);
for (int i=0;i<numVertices;i++)
convex->getVertex(i,tmpVertices[i]);
const float scaling[4]={1,1,1,1};
bool noHeightField=true;
int gpuShapeIndex = m_np->registerConvexHullShape(&tmpVertices[0].getX(), strideInBytes, numVertices, scaling);
m_uniqueShapeMapping.push_back(gpuShapeIndex);
} else
{
if (colShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE)
{
m_uniqueShapes.push_back(colShape);
btBvhTriangleMeshShape* trimesh = (btBvhTriangleMeshShape*) colShape;
btStridingMeshInterface* meshInterface = trimesh->getMeshInterface();
btAlignedObjectArray<btVector3> vertices;
btAlignedObjectArray<int> indices;
btVector3 trimeshScaling(1,1,1);
for (int partId=0;partId<meshInterface->getNumSubParts();partId++)
{
const unsigned char *vertexbase = 0;
int numverts = 0;
PHY_ScalarType type = PHY_INTEGER;
int stride = 0;
const unsigned char *indexbase = 0;
int indexstride = 0;
int numfaces = 0;
PHY_ScalarType indicestype = PHY_INTEGER;
//PHY_ScalarType indexType=0;
btVector3 triangleVerts[3];
meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts, type,stride,&indexbase,indexstride,numfaces,indicestype,partId);
btVector3 aabbMin,aabbMax;
for (int triangleIndex = 0 ; triangleIndex < numfaces;triangleIndex++)
{
unsigned int* gfxbase = (unsigned int*)(indexbase+triangleIndex*indexstride);
for (int j=2;j>=0;j--)
{
int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
if (type == PHY_FLOAT)
{
float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
triangleVerts[j] = btVector3(
graphicsbase[0]*trimeshScaling.getX(),
graphicsbase[1]*trimeshScaling.getY(),
graphicsbase[2]*trimeshScaling.getZ());
}
else
{
double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
triangleVerts[j] = btVector3( btScalar(graphicsbase[0]*trimeshScaling.getX()),
btScalar(graphicsbase[1]*trimeshScaling.getY()),
btScalar(graphicsbase[2]*trimeshScaling.getZ()));
}
}
vertices.push_back(triangleVerts[0]);
vertices.push_back(triangleVerts[1]);
vertices.push_back(triangleVerts[2]);
indices.push_back(indices.size());
indices.push_back(indices.size());
indices.push_back(indices.size());
}
}
//GraphicsShape* gfxShape = 0;//btBulletDataExtractor::createGraphicsShapeFromWavefrontObj(objData);
//GraphicsShape* gfxShape = btBulletDataExtractor::createGraphicsShapeFromConvexHull(&sUnitSpherePoints[0],MY_UNITSPHERE_POINTS);
float meshScaling[4] = {1,1,1,1};
//int shapeIndex = renderer.registerShape(gfxShape->m_vertices,gfxShape->m_numvertices,gfxShape->m_indices,gfxShape->m_numIndices);
float groundPos[4] = {0,0,0,0};
//renderer.registerGraphicsInstance(shapeIndex,groundPos,rotOrn,color,meshScaling);
if (vertices.size() && indices.size())
{
int gpuShapeIndex = m_np->registerConcaveMesh(&vertices,&indices, meshScaling);
m_uniqueShapeMapping.push_back(gpuShapeIndex);
} else
{
printf("Error: no vertices in mesh in btGpuDynamicsWorld::addRigidBody\n");
index = -1;
btAssert(0);
}
} else
{
if (colShape->getShapeType()==COMPOUND_SHAPE_PROXYTYPE)
{
btCompoundShape* compound = (btCompoundShape*) colShape;
btAlignedObjectArray<btGpuChildShape> childShapes;
for (int i=0;i<compound->getNumChildShapes();i++)
{
//for now, only support polyhedral child shapes
btAssert(compound->getChildShape(i)->isPolyhedral());
btGpuChildShape child;
child.m_shapeIndex = findOrRegisterCollisionShape(compound->getChildShape(i));
btVector3 pos = compound->getChildTransform(i).getOrigin();
btQuaternion orn = compound->getChildTransform(i).getRotation();
for (int v=0;v<4;v++)
{
child.m_childPosition[v] = pos[v];
child.m_childOrientation[v] = orn[v];
}
childShapes.push_back(child);
}
index = m_uniqueShapes.size();
m_uniqueShapes.push_back(colShape);
int gpuShapeIndex = m_np->registerCompoundShape(&childShapes);
m_uniqueShapeMapping.push_back(gpuShapeIndex);
/*printf("Error: unsupported compound type (%d) in btGpuDynamicsWorld::addRigidBody\n",colShape->getShapeType());
index = -1;
btAssert(0);
*/
} else
{
if (colShape->getShapeType()==SPHERE_SHAPE_PROXYTYPE)
{
m_uniqueShapes.push_back(colShape);
btSphereShape* sphere = (btSphereShape*)colShape;
int gpuShapeIndex = m_np->registerSphereShape(sphere->getRadius());
m_uniqueShapeMapping.push_back(gpuShapeIndex);
} else
{
if (colShape->getShapeType()==STATIC_PLANE_PROXYTYPE)
{
m_uniqueShapes.push_back(colShape);
btStaticPlaneShape* plane = (btStaticPlaneShape*)colShape;
int gpuShapeIndex = m_np->registerPlaneShape(plane->getPlaneNormal(),plane->getPlaneConstant());
m_uniqueShapeMapping.push_back(gpuShapeIndex);
} else
{
printf("Error: unsupported shape type (%d) in btGpuDynamicsWorld::addRigidBody\n",colShape->getShapeType());
index = -1;
btAssert(0);
}
}
}
}
}
}
return index;
}
void btGpuDynamicsWorld::addRigidBody(btRigidBody* body)
{
body->setMotionState(0);
int index = findOrRegisterCollisionShape(body->getCollisionShape());
if (index>=0)
{
int gpuShapeIndex= m_uniqueShapeMapping[index];
float mass = body->getInvMass() ? 1.f/body->getInvMass() : 0.f;
btVector3 pos = body->getWorldTransform().getOrigin();
btQuaternion orn = body->getWorldTransform().getRotation();
m_rigidBodyPipeline->registerPhysicsInstance(mass,&pos.getX(),&orn.getX(),gpuShapeIndex,m_collisionObjects.size());
m_collisionObjects.push_back(body);
}
}
void btGpuDynamicsWorld::removeCollisionObject(btCollisionObject* colObj)
{
btAssert(0);
}

View File

@@ -0,0 +1,89 @@
#ifndef BT_GPU_DYNAMICS_WORLD_H
#define BT_GPU_DYNAMICS_WORLD_H
class btVector3;
class btRigidBody;
class btCollisionObject;
struct btGpuInternalData;//use this struct to avoid 'leaking' all OpenCL headers into clients code base
#include "BulletCommon/btAlignedObjectArray.h"
//#include "BulletDynamics/Dynamics/btDynamicsWorld.h"
#include "BulletCommon/btTransform.h"
class btGpuDynamicsWorld
{
btAlignedObjectArray<const class btCollisionShape*> m_uniqueShapes;
btAlignedObjectArray<int> m_uniqueShapeMapping;
btAlignedObjectArray<btCollisionObject*> m_collisionObjects;
class btGpuSapBroadphase* m_bp;
class btGpuNarrowPhase* m_np;
class btGpuRigidBodyPipeline* m_rigidBodyPipeline;
btVector3 m_gravity;
bool m_once;
bool initOpenCL(int preferredDeviceIndex, int preferredPlatformIndex, bool useInterop);
void exitOpenCL();
int findOrRegisterCollisionShape(const btCollisionShape* colShape);
public:
btGpuDynamicsWorld(btGpuSapBroadphase*bp, btGpuNarrowPhase* np, btGpuRigidBodyPipeline* rb);
virtual ~btGpuDynamicsWorld();
virtual int stepSimulation( btScalar timeStep,int maxSubSteps=1, btScalar fixedTimeStep=btScalar(1.)/btScalar(60.));
virtual void synchronizeMotionStates()
{
btAssert(0);
}
void debugDrawWorld() {}
void setGravity(const btVector3& gravity);
void addRigidBody(btRigidBody* body);
void removeCollisionObject(btCollisionObject* colObj);
btAlignedObjectArray<class btCollisionObject*>& getCollisionObjectArray();
const btAlignedObjectArray<class btCollisionObject*>& getCollisionObjectArray() const;
btVector3 getGravity () const
{
return m_gravity;
}
virtual void addRigidBody(btRigidBody* body, short group, short mask)
{
addRigidBody(body);
}
virtual void removeRigidBody(btRigidBody* body)
{
btAssert(0);
}
virtual void clearForces()
{
btAssert(0);
}
};
#endif //BT_GPU_DYNAMICS_WORLD_H