upgrade version to 2.69

moved btDbvt/btDbvtBroadphase to BulletCollision/BroadphaseCollision
applied code-layout to btSoftBodyHelpers.*
This commit is contained in:
erwin.coumans
2008-05-06 00:58:10 +00:00
parent 3268cab6d7
commit 6989ea8908
10 changed files with 833 additions and 832 deletions

View File

@@ -0,0 +1,494 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///btDbvt implementation by Nathanael Presson
#include "btDbvt.h"
//
typedef btAlignedObjectArray<btDbvt::Node*> tNodeArray;
//
static inline int indexof(const btDbvt::Node* node)
{
return(node->parent->childs[1]==node);
}
//
static inline btDbvt::Volume merge( const btDbvt::Volume& a,
const btDbvt::Volume& b)
{
btDbvt::Volume res;
Merge(a,b,res);
return(res);
}
// volume+edge lengths
static inline btScalar size(const btDbvt::Volume& a)
{
const btVector3 edges=a.Lengths();
return( edges.x()*edges.y()*edges.z()+
edges.x()+edges.y()+edges.z());
}
//
static inline void deletenode( btDbvt* pdbvt,
btDbvt::Node* node)
{
delete pdbvt->m_free;
pdbvt->m_free=node;
}
//
static inline void recursedeletenode( btDbvt* pdbvt,
btDbvt::Node* node)
{
if(!node->isleaf())
{
recursedeletenode(pdbvt,node->childs[0]);
recursedeletenode(pdbvt,node->childs[1]);
}
if(node==pdbvt->m_root)
pdbvt->m_root=0;
deletenode(pdbvt,node);
}
//
static inline btDbvt::Node* createnode( btDbvt* pdbvt,
btDbvt::Node* parent,
const btDbvt::Volume& volume,
void* data)
{
btDbvt::Node* node;
if(pdbvt->m_free)
{ node=pdbvt->m_free;pdbvt->m_free=0; }
else
{ node=new btDbvt::Node(); }
node->parent = parent;
node->volume = volume;
node->data = data;
node->childs[1] = 0;
return(node);
}
//
static inline void insertleaf( btDbvt* pdbvt,
btDbvt::Node* root,
btDbvt::Node* leaf)
{
if(!pdbvt->m_root)
{
pdbvt->m_root = leaf;
leaf->parent = 0;
}
else
{
if(!root->isleaf())
{
do {
if( Proximity(root->childs[0]->volume,leaf->volume)<
Proximity(root->childs[1]->volume,leaf->volume))
root=root->childs[0];
else
root=root->childs[1];
} while(!root->isleaf());
}
btDbvt::Node* prev=root->parent;
btDbvt::Node* node=createnode(pdbvt,prev,merge(leaf->volume,root->volume),0);
if(prev)
{
prev->childs[indexof(root)] = node;
node->childs[0] = root;root->parent=node;
node->childs[1] = leaf;leaf->parent=node;
do {
if(prev->volume.Contain(node->volume))
break;
else
Merge(prev->childs[0]->volume,prev->childs[1]->volume,prev->volume);
node=prev;
} while(0!=(prev=node->parent));
}
else
{
node->childs[0] = root;root->parent=node;
node->childs[1] = leaf;leaf->parent=node;
pdbvt->m_root = node;
}
}
}
//
static inline btDbvt::Node* removeleaf( btDbvt* pdbvt,
btDbvt::Node* leaf)
{
if(leaf==pdbvt->m_root)
{
pdbvt->m_root=0;
return(0);
}
else
{
btDbvt::Node* parent=leaf->parent;
btDbvt::Node* prev=parent->parent;
btDbvt::Node* sibling=parent->childs[1-indexof(leaf)];
if(prev)
{
prev->childs[indexof(parent)]=sibling;
sibling->parent=prev;
deletenode(pdbvt,parent);
while(prev)
{
const btDbvt::Volume pb=prev->volume;
Merge(prev->childs[0]->volume,prev->childs[1]->volume,prev->volume);
if(NotEqual(pb,prev->volume))
{
sibling = prev;
prev = prev->parent;
} else break;
}
return(prev?prev:pdbvt->m_root);
}
else
{
pdbvt->m_root=sibling;
sibling->parent=0;
deletenode(pdbvt,parent);
return(pdbvt->m_root);
}
}
}
//
static void fetchleafs( btDbvt* pdbvt,
btDbvt::Node* root,
tNodeArray& leafs,
int depth=-1)
{
if(root->isinternal()&&depth)
{
fetchleafs(pdbvt,root->childs[0],leafs,depth-1);
fetchleafs(pdbvt,root->childs[1],leafs,depth-1);
deletenode(pdbvt,root);
}
else
{
leafs.push_back(root);
}
}
//
static void split( const tNodeArray& leafs,
tNodeArray& left,
tNodeArray& right,
const btVector3& org,
const btVector3& axis)
{
left.resize(0);
right.resize(0);
for(int i=0,ni=leafs.size();i<ni;++i)
{
if(dot(axis,leafs[i]->volume.Center()-org)<0)
left.push_back(leafs[i]);
else
right.push_back(leafs[i]);
}
}
//
static btDbvt::Volume bounds( const tNodeArray& leafs)
{
btDbvt::Volume volume=leafs[0]->volume;
for(int i=1,ni=leafs.size();i<ni;++i)
{
volume=merge(volume,leafs[i]->volume);
}
return(volume);
}
//
static void bottomup( btDbvt* pdbvt,
tNodeArray& leafs)
{
while(leafs.size()>1)
{
btScalar minsize=SIMD_INFINITY;
int minidx[2]={-1,-1};
for(int i=0;i<leafs.size();++i)
{
for(int j=i+1;j<leafs.size();++j)
{
const btScalar sz=size(merge(leafs[i]->volume,leafs[j]->volume));
if(sz<minsize)
{
minsize = sz;
minidx[0] = i;
minidx[1] = j;
}
}
}
btDbvt::Node* n[] = {leafs[minidx[0]],leafs[minidx[1]]};
btDbvt::Node* p = createnode(pdbvt,0,merge(n[0]->volume,n[1]->volume),0);
p->childs[0] = n[0];
p->childs[1] = n[1];
n[0]->parent = p;
n[1]->parent = p;
leafs[minidx[0]] = p;
leafs.swap(minidx[1],leafs.size()-1);
leafs.pop_back();
}
}
//
static btDbvt::Node* topdown(btDbvt* pdbvt,
tNodeArray& leafs,
int bu_treshold)
{
static const btVector3 axis[]={btVector3(1,0,0),
btVector3(0,1,0),
btVector3(0,0,1)};
if(leafs.size()>1)
{
if(leafs.size()>bu_treshold)
{
const btDbvt::Volume vol=bounds(leafs);
const btVector3 org=vol.Center();
tNodeArray sets[2];
int bestaxis=-1;
int bestmidp=leafs.size();
int splitcount[3][2]={0,0,0,0,0,0};
for(int i=0;i<leafs.size();++i)
{
const btVector3 x=leafs[i]->volume.Center()-org;
for(int j=0;j<3;++j)
{
++splitcount[j][dot(x,axis[j])>0?1:0];
}
}
for(int i=0;i<3;++i)
{
if((splitcount[i][0]>0)&&(splitcount[i][1]>0))
{
const int midp=abs(splitcount[i][0]-splitcount[i][1]);
if(midp<bestmidp)
{
bestaxis=i;
bestmidp=midp;
}
}
}
if(bestaxis>=0)
{
sets[0].reserve(splitcount[bestaxis][0]);
sets[1].reserve(splitcount[bestaxis][1]);
split(leafs,sets[0],sets[1],org,axis[bestaxis]);
}
else
{
sets[0].reserve(leafs.size()/2+1);
sets[1].reserve(leafs.size()/2);
for(int i=0,ni=leafs.size();i<ni;++i)
{
sets[i&1].push_back(leafs[i]);
}
}
btDbvt::Node* node=createnode(pdbvt,0,vol,0);
node->childs[0]=topdown(pdbvt,sets[0],bu_treshold);
node->childs[1]=topdown(pdbvt,sets[1],bu_treshold);
node->childs[0]->parent=node;
node->childs[1]->parent=node;
return(node);
}
else
{
bottomup(pdbvt,leafs);
return(leafs[0]);
}
}
return(leafs[0]);
}
//
static inline btDbvt::Node* refit( btDbvt* pdbvt,
btDbvt::Node* node)
{
btDbvt::Node* parent=node->parent;
if(parent)
{
const int idx=indexof(node);
tNodeArray leafs;
leafs.reserve(64);
fetchleafs(pdbvt,node,leafs,3);
if(leafs.size()>=2)
{
bottomup(pdbvt,leafs);
node=leafs[0];
node->parent=parent;
parent->childs[idx]=node;
}
}
return(node);
}
//
// Api
//
//
btDbvt::btDbvt()
{
m_root = 0;
m_free = 0;
m_lkhd = 2;
m_leafs = 0;
}
//
btDbvt::~btDbvt()
{
clear();
}
//
void btDbvt::clear()
{
if(m_root) recursedeletenode(this,m_root);
delete m_free;
m_free=0;
}
//
void btDbvt::optimizeBottomUp()
{
if(m_root)
{
tNodeArray leafs;
leafs.reserve(m_leafs);
fetchleafs(this,m_root,leafs);
bottomup(this,leafs);
m_root=leafs[0];
}
}
//
void btDbvt::optimizeTopDown(int bu_treshold)
{
if(m_root)
{
tNodeArray leafs;
leafs.reserve(m_leafs);
fetchleafs(this,m_root,leafs);
m_root=topdown(this,leafs,bu_treshold);
}
}
//
btDbvt::Node* btDbvt::insert(const Volume& volume,void* data)
{
Node* leaf=createnode(this,0,volume,data);
insertleaf(this,m_root,leaf);
++m_leafs;
return(leaf);
}
//
void btDbvt::update(Node* leaf,int lookahead)
{
Node* root=removeleaf(this,leaf);
if(root)
{
for(int i=0;(i<lookahead)&&root->parent;++i)
{
root=root->parent;
}
}
insertleaf(this,root,leaf);
}
//
void btDbvt::update(Node* leaf,const Volume& volume)
{
Node* root=removeleaf(this,leaf);
if(root)
{
for(int i=0;(i<m_lkhd)&&root->parent;++i)
{
root=root->parent;
}
}
leaf->volume=volume;
insertleaf(this,root,leaf);
}
//
bool btDbvt::update(Node* leaf,Volume volume,const btVector3& velocity,btScalar margin)
{
if(leaf->volume.Contain(volume)) return(false);
volume.Expand(btVector3(margin,margin,margin));
volume.SignedExpand(velocity);
update(leaf,volume);
return(true);
}
//
bool btDbvt::update(Node* leaf,Volume volume,const btVector3& velocity)
{
if(leaf->volume.Contain(volume)) return(false);
volume.SignedExpand(velocity);
update(leaf,volume);
return(true);
}
//
bool btDbvt::update(Node* leaf,Volume volume,btScalar margin)
{
if(leaf->volume.Contain(volume)) return(false);
volume.Expand(btVector3(margin,margin,margin));
update(leaf,volume);
return(true);
}
//
void btDbvt::remove(Node* leaf)
{
removeleaf(this,leaf);
deletenode(this,leaf);
--m_leafs;
}
//
void btDbvt::collide(btDbvt* tree,
ICollide* icollide) const
{
collideGeneric(tree,GCollide(icollide));
}
//
void btDbvt::collide(btDbvt::Node* node,
ICollide* icollide) const
{
collideGeneric(node,GCollide(icollide));
}
//
void btDbvt::collide(const Volume& volume,
ICollide* icollide) const
{
collideGeneric(volume,GCollide(icollide));
}
//
void btDbvt::collide(ICollide* icollide) const
{
collideGeneric(GCollide(icollide));
}

View File

@@ -0,0 +1,415 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2007 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///btDbvt implementation by Nathanael Presson
#ifndef BT_DYNAMIC_BOUNDING_VOLUME_TREE_H
#define BT_DYNAMIC_BOUNDING_VOLUME_TREE_H
#include "LinearMath/btAlignedObjectArray.h"
#include "LinearMath/btVector3.h"
//
// Defaults volumes
//
/* btDbvtAabbMm */
struct btDbvtAabbMm
{
inline btVector3 Center() const { return((mi+mx)/2); }
inline btVector3 Extent() const { return((mx-mi)/2); }
inline const btVector3& Mins() const { return(mi); }
inline const btVector3& Maxs() const { return(mx); }
inline btVector3 Lengths() const { return(mx-mi); }
static inline btDbvtAabbMm FromCE(const btVector3& c,const btVector3& e);
static inline btDbvtAabbMm FromCR(const btVector3& c,btScalar r);
static inline btDbvtAabbMm FromMM(const btVector3& mi,const btVector3& mx);
static inline btDbvtAabbMm FromPoints(const btVector3* pts,int n);
static inline btDbvtAabbMm FromPoints(const btVector3** ppts,int n);
inline void Expand(const btVector3 e);
inline void SignedExpand(const btVector3 e);
inline bool Contain(const btDbvtAabbMm& a) const;
inline friend bool Intersect( const btDbvtAabbMm& a,
const btDbvtAabbMm& b);
inline friend bool Intersect( const btDbvtAabbMm& a,
const btVector3& b);
inline friend btScalar Proximity( const btDbvtAabbMm& a,
const btDbvtAabbMm& b);
inline friend void Merge( const btDbvtAabbMm& a,
const btDbvtAabbMm& b,
btDbvtAabbMm& r);
inline friend bool NotEqual( const btDbvtAabbMm& a,
const btDbvtAabbMm& b);
private:
btVector3 mi,mx;
};
//
// Dynamic bounding volume tree
//
struct btDbvt
{
// Types
typedef btDbvtAabbMm Volume;
/* Node */
struct Node
{
Volume volume;
Node* parent;
bool isleaf() const { return(childs[1]==0); }
bool isinternal() const { return(!isleaf()); }
union {
Node* childs[2];
void* data;
};
};
/* Stack element */
struct sStkElm
{
const Node* a;
const Node* b;
sStkElm(const Node* na,const Node* nb) : a(na),b(nb) {}
};
// Interfaces
/* ICollide */
struct ICollide
{
virtual void Process(const Node*,const Node*) {}
virtual void Process(const Node*) {}
virtual bool Descent(const Node*) { return(false); }
};
/* GCollide */
struct GCollide
{
ICollide* icollide;
GCollide(ICollide* ic) : icollide(ic) {}
void Process(const Node* a,const Node* b) { icollide->Process(a,b); }
void Process(const Node* a) { icollide->Process(a); }
bool Descent(const Node* a) { return(icollide->Descent(a)); }
};
// Constants
enum {
TREETREE_STACKSIZE = 128,
VOLUMETREE_STACKSIZE = 64,
};
// Fields
Node* m_root;
Node* m_free;
int m_lkhd;
int m_leafs;
// Methods
btDbvt();
~btDbvt();
void clear();
bool empty() const { return(0==m_root); }
void optimizeBottomUp();
void optimizeTopDown(int bu_treshold=128);
Node* insert(const Volume& box,void* data);
void update(Node* leaf,int lookahead=1);
void update(Node* leaf,const Volume& volume);
bool update(Node* leaf,Volume volume,const btVector3& velocity,btScalar margin);
bool update(Node* leaf,Volume volume,const btVector3& velocity);
bool update(Node* leaf,Volume volume,btScalar margin);
void remove(Node* leaf);
void collide(btDbvt* tree,
ICollide* icollide) const;
void collide(btDbvt::Node* node,
ICollide* icollide) const;
void collide(const Volume& volume,
ICollide* icollide) const;
void collide(const btVector3& org,
const btVector3& dir,
ICollide* icollide) const;
void collide(ICollide* icollide) const;
// Generics : T must implement ICollide
template <typename T>
void collideGeneric( btDbvt* tree,T& policy) const;
template <typename T>
void collideGeneric( btDbvt::Node* node,T& policy) const;
template <typename T>
void collideGeneric(const Volume& volume,T& policy) const;
template <typename T>
void collideGeneric(T& policy) const;
//
private:
btDbvt(const btDbvt&) {}
};
//
// Inline's
//
//
inline btDbvtAabbMm btDbvtAabbMm::FromCE(const btVector3& c,const btVector3& e)
{
btDbvtAabbMm box;
box.mi=c-e;box.mx=c+e;
return(box);
}
//
inline btDbvtAabbMm btDbvtAabbMm::FromCR(const btVector3& c,btScalar r)
{
return(FromCE(c,btVector3(r,r,r)));
}
//
inline btDbvtAabbMm btDbvtAabbMm::FromMM(const btVector3& mi,const btVector3& mx)
{
btDbvtAabbMm box;
box.mi=mi;box.mx=mx;
return(box);
}
//
inline btDbvtAabbMm btDbvtAabbMm::FromPoints(const btVector3* pts,int n)
{
btDbvtAabbMm box;
box.mi=box.mx=pts[0];
for(int i=1;i<n;++i)
{
box.mi.setMin(pts[i]);
box.mx.setMax(pts[i]);
}
return(box);
}
//
inline btDbvtAabbMm btDbvtAabbMm::FromPoints(const btVector3** ppts,int n)
{
btDbvtAabbMm box;
box.mi=box.mx=*ppts[0];
for(int i=1;i<n;++i)
{
box.mi.setMin(*ppts[i]);
box.mx.setMax(*ppts[i]);
}
return(box);
}
//
inline void btDbvtAabbMm::Expand(const btVector3 e)
{
mi-=e;mx+=e;
}
//
inline void btDbvtAabbMm::SignedExpand(const btVector3 e)
{
if(e.x()>0) mx.setX(mx.x()+e.x()); else mi.setX(mi.x()+e.x());
if(e.y()>0) mx.setY(mx.y()+e.y()); else mi.setY(mi.y()+e.y());
if(e.z()>0) mx.setZ(mx.z()+e.z()); else mi.setZ(mi.z()+e.z());
}
//
inline bool btDbvtAabbMm::Contain(const btDbvtAabbMm& a) const
{
return( (mi.x()<=a.mi.x())&&
(mi.y()<=a.mi.y())&&
(mi.z()<=a.mi.z())&&
(mx.x()>=a.mx.x())&&
(mx.y()>=a.mx.y())&&
(mx.z()>=a.mx.z()));
}
//
inline bool Intersect( const btDbvtAabbMm& a,
const btDbvtAabbMm& b)
{
#if 0
const btScalar mi[]={ b.mx.x()-a.mi.x(),
b.mx.y()-a.mi.y(),
b.mx.z()-a.mi.z()};
const unsigned* imi=(const unsigned*)mi;
if((imi[0]|imi[1]|imi[2])&0x80000000) return(false);
const btScalar mx[]={ a.mx.x()-b.mi.x(),
a.mx.y()-b.mi.y(),
a.mx.z()-b.mi.z()};
const unsigned* imx=(const unsigned*)mx;
if((imx[0]|imx[1]|imx[2])&0x80000000) return(false);
return(true);
#else
return( (a.mi.x()<=b.mx.x())&&
(a.mi.y()<=b.mx.y())&&
(a.mi.z()<=b.mx.z())&&
(a.mx.x()>=b.mi.x())&&
(a.mx.y()>=b.mi.y())&&
(a.mx.z()>=b.mi.z()));
#endif
}
//
inline bool Intersect( const btDbvtAabbMm& a,
const btVector3& b)
{
return( (b.x()>=a.mi.x())&&
(b.y()>=a.mi.y())&&
(b.z()>=a.mi.z())&&
(b.x()<=a.mx.x())&&
(b.y()<=a.mx.y())&&
(b.z()<=a.mx.z()));
}
//
inline btScalar Proximity( const btDbvtAabbMm& a,
const btDbvtAabbMm& b)
{
const btVector3 d=(a.mi+a.mx)-(b.mi+b.mx);
return(btFabs(d.x())+btFabs(d.y())+btFabs(d.z()));
}
//
inline void Merge( const btDbvtAabbMm& a,
const btDbvtAabbMm& b,
btDbvtAabbMm& r)
{
r=a;
r.mi.setMin(b.mi);
r.mx.setMax(b.mx);
}
//
inline bool NotEqual( const btDbvtAabbMm& a,
const btDbvtAabbMm& b)
{
return( (a.mi.x()!=b.mi.x())||
(a.mi.y()!=b.mi.y())||
(a.mi.z()!=b.mi.z())||
(a.mx.x()!=b.mx.x())||
(a.mx.y()!=b.mx.y())||
(a.mx.z()!=b.mx.z()));
}
//
// Generic's
//
//
template <typename T>
inline void btDbvt::collideGeneric( btDbvt::Node* node,T& policy) const
{
if(m_root&&node)
{
btAlignedObjectArray<sStkElm> stack;
stack.reserve(TREETREE_STACKSIZE);
stack.push_back(sStkElm(m_root,node));
do {
sStkElm p=stack[stack.size()-1];
stack.pop_back();
if(p.a==p.b)
{
if(p.a->isinternal())
{
stack.push_back(sStkElm(p.a->childs[0],p.a->childs[0]));
stack.push_back(sStkElm(p.a->childs[1],p.a->childs[1]));
stack.push_back(sStkElm(p.a->childs[0],p.a->childs[1]));
}
}
else if(Intersect(p.a->volume,p.b->volume))
{
if(p.a->isinternal())
{
if(p.b->isinternal())
{
stack.push_back(sStkElm(p.a->childs[0],p.b->childs[0]));
stack.push_back(sStkElm(p.a->childs[1],p.b->childs[0]));
stack.push_back(sStkElm(p.a->childs[0],p.b->childs[1]));
stack.push_back(sStkElm(p.a->childs[1],p.b->childs[1]));
}
else
{
stack.push_back(sStkElm(p.a->childs[0],p.b));
stack.push_back(sStkElm(p.a->childs[1],p.b));
}
}
else
{
if(p.b->isinternal())
{
stack.push_back(sStkElm(p.a,p.b->childs[0]));
stack.push_back(sStkElm(p.a,p.b->childs[1]));
}
else
{
policy.Process(p.a,p.b);
}
}
}
} while(stack.size()>0);
}
}
//
template <typename T>
inline void btDbvt::collideGeneric( btDbvt* tree,T& policy) const
{
collideGeneric<T>(tree->m_root,policy);
}
//
template <typename T>
inline void btDbvt::collideGeneric(const Volume& volume,T& policy) const
{
if(m_root)
{
btAlignedObjectArray<const Node*> stack;
stack.reserve(VOLUMETREE_STACKSIZE);
stack.push_back(m_root);
do {
const Node* n=stack[stack.size()-1];
stack.pop_back();
if(Intersect(n->volume,volume))
{
if(n->isinternal())
{
stack.push_back(n->childs[0]);
stack.push_back(n->childs[1]);
}
else
{
policy.Process(n);
}
}
} while(stack.size()>0);
}
}
//
template <typename T>
inline void btDbvt::collideGeneric(T& policy) const
{
if(m_root)
{
btAlignedObjectArray<const Node*> stack;
stack.reserve(VOLUMETREE_STACKSIZE);
stack.push_back(m_root);
do {
const Node* n=stack[stack.size()-1];
stack.pop_back();
if(policy.Descent(n))
{
if(n->isinternal())
{ stack.push_back(n->childs[0]);stack.push_back(n->childs[1]); }
else
{ policy.Process(n); }
}
} while(stack.size()>0);
}
}
#endif

View File

@@ -0,0 +1,342 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2007 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///btDbvtBroadphase implementation by Nathanael Presson
#include "btDbvtBroadphase.h"
//
// Profiling
//
#if DBVT_BP_PROFILE
#include <stdio.h>
struct ProfileScope
{
ProfileScope(btClock& clock,unsigned long& value)
{
m_clock=&clock;
m_value=&value;
m_base=clock.getTimeMicroseconds();
}
~ProfileScope()
{
(*m_value)+=m_clock->getTimeMicroseconds()-m_base;
}
btClock* m_clock;
unsigned long* m_value;
unsigned long m_base;
};
#define SPC(_value_) ProfileScope spc_scope(m_clock,_value_)
#else
#define SPC(_value_)
#endif
//
// Helpers
//
//
static inline int hash(unsigned int i,unsigned int j)
{
int key=((unsigned int)i)|(((unsigned int)j)<<16);
key+=~(key<<15);
key^= (key>>10);
key+= (key<<3);
key^= (key>>6);
key+=~(key<<11);
key^= (key>>16);
return(key);
}
//
template <typename T>
static inline void listappend(T* item,T*& list)
{
item->links[0]=0;
item->links[1]=list;
if(list) list->links[0]=item;
list=item;
}
//
template <typename T>
static inline void listremove(T* item,T*& list)
{
if(item->links[0]) item->links[0]->links[1]=item->links[1]; else list=item->links[1];
if(item->links[1]) item->links[1]->links[0]=item->links[0];
}
//
template <typename T>
static inline int listcount(T* root)
{
int n=0;
while(root) { ++n;root=root->links[1]; }
return(n);
}
//
template <typename T>
static inline void clear(T& value)
{
static const T zerodummy;
value=zerodummy;
}
//
// Collider
//
struct btDbvtBroadphaseCollider : btDbvt::ICollide
{
btDbvtBroadphase* pbp;
int pid;
btDbvtBroadphaseCollider(btDbvtBroadphase* p,int id) : pbp(p),pid(id) {}
void Process(const btDbvt::Node* na,const btDbvt::Node* nb)
{
btDbvtProxy* pa=(btDbvtProxy*)na->data;
btDbvtProxy* pb=(btDbvtProxy*)nb->data;
#if DBVT_BP_DISCRETPAIRS
if(Intersect(pa->aabb,pb->aabb))
#endif
{
btBroadphasePair* pp=pbp->m_paircache->addOverlappingPair(pa,pb);
if(pp) pp->m_userInfo=*(void**)&pid;
}
}
};
//
// btDbvtBroadphase
//
//
btDbvtBroadphase::btDbvtBroadphase()
{
m_fcursor = 0;
m_dcursor = 0;
m_stageCurrent = 0;
m_fupdates = 1;
m_dupdates = 0;
m_paircache = new btHashedOverlappingPairCache();
m_gid = 0;
m_pid = 0;
for(int i=0;i<=STAGECOUNT;++i)
{
m_stageRoots[i]=0;
}
#if DBVT_BP_PROFILE
clear(m_profiling);
#endif
}
//
btDbvtBroadphase::~btDbvtBroadphase()
{
delete m_paircache;
}
//
btBroadphaseProxy* btDbvtBroadphase::createProxy( const btVector3& aabbMin,
const btVector3& aabbMax,
int shapeType,
void* userPtr,
short int collisionFilterGroup,
short int collisionFilterMask,
btDispatcher* dispatcher,
void* multiSapProxy)
{
btDbvtProxy* proxy=new btDbvtProxy(userPtr,collisionFilterGroup,collisionFilterMask);
proxy->aabb = btDbvtAabbMm::FromMM(aabbMin,aabbMax);
proxy->leaf = m_sets[0].insert(proxy->aabb,proxy);
proxy->stage = m_stageCurrent;
proxy->m_uniqueId = ++m_gid;
listappend(proxy,m_stageRoots[m_stageCurrent]);
return(proxy);
}
//
void btDbvtBroadphase::destroyProxy( btBroadphaseProxy* absproxy,
btDispatcher* dispatcher)
{
btDbvtProxy* proxy=(btDbvtProxy*)absproxy;
if(proxy->stage==STAGECOUNT)
m_sets[1].remove(proxy->leaf);
else
m_sets[0].remove(proxy->leaf);
listremove(proxy,m_stageRoots[proxy->stage]);
m_paircache->removeOverlappingPairsContainingProxy(proxy,dispatcher);
delete proxy;
}
//
void btDbvtBroadphase::setAabb( btBroadphaseProxy* absproxy,
const btVector3& aabbMin,
const btVector3& aabbMax,
btDispatcher* dispatcher)
{
btDbvtProxy* proxy=(btDbvtProxy*)absproxy;
btDbvtAabbMm aabb=btDbvtAabbMm::FromMM(aabbMin,aabbMax);
if(proxy->stage==STAGECOUNT)
{/* fixed -> dynamic set */
m_sets[1].remove(proxy->leaf);
proxy->leaf=m_sets[0].insert(aabb,proxy);
m_fcursor=0;
}
else
{/* dynamic set */
const btVector3 delta=(aabbMin+aabbMax)/2-proxy->aabb.Center();
m_sets[0].update(proxy->leaf,aabb,delta*PREDICTED_FRAMES,DBVT_BP_MARGIN);
}
listremove(proxy,m_stageRoots[proxy->stage]);
proxy->aabb = aabb;
proxy->stage = m_stageCurrent;
listappend(proxy,m_stageRoots[m_stageCurrent]);
}
//
void btDbvtBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
{
collide(dispatcher);
#if DBVT_BP_PROFILE
if(0==(m_pid%DBVT_BP_PROFILING_RATE))
{
printf("fixed(%u) dynamics(%u) pairs(%u)\r\n",m_sets[1].m_leafs,m_sets[0].m_leafs,m_paircache->getNumOverlappingPairs());
unsigned int total=m_profiling.m_total;
if(total<=0) total=1;
printf("ddcollide: %u%% (%uus)\r\n",(50+m_profiling.m_ddcollide*100)/total,m_profiling.m_ddcollide/DBVT_BP_PROFILING_RATE);
printf("fdcollide: %u%% (%uus)\r\n",(50+m_profiling.m_fdcollide*100)/total,m_profiling.m_fdcollide/DBVT_BP_PROFILING_RATE);
printf("cleanup: %u%% (%uus)\r\n",(50+m_profiling.m_cleanup*100)/total,m_profiling.m_cleanup/DBVT_BP_PROFILING_RATE);
printf("total: %uus\r\n",total/DBVT_BP_PROFILING_RATE);
const unsigned long sum=m_profiling.m_ddcollide+
m_profiling.m_fdcollide+
m_profiling.m_cleanup;
printf("leaked: %u%% (%uus)\r\n",100-((50+sum*100)/total),(total-sum)/DBVT_BP_PROFILING_RATE);
clear(m_profiling);
m_clock.reset();
}
#endif
}
//
void btDbvtBroadphase::collide(btDispatcher* dispatcher)
{
SPC(m_profiling.m_total);
/* refine dynamic */
if(m_stageRoots[m_stageCurrent]&&(m_dupdates>0))
{
const int count=1+(m_sets[0].m_leafs*m_dupdates)/100;
for(int i=0;i<count;++i)
{
if(!m_dcursor) m_dcursor=m_stageRoots[m_stageCurrent];
m_sets[0].update(m_dcursor->leaf);
m_dcursor=m_dcursor->links[1];
}
}
/* dynamic -> fixed set */
m_stageCurrent=(m_stageCurrent+1)%STAGECOUNT;
btDbvtProxy* current=m_stageRoots[m_stageCurrent];
if(current)
{
btDbvtBroadphaseCollider collider(this,m_pid);
do {
btDbvtProxy* next=current->links[1];
if(m_dcursor==current) m_dcursor=0;
listremove(current,m_stageRoots[current->stage]);
listappend(current,m_stageRoots[STAGECOUNT]);
m_sets[1].collideGeneric(current->leaf,collider);
m_sets[0].remove(current->leaf);
current->leaf = m_sets[1].insert(current->aabb,current);
current->stage = STAGECOUNT;
current = next;
} while(current);
}
/* refine fixed */
if(m_stageRoots[STAGECOUNT]&&(m_fupdates>0))
{
const int count=1+(m_sets[1].m_leafs*m_fupdates)/100;
for(int i=0;i<count;++i)
{
if(!m_fcursor) m_fcursor=m_stageRoots[STAGECOUNT];
m_sets[1].update(m_fcursor->leaf);
m_fcursor=m_fcursor->links[1];
}
}
/* collide dynamics */
btDbvtBroadphaseCollider collider(this,m_pid);
{
SPC(m_profiling.m_fdcollide);
m_sets[0].collideGeneric(&m_sets[1],collider);
}
{
SPC(m_profiling.m_ddcollide);
m_sets[0].collideGeneric(&m_sets[0],collider);
}
/* clean up */
{
SPC(m_profiling.m_cleanup);
btBroadphasePairArray& pairs=m_paircache->getOverlappingPairArray();
for(int i=0,ni=pairs.size();i<ni;++i)
{
btBroadphasePair& p=pairs[i];
if(m_pid!=(*(int*)&p.m_userInfo))
{
btDbvtProxy* pa=(btDbvtProxy*)p.m_pProxy0;
btDbvtProxy* pb=(btDbvtProxy*)p.m_pProxy1;
if(!Intersect(pa->aabb,pb->aabb))
{
m_paircache->removeOverlappingPair(pa,pb,dispatcher);
--ni;--i;
}
}
}
}
++m_pid;
}
//
btOverlappingPairCache* btDbvtBroadphase::getOverlappingPairCache()
{
return(m_paircache);
}
//
const btOverlappingPairCache* btDbvtBroadphase::getOverlappingPairCache() const
{
return(m_paircache);
}
//
void btDbvtBroadphase::getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const
{
btDbvtAabbMm bounds;
if(!m_sets[0].empty())
if(!m_sets[1].empty()) Merge( m_sets[0].m_root->volume,
m_sets[1].m_root->volume,bounds);
else
bounds=m_sets[0].m_root->volume;
else if(!m_sets[1].empty()) bounds=m_sets[1].m_root->volume;
else
bounds=btDbvtAabbMm::FromCR(btVector3(0,0,0),0);
aabbMin=bounds.Mins();
aabbMax=bounds.Maxs();
}
//
void btDbvtBroadphase::printStats()
{}
#if DBVT_BP_PROFILE
#undef SPC
#endif

View File

@@ -0,0 +1,108 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2007 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///btDbvtBroadphase implementation by Nathanael Presson
#ifndef BT_DBVT_BROADPHASE_H
#define BT_DBVT_BROADPHASE_H
#include "btDbvt.h"
#include "LinearMath/btPoint3.h"
#include "LinearMath/btVector3.h"
#include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/BroadphaseCollision/btOverlappingPairCallback.h"
#include "BulletCollision/BroadphaseCollision/btOverlappingPairCallback.h"
//
// Compile time config
//
#define DBVT_BP_PROFILE 1
#define DBVT_BP_DISCRETPAIRS 0
#define DBVT_BP_MARGIN (btScalar)0.05
#if DBVT_BP_PROFILE
#define DBVT_BP_PROFILING_RATE 50
#include "LinearMath/btQuickprof.h"
#endif
//
// btDbvtProxy
//
struct btDbvtProxy : btBroadphaseProxy
{
/* Fields */
btDbvtAabbMm aabb;
btDbvt::Node* leaf;
btDbvtProxy* links[2];
int stage;
/* ctor */
btDbvtProxy(void* userPtr,short int collisionFilterGroup, short int collisionFilterMask) :
btBroadphaseProxy(userPtr,collisionFilterGroup,collisionFilterMask)
{
links[0]=links[1]=0;
}
};
//
// btDbvtBroadphase
//
struct btDbvtBroadphase : btBroadphaseInterface
{
/* Config */
enum {
DYNAMIC_SET = 0, /* Dynamic set index */
FIXED_SET = 1, /* Fixed set index */
STAGECOUNT = 2, /* Number of stages */
PREDICTED_FRAMES = 2, /* Frames prediction */
};
/* Fields */
btDbvt m_sets[2]; // Dbvt sets
btDbvtProxy* m_stageRoots[STAGECOUNT+1]; // Stages list
int m_stageCurrent; // Current stage
btOverlappingPairCache* m_paircache; // Pair cache
btDbvtProxy* m_fcursor; // Current fixed cursor
btDbvtProxy* m_dcursor; // Current dynamic cursor
int m_fupdates; // % of fixed updates per frame
int m_dupdates; // % of dynamic updates per frame
int m_pid; // Parse id
int m_gid; // Gen id
#if DBVT_BP_PROFILE
btClock m_clock;
struct {
unsigned long m_total;
unsigned long m_ddcollide;
unsigned long m_fdcollide;
unsigned long m_cleanup;
} m_profiling;
#endif
/* Methods */
btDbvtBroadphase();
~btDbvtBroadphase();
void collide(btDispatcher* dispatcher);
/* btBroadphaseInterface Implementation */
btBroadphaseProxy* createProxy(const btVector3& aabbMin,const btVector3& aabbMax,int shapeType,void* userPtr,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher,void* multiSapProxy);
void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher);
void calculateOverlappingPairs(btDispatcher* dispatcher);
btOverlappingPairCache* getOverlappingPairCache();
const btOverlappingPairCache* getOverlappingPairCache() const;
void getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const;
void printStats();
};
#endif

View File

@@ -56,6 +56,7 @@ struct btDispatcherInfo
class btIDebugDraw* m_debugDraw;
bool m_enableSatConvex;
bool m_enableSPU;
bool m_useEpa;
btStackAlloc* m_stackAllocator;
};