ASSERT -> btAssert

Added btStackAlloc to Bullet (right now only used by btGjkEpa)
removed default constructors of btCollisionWorld/btDiscreteDynamicsWorld, to reduce link-time dependencies
This commit is contained in:
ejcoumans
2006-11-29 01:52:09 +00:00
parent 43ab3c67c4
commit 6738ed329d
41 changed files with 206 additions and 269 deletions

View File

@@ -17,6 +17,7 @@ subject to the following restrictions:
#ifndef CONVEX_PENETRATION_DEPTH_H
#define CONVEX_PENETRATION_DEPTH_H
class btStackAlloc;
class btVector3;
#include "btSimplexSolverInterface.h"
class btConvexShape;
@@ -33,7 +34,7 @@ public:
btConvexShape* convexA,btConvexShape* convexB,
const btTransform& transA,const btTransform& transB,
btVector3& v, btPoint3& pa, btPoint3& pb,
class btIDebugDraw* debugDraw
class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc
) = 0;

View File

@@ -18,7 +18,7 @@ subject to the following restrictions:
#define DISCRETE_COLLISION_DETECTOR1_INTERFACE_H
#include "LinearMath/btTransform.h"
#include "LinearMath/btVector3.h"
class btStackAlloc;
/// This interface is made to be used by an iterative approach to do TimeOfImpact calculations
/// This interface allows to query for closest points and penetration depth between two (convex) objects
@@ -42,13 +42,15 @@ struct btDiscreteCollisionDetectorInterface
struct ClosestPointInput
{
ClosestPointInput()
:m_maximumDistanceSquared(1e30f)
:m_maximumDistanceSquared(1e30f),
m_stackAlloc(0)
{
}
btTransform m_transformA;
btTransform m_transformB;
btScalar m_maximumDistanceSquared;
btStackAlloc* m_stackAlloc;
};
virtual ~btDiscreteCollisionDetectorInterface() {};

View File

@@ -26,6 +26,15 @@ Nov.2006
#include "btGjkEpa.h"
#include <string.h> //for memset
#include <LinearMath/btStackAlloc.h>
#if defined(DEBUG) || defined (_DEBUG)
#include <stdio.h> //for debug printf
#ifdef __SPU__
#include <spu_printf.h>
#define printf spu_printf
#endif //__SPU__
#endif
namespace gjkepa_impl
{
@@ -58,21 +67,18 @@ typedef btMatrix3x3 Rotation;
// Const
//
static const U chkPrecision =1/U(sizeof(F)==4);
static const F cstInf =F(1/sin(0.));
static const F cstPi =F(acos(-1.));
static const F cst2Pi =cstPi*2;
static const U GJK_maxiterations =128;
static const U GJK_hashsize =1<<6;
static const U GJK_hashmask =GJK_hashsize-1;
static const F GJK_insimplex_eps =F(0.0001);
static const F GJK_sqinsimplex_eps =GJK_insimplex_eps*GJK_insimplex_eps;
static const U EPA_maxiterations =256;
static const F EPA_inface_eps =F(0.01);
static const F EPA_accuracy =F(0.001);
#define cstInf SIMD_INFINITY
#define cstPi SIMD_PI
#define cst2Pi SIMD_2_PI
#define GJK_maxiterations (128)
#define GJK_hashsize (1<<6)
#define GJK_hashmask (GJK_hashsize-1)
#define GJK_insimplex_eps F(0.0001)
#define GJK_sqinsimplex_eps (GJK_insimplex_eps*GJK_insimplex_eps)
#define EPA_maxiterations 256
#define EPA_inface_eps F(0.01)
#define EPA_accuracy F(0.001)
//
// Utils
@@ -95,80 +101,7 @@ throw(object); }
template <typename T> static inline void Raise(const T&) {}
#endif
struct Block
{
Block* previous;
U1* address;
};
//
// StackAlloc
//
struct StackAlloc
{
StackAlloc() { ctor(); }
StackAlloc(U size) { ctor();Create(size); }
~StackAlloc() { Free(); }
void Create(U size)
{
Free();
data = new U1[size];
totalsize = size;
}
void Free()
{
if(usedsize==0)
{
if(!ischild) delete[] data;
data = 0;
usedsize = 0;
} else Raise(L"StackAlloc is still in use");
}
U1* Allocate(U size)
{
const U nus(usedsize+size);
if(nus<totalsize)
{
usedsize=nus;
return(data+(usedsize-size));
}
Raise(L"Not enough memory");
return(0);
}
Block* BeginBlock()
{
Block* pb = (Block*)Allocate(sizeof(Block));
pb->previous = current;
pb->address = data+usedsize;
current = pb;
return(pb);
}
void EndBlock(Block* block)
{
if(block==current)
{
current = block->previous;
usedsize = (U)((block->address-data)-sizeof(Block));
} else Raise(L"Unmatched blocks");
}
private:
void ctor()
{
data = 0;
totalsize = 0;
usedsize = 0;
current = 0;
ischild = false;
}
U1* data;
U totalsize;
U usedsize;
Block* current;
Z ischild;
};
//
// GJK
@@ -185,8 +118,8 @@ struct GJK
Vector3 v;
He* n;
};
StackAlloc* sa;
Block* sablock;
btStackAlloc* sa;
btBlock* sablock;
He* table[GJK_hashsize];
Rotation wrotations[2];
Vector3 positions[2];
@@ -198,7 +131,7 @@ struct GJK
F margin;
Z failed;
//
GJK(StackAlloc* psa,
GJK(btStackAlloc* psa,
const Rotation& wrot0,const Vector3& pos0,const btConvexShape* shape0,
const Rotation& wrot1,const Vector3& pos1,const btConvexShape* shape1,
F pmargin=0)
@@ -206,14 +139,14 @@ struct GJK
wrotations[0]=wrot0;positions[0]=pos0;shapes[0]=shape0;
wrotations[1]=wrot1;positions[1]=pos1;shapes[1]=shape1;
sa =psa;
sablock =sa->BeginBlock();
sablock =sa->beginBlock();
margin =pmargin;
failed =false;
}
//
~GJK()
{
sa->EndBlock(sablock);
sa->endBlock(sablock);
}
// vdh : very dumm hash
static inline U Hash(const Vector3& v)
@@ -243,7 +176,7 @@ struct GJK
const U h(Hash(ray));
He* e = (He*)(table[h]);
while(e) { if(e->v==ray) { --order;return(false); } else e=e->n; }
e=(He*)sa->Allocate(sizeof(He));e->v=ray;e->n=table[h];table[h]=e;
e=(He*)sa->allocate(sizeof(He));e->v=ray;e->n=table[h];table[h]=e;
Support(ray,simplex[++order]);
return(ray.dot(SPXW(order))>0);
}
@@ -401,7 +334,7 @@ struct EPA
};
//
GJK* gjk;
StackAlloc* sa;
btStackAlloc* sa;
Face* root;
U nfaces;
U iterations;
@@ -464,7 +397,7 @@ c) const
//
inline Face* NewFace(const GJK::Mkv* a,const GJK::Mkv* b,const GJK::Mkv* c)
{
Face* pf = (Face*)sa->Allocate(sizeof(Face));
Face* pf = (Face*)sa->allocate(sizeof(Face));
if(Set(pf,a,b,c))
{
if(root) root->prev=pf;
@@ -506,7 +439,7 @@ c) const
//
GJK::Mkv* Support(const Vector3& w) const
{
GJK::Mkv* v =(GJK::Mkv*)sa->Allocate(sizeof(GJK::Mkv));
GJK::Mkv* v =(GJK::Mkv*)sa->allocate(sizeof(GJK::Mkv));
gjk->Support(w,*v);
return(v);
}
@@ -540,7 +473,7 @@ ff)
//
inline F EvaluatePD(F accuracy=EPA_accuracy)
{
Block* sablock = sa->BeginBlock();
btBlock* sablock = sa->beginBlock();
Face* bestface = 0;
U markid(1);
depth = -cstInf;
@@ -579,7 +512,7 @@ U eidx[9][4]={{0,0,4,0},{0,1,2,1},{0,2,1,2},{1,1,5,2},{1,0,2,0},{2,2,3,2},{3,1,5
U i;
for( i=0;i<=gjk->order;++i) {
basemkv[i]=(GJK::Mkv*)sa->Allocate(sizeof(GJK::Mkv));*basemkv[i]=gjk->simplex[i];
basemkv[i]=(GJK::Mkv*)sa->allocate(sizeof(GJK::Mkv));*basemkv[i]=gjk->simplex[i];
}
for( i=0;i<nfidx;++i,pfidx+=3) {
basefaces[i]=NewFace(basemkv[pfidx[0]],basemkv[pfidx[1]],basemkv[pfidx[2]]);
@@ -589,7 +522,7 @@ Link(basefaces[peidx[0]],peidx[1],basefaces[peidx[2]],peidx[3]); }
}
if(0==nfaces)
{
sa->EndBlock(sablock);
sa->endBlock(sablock);
return(depth);
}
/* Expand hull */
@@ -632,7 +565,7 @@ nf+=BuildHorizon(markid,w,*bf->f[i],bf->e[i],cf,ff); }
nearest[0] = features[0][0]*b.x()+features[0][1]*b.y()+features[0][2]*b.z();
nearest[1] = features[1][0]*b.x()+features[1][1]*b.y()+features[1][2]*b.z();
} else failed=true;
sa->EndBlock(sablock);
sa->endBlock(sablock);
return(depth);
}
};
@@ -644,17 +577,17 @@ nf+=BuildHorizon(markid,w,*bf->f[i],bf->e[i],cf,ff); }
using namespace gjkepa_impl;
/* Need some kind of stackalloc , create a static one till bullet provide
one. */
static const U g_sasize((1024<<10)*2);
static StackAlloc g_sa(g_sasize);
//
bool btGjkEpaSolver::Collide(btConvexShape *shape0,const btTransform &wtrs0,
btConvexShape *shape1,const btTransform &wtrs1,
btScalar radialmargin,
btStackAlloc* stackAlloc,
sResults& results)
{
/* Initialize */
results.witnesses[0] =
results.witnesses[1] =
@@ -664,7 +597,7 @@ results.status = sResults::Separated;
results.epa_iterations = 0;
results.gjk_iterations = 0;
/* Use GJK to locate origin */
GJK gjk(&g_sa,
GJK gjk(stackAlloc,
wtrs0.getBasis(),wtrs0.getOrigin(),shape0,
wtrs1.getBasis(),wtrs1.getOrigin(),shape1,
radialmargin+EPA_accuracy);

View File

@@ -23,6 +23,8 @@ Nov.2006
#define _05E48D53_04E0_49ad_BB0A_D74FE62E7366_
#include "BulletCollision/CollisionShapes/btConvexShape.h"
class btStackAlloc;
///btGjkEpaSolver contributed under zlib by Nathanael Presson
struct btGjkEpaSolver
{
@@ -44,6 +46,7 @@ struct sResults
static bool Collide(btConvexShape* shape0,const btTransform& wtrs0,
btConvexShape* shape1,const btTransform& wtrs1,
btScalar radialmargin,
btStackAlloc* stackAlloc,
sResults& results);
};

View File

@@ -23,7 +23,7 @@ bool btGjkEpaPenetrationDepthSolver::calcPenDepth( btSimplexSolverInterface& sim
btConvexShape* pConvexA, btConvexShape* pConvexB,
const btTransform& transformA, const btTransform& transformB,
btVector3& v, btPoint3& wWitnessOnA, btPoint3& wWitnessOnB,
class btIDebugDraw* debugDraw )
class btIDebugDraw* debugDraw, btStackAlloc* stackAlloc )
{
@@ -32,7 +32,7 @@ bool btGjkEpaPenetrationDepthSolver::calcPenDepth( btSimplexSolverInterface& sim
btGjkEpaSolver::sResults results;
if(btGjkEpaSolver::Collide( pConvexA,transformA,
pConvexB,transformB,
radialmargin,results))
radialmargin,stackAlloc,results))
{
// debugDraw->drawLine(results.witnesses[1],results.witnesses[1]+results.normal,btVector3(255,0,0));
//resultOut->addContactPoint(results.normal,results.witnesses[1],-results.depth);

View File

@@ -29,7 +29,7 @@ class btGjkEpaPenetrationDepthSolver : public btConvexPenetrationDepthSolver
btConvexShape* pConvexA, btConvexShape* pConvexB,
const btTransform& transformA, const btTransform& transformB,
btVector3& v, btPoint3& wWitnessOnA, btPoint3& wWitnessOnB,
class btIDebugDraw* debugDraw );
class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc );
private :

View File

@@ -20,6 +20,10 @@ subject to the following restrictions:
#if defined(DEBUG) || defined (_DEBUG)
#include <stdio.h> //for debug printf
#ifdef __SPU__
#include <spu_printf.h>
#define printf spu_printf
#endif //__SPU__
#endif
//must be above the machine epsilon
@@ -29,10 +33,7 @@ subject to the following restrictions:
int gNumDeepPenetrationChecks = 0;
int gNumGjkChecks = 0;
#ifdef __SPU__
#include <spu_printf.h>
#define printf spu_printf
#endif //__SPU__
btGjkPairDetector::btGjkPairDetector(btConvexShape* objectA,btConvexShape* objectB,btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver* penetrationDepthSolver)
:m_cachedSeparatingAxis(0.f,0.f,1.f),
@@ -202,7 +203,7 @@ void btGjkPairDetector::getClosestPoints(const ClosestPointInput& input,Result&
normalInB *= rlen; //normalize
btScalar s = btSqrt(squaredDistance);
ASSERT(s > btScalar(0.0));
btAssert(s > btScalar(0.0));
pointOnA -= m_cachedSeparatingAxis * (marginA / s);
pointOnB += m_cachedSeparatingAxis * (marginB / s);
distance = ((1.f/rlen) - margin);
@@ -236,7 +237,7 @@ void btGjkPairDetector::getClosestPoints(const ClosestPointInput& input,Result&
m_minkowskiA,m_minkowskiB,
localTransA,localTransB,
m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB,
debugDraw
debugDraw,input.m_stackAlloc
);
if (isValid2)

View File

@@ -74,7 +74,7 @@ bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& s
btConvexShape* convexA,btConvexShape* convexB,
const btTransform& transA,const btTransform& transB,
btVector3& v, btPoint3& pa, btPoint3& pb,
class btIDebugDraw* debugDraw
class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc
)
{

View File

@@ -28,7 +28,7 @@ public:
btConvexShape* convexA,btConvexShape* convexB,
const btTransform& transA,const btTransform& transB,
btVector3& v, btPoint3& pa, btPoint3& pb,
class btIDebugDraw* debugDraw
class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc
);
};

View File

@@ -86,13 +86,13 @@ public:
inline const btManifoldPoint& getContactPoint(int index) const
{
ASSERT(index < m_cachedPoints);
btAssert(index < m_cachedPoints);
return m_pointCache[index];
}
inline btManifoldPoint& getContactPoint(int index)
{
ASSERT(index < m_cachedPoints);
btAssert(index < m_cachedPoints);
return m_pointCache[index];
}