add Inverted Pendulum example with PD control

This commit is contained in:
erwincoumans
2015-07-16 23:58:36 -07:00
parent 26e175013d
commit 68b53feb9c
7 changed files with 499 additions and 8 deletions

View File

@@ -62,6 +62,9 @@ struct CommonGraphicsApp
{
}
virtual void dumpNextFrameToPng(const char* pngFilename){}
virtual void dumpFramesToVideo(const char* mp4Filename){}
virtual void drawGrid(DrawGridData data=DrawGridData()) = 0;
virtual void setUpAxis(int axis) = 0;
virtual int getUpAxis() const = 0;

View File

@@ -102,6 +102,8 @@ SET(App_ExampleBrowser_SRCS
../Vehicles/Hinge2Vehicle.h
../MultiBody/TestJointTorqueSetup.cpp
../MultiBody/TestJointTorqueSetup.h
../MultiBody/InvertedPendulumPDControl.cpp
../MultiBody/InvertedPendulumPDControl.h
../MultiBody/MultiBodyConstraintFeedback.cpp
../MultiBody/MultiDofDemo.cpp
../MultiBody/MultiDofDemo.h

View File

@@ -16,12 +16,14 @@
#include "../Importers/ImportColladaDemo/ImportColladaSetup.h"
#include "../Importers/ImportSTLDemo/ImportSTLSetup.h"
#include "../Importers/ImportURDFDemo/ImportURDFSetup.h"
#include "../GyroscopicDemo/GyroscopicSetup.h"
#include "../Constraints/Dof6Spring2Setup.h"
#include "../Constraints/ConstraintPhysicsSetup.h"
#include "../MultiBody/TestJointTorqueSetup.h"
#include "../MultiBody/MultiBodyConstraintFeedback.h"
#include "../MultiBody/MultiDofDemo.h"
#include "../MultiBody/InvertedPendulumPDControl.h"
#include "../VoronoiFracture/VoronoiFractureDemo.h"
#include "../SoftDemo/SoftDemo.h"
#include "../Constraints/ConstraintDemo.h"
@@ -102,7 +104,7 @@ static ExampleEntry gDefaultExamples[]=
ExampleEntry(1,"MultiDofCreateFunc","Create a basic btMultiBody with 3-DOF spherical joints (mobilizers). The demo uses a fixed base or a floating base at restart.", MultiDofCreateFunc),
ExampleEntry(1,"TestJointTorque","Apply a torque to a btMultiBody with 1-DOF joints (mobilizers). This setup is similar to API/TestHingeTorque.", TestJointTorqueCreateFunc),
ExampleEntry(1,"Constraint Feedback", "The example shows how to receive joint reaction forces in a btMultiBody. Also the applied impulse is available for a btMultiBodyJointMotor", MultiBodyConstraintFeedbackCreateFunc),
ExampleEntry(1,"Inverted Pendulum PD","Keep an inverted pendulum up using open loop PD control", InvertedPendulumPDControlCreateFunc),
#ifdef INCLUDE_CLOTH_DEMOS
ExampleEntry(0,"Soft Body"),

View File

@@ -77,6 +77,7 @@
"../MultiBody/MultiDofDemo.cpp",
"../MultiBody/TestJointTorqueSetup.cpp",
"../MultiBody/MultiBodyConstraintFeedback.cpp",
"../MultiBody/InvertedPendulumPDControl.cpp",
"../ThirdPartyLibs/stb_image/*",
"../ThirdPartyLibs/Wavefront/tiny_obj_loader.*",
"../ThirdPartyLibs/tinyxml/*",

View File

@@ -0,0 +1,473 @@
#include "InvertedPendulumPDControl.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointFeedback.h"
#include "../CommonInterfaces/CommonMultiBodyBase.h"
#include "../Utils/b3ResourcePath.h"
#include "../CommonInterfaces/CommonParameterInterface.h"
static btScalar radius(0.2);
static btScalar kp = 100;
static btScalar kd = 20;
static btScalar maxForce = 100;
struct InvertedPendulumPDControl : public CommonMultiBodyBase
{
btMultiBody* m_multiBody;
btAlignedObjectArray<btMultiBodyJointFeedback*> m_jointFeedbacks;
bool m_once;
int m_frameCount;
public:
InvertedPendulumPDControl(struct GUIHelperInterface* helper);
virtual ~InvertedPendulumPDControl();
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
virtual void resetCamera()
{
float dist = 5;
float pitch = 270;
float yaw = 21;
float targetPos[3]={-1.34,3.4,-0.44};
m_guiHelper->resetCamera(dist,pitch,yaw,targetPos[0],targetPos[1],targetPos[2]);
}
};
InvertedPendulumPDControl::InvertedPendulumPDControl(struct GUIHelperInterface* helper)
:CommonMultiBodyBase(helper),
m_once(true),
m_frameCount(0)
{
}
InvertedPendulumPDControl::~InvertedPendulumPDControl()
{
}
///this is a temporary global, until we determine if we need the option or not
extern bool gJointFeedbackInWorldSpace;
extern bool gJointFeedbackInJointFrame;
void InvertedPendulumPDControl::initPhysics()
{
{
SliderParams slider("Kp",&kp);
slider.m_minVal=-200;
slider.m_maxVal=200;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
}
{
SliderParams slider("Kd",&kd);
slider.m_minVal=-50;
slider.m_maxVal=50;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
}
{
SliderParams slider("max force",&maxForce);
slider.m_minVal=0;
slider.m_maxVal=100;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
}
int upAxis = 1;
gJointFeedbackInWorldSpace = true;
gJointFeedbackInJointFrame = true;
m_guiHelper->setUpAxis(upAxis);
btVector4 colors[4] =
{
btVector4(1,0,0,1),
btVector4(0,1,0,1),
btVector4(0,1,1,1),
btVector4(1,1,0,1),
};
int curColor = 0;
this->createEmptyDynamicsWorld();
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->getDebugDrawer()->setDebugMode(
//btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawWireframe
+btIDebugDraw::DBG_DrawContactPoints
+btIDebugDraw::DBG_DrawAabb
);//+btIDebugDraw::DBG_DrawConstraintLimits);
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
{
bool floating = false;
bool damping = false;
bool gyro = false;
int numLinks = 2;
bool spherical = false; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals
bool canSleep = false;
bool selfCollide = false;
btVector3 linkHalfExtents(0.05, 0.37, 0.1);
btVector3 baseHalfExtents(0.04, 0.35, 0.08);
btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f);
//mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm
//init the base
btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
float baseMass = 1.f;
if(baseMass)
{
//btCollisionShape *shape = new btSphereShape(baseHalfExtents[0]);// btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
btCollisionShape *shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
shape->calculateLocalInertia(baseMass, baseInertiaDiag);
delete shape;
}
bool isMultiDof = true;
btMultiBody *pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep, isMultiDof);
m_multiBody = pMultiBody;
btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
// baseOriQuat.setEulerZYX(-.25*SIMD_PI,0,-1.75*SIMD_PI);
pMultiBody->setBasePos(basePosition);
pMultiBody->setWorldToBaseRot(baseOriQuat);
btVector3 vel(0, 0, 0);
// pMultiBody->setBaseVel(vel);
//init the links
btVector3 hingeJointAxis(1, 0, 0);
//y-axis assumed up
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
//////
btScalar q0 = 1.f * SIMD_PI/ 180.f;
btQuaternion quat0(btVector3(1, 0, 0).normalized(), q0);
quat0.normalize();
/////
for(int i = 0; i < numLinks; ++i)
{
float linkMass = 1.f;
//if (i==3 || i==2)
// linkMass= 1000;
btVector3 linkInertiaDiag(0.f, 0.f, 0.f);
btCollisionShape* shape = 0;
if (i==0)
{
shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));//
} else
{
shape = new btSphereShape(radius);
}
shape->calculateLocalInertia(linkMass, linkInertiaDiag);
delete shape;
if(!spherical)
{
//pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false);
if (i==0)
{
pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
hingeJointAxis,
parentComToCurrentPivot,
currentPivotToCurrentCom, false);
} else
{
btVector3 parentComToCurrentCom(0, -radius * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -radius, 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
pMultiBody->setupFixed(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
parentComToCurrentPivot,
currentPivotToCurrentCom, false);
}
//pMultiBody->setupFixed(i,linkMass,linkInertiaDiag,i-1,btQuaternion(0,0,0,1),parentComToCurrentPivot,currentPivotToCurrentCom,false);
}
else
{
//pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false);
}
}
pMultiBody->finalizeMultiDof();
//for (int i=pMultiBody->getNumLinks()-1;i>=0;i--)//
for (int i=0;i<pMultiBody->getNumLinks();i++)
{
btMultiBodyJointFeedback* fb = new btMultiBodyJointFeedback();
pMultiBody->getLink(i).m_jointFeedback = fb;
m_jointFeedbacks.push_back(fb);
//break;
}
btMultiBodyDynamicsWorld* world = m_dynamicsWorld;
///
world->addMultiBody(pMultiBody);
btMultiBody* mbC = pMultiBody;
mbC->setCanSleep(canSleep);
mbC->setHasSelfCollision(selfCollide);
mbC->setUseGyroTerm(gyro);
//
if(!damping)
{
mbC->setLinearDamping(0.f);
mbC->setAngularDamping(0.f);
}else
{ mbC->setLinearDamping(0.1f);
mbC->setAngularDamping(0.9f);
}
//
//////////////////////////////////////////////
if(numLinks > 0)
{
btScalar q0 = 180.f * SIMD_PI/ 180.f;
if(!spherical)
if(mbC->isMultiDof())
mbC->setJointPosMultiDof(0, &q0);
else
mbC->setJointPos(0, q0);
else
{
btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
quat0.normalize();
mbC->setJointPosMultiDof(0, quat0);
}
}
///
btAlignedObjectArray<btQuaternion> world_to_local;
world_to_local.resize(pMultiBody->getNumLinks() + 1);
btAlignedObjectArray<btVector3> local_origin;
local_origin.resize(pMultiBody->getNumLinks() + 1);
world_to_local[0] = pMultiBody->getWorldToBaseRot();
local_origin[0] = pMultiBody->getBasePos();
double friction = 1;
{
// float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1};
float quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};
if (1)
{
btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0],baseHalfExtents[1],baseHalfExtents[2]));//new btSphereShape(baseHalfExtents[0]);
m_guiHelper->createCollisionShapeGraphicsObject(shape);
btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(pMultiBody, -1);
col->setCollisionShape(shape);
btTransform tr;
tr.setIdentity();
//if we don't set the initial pose of the btCollisionObject, the simulator will do this
//when syncing the btMultiBody link transforms to the btMultiBodyLinkCollider
tr.setOrigin(local_origin[0]);
btQuaternion orn(btVector3(0,0,1),0.25*3.1415926538);
tr.setRotation(orn);
col->setWorldTransform(tr);
bool isDynamic = (baseMass > 0 && floating);
short collisionFilterGroup = isDynamic? short(btBroadphaseProxy::DefaultFilter) : short(btBroadphaseProxy::StaticFilter);
short collisionFilterMask = isDynamic? short(btBroadphaseProxy::AllFilter) : short(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
world->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//, 2,1+2);
btVector3 color(0.0,0.0,0.5);
m_guiHelper->createCollisionObjectGraphicsObject(col,color);
// col->setFriction(friction);
pMultiBody->setBaseCollider(col);
}
}
for (int i=0; i < pMultiBody->getNumLinks(); ++i)
{
const int parent = pMultiBody->getParent(i);
world_to_local[i+1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent+1];
local_origin[i+1] = local_origin[parent+1] + (quatRotate(world_to_local[i+1].inverse() , pMultiBody->getRVector(i)));
}
for (int i=0; i < pMultiBody->getNumLinks(); ++i)
{
btVector3 posr = local_origin[i+1];
// float pos[4]={posr.x(),posr.y(),posr.z(),1};
float quat[4]={-world_to_local[i+1].x(),-world_to_local[i+1].y(),-world_to_local[i+1].z(),world_to_local[i+1].w()};
btCollisionShape* shape =0;
if (i==0)
{
shape = new btBoxShape(btVector3(linkHalfExtents[0],linkHalfExtents[1],linkHalfExtents[2]));//btSphereShape(linkHalfExtents[0]);
} else
{
shape = new btSphereShape(radius);
}
m_guiHelper->createCollisionShapeGraphicsObject(shape);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);
col->setCollisionShape(shape);
btTransform tr;
tr.setIdentity();
tr.setOrigin(posr);
tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
col->setWorldTransform(tr);
// col->setFriction(friction);
bool isDynamic = 1;//(linkMass > 0);
short collisionFilterGroup = isDynamic? short(btBroadphaseProxy::DefaultFilter) : short(btBroadphaseProxy::StaticFilter);
short collisionFilterMask = isDynamic? short(btBroadphaseProxy::AllFilter) : short(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
//if (i==0||i>numLinks-2)
{
world->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//,2,1+2);
btVector4 color = colors[curColor];
curColor++;
curColor&=3;
m_guiHelper->createCollisionObjectGraphicsObject(col,color);
pMultiBody->getLink(i).m_collider=col;
}
}
}
}
char fileName[1024];
static btAlignedObjectArray<btScalar> qDesiredArray;
void InvertedPendulumPDControl::stepSimulation(float deltaTime)
{
static btScalar offset = -0.1*SIMD_PI;
m_frameCount++;
if ((m_frameCount&0xff)==0 )
{
offset = -offset;
}
btScalar target= SIMD_PI+offset;
qDesiredArray.resize(0);
qDesiredArray.resize(m_multiBody->getNumLinks(),target);
for (int joint = 0; joint<m_multiBody->getNumLinks();joint++)
{
int dof1 = 0;
btScalar qActual = m_multiBody->getJointPosMultiDof(joint)[dof1];
btScalar qdActual = m_multiBody->getJointVelMultiDof(joint)[dof1];
// b3Printf("Joint Pos[%d]=%f, Vel = %f\n", joint, qActual, qdActual);
btScalar positionError = (qDesiredArray[joint]-qActual);
btScalar force = kp * positionError - kd*qdActual;
btClamp(force,-maxForce,maxForce);
// b3Printf("force = %f positionError = %f, qDesired = %f\n", force,positionError, target);
m_multiBody->addJointTorque(joint, force);
//btScalar torque = m_multiBody->getJointTorque(0);
// b3Printf("t = %f,%f,%f\n",torque,torque,torque);//[0],torque[1],torque[2]);
}
if (m_frameCount==100)
{
const char* gPngFileName = "pendulum";
if (gPngFileName)
{
//printf("gPngFileName=%s\n",gPngFileName);
sprintf(fileName,"%s%d.png",gPngFileName,m_frameCount);
b3Printf("Made screenshot %s",fileName);
this->m_guiHelper->getAppInterface()->dumpNextFrameToPng(fileName);
}
}
m_dynamicsWorld->stepSimulation(1./240,0);
static int count = 0;
if ((count& 0x0f)==0)
{
#if 0
for (int i=0;i<m_jointFeedbacks.size();i++)
{
b3Printf("F_reaction[%i] linear:%f,%f,%f, angular:%f,%f,%f",
i,
m_jointFeedbacks[i]->m_reactionForces.m_topVec[0],
m_jointFeedbacks[i]->m_reactionForces.m_topVec[1],
m_jointFeedbacks[i]->m_reactionForces.m_topVec[2],
m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[0],
m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[1],
m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[2]
);
}
#endif
}
count++;
/*
b3Printf("base angvel = %f,%f,%f",m_multiBody->getBaseOmega()[0],
m_multiBody->getBaseOmega()[1],
m_multiBody->getBaseOmega()[2]
);
*/
btScalar jointVel =m_multiBody->getJointVel(0);
// b3Printf("child angvel = %f",jointVel);
}
class CommonExampleInterface* InvertedPendulumPDControlCreateFunc(struct CommonExampleOptions& options)
{
return new InvertedPendulumPDControl(options.m_guiHelper);
}

View File

@@ -0,0 +1,7 @@
#ifndef INVERTED_PENDULUM_PD_CONTROL_H
#define INVERTED_PENDULUM_PD_CONTROL_H
class CommonExampleInterface* InvertedPendulumPDControlCreateFunc(struct CommonExampleOptions& options);
#endif //INVERTED_PENDULUM_PD_CONTROL_H

View File

@@ -695,7 +695,7 @@ void SimpleOpenGL3App::swapBuffer()
//m_data->m_renderTexture->disable();
//if (m_data->m_ffmpegFile==0)
//{
// m_data->m_frameDumpPngFileName = 0;
m_data->m_frameDumpPngFileName = 0;
//}
}
m_window->startRendering();
@@ -727,10 +727,13 @@ void SimpleOpenGL3App::dumpFramesToVideo(const char* mp4FileName)
{
pclose(m_data->m_ffmpegFile);
}
if (mp4FileName)
{
m_data->m_ffmpegFile = popen(cmd, "w");
m_data->m_frameDumpPngFileName = mp4FileName;
}
}
void SimpleOpenGL3App::dumpNextFrameToPng(const char* filename)
{
@@ -739,7 +742,7 @@ void SimpleOpenGL3App::dumpNextFrameToPng(const char* filename)
m_data->m_frameDumpPngFileName = filename;
//you could use m_renderTexture to allow to render at higher resolutions, such as 4k or so
/*if (!m_data->m_renderTexture)
if (!m_data->m_renderTexture)
{
m_data->m_renderTexture = new GLRenderToTexture();
GLuint renderTextureId;
@@ -764,7 +767,7 @@ void SimpleOpenGL3App::dumpNextFrameToPng(const char* filename)
}
bool result = m_data->m_renderTexture->enable();
*/
}
void SimpleOpenGL3App::setUpAxis(int axis)