upgrade version to 2.69

moved btDbvt/btDbvtBroadphase to BulletCollision/BroadphaseCollision
applied code-layout to btSoftBodyHelpers.*
This commit is contained in:
erwin.coumans
2008-05-06 00:58:10 +00:00
parent 3268cab6d7
commit 6989ea8908
10 changed files with 833 additions and 832 deletions

View File

@@ -0,0 +1,342 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2007 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///btDbvtBroadphase implementation by Nathanael Presson
#include "btDbvtBroadphase.h"
//
// Profiling
//
#if DBVT_BP_PROFILE
#include <stdio.h>
struct ProfileScope
{
ProfileScope(btClock& clock,unsigned long& value)
{
m_clock=&clock;
m_value=&value;
m_base=clock.getTimeMicroseconds();
}
~ProfileScope()
{
(*m_value)+=m_clock->getTimeMicroseconds()-m_base;
}
btClock* m_clock;
unsigned long* m_value;
unsigned long m_base;
};
#define SPC(_value_) ProfileScope spc_scope(m_clock,_value_)
#else
#define SPC(_value_)
#endif
//
// Helpers
//
//
static inline int hash(unsigned int i,unsigned int j)
{
int key=((unsigned int)i)|(((unsigned int)j)<<16);
key+=~(key<<15);
key^= (key>>10);
key+= (key<<3);
key^= (key>>6);
key+=~(key<<11);
key^= (key>>16);
return(key);
}
//
template <typename T>
static inline void listappend(T* item,T*& list)
{
item->links[0]=0;
item->links[1]=list;
if(list) list->links[0]=item;
list=item;
}
//
template <typename T>
static inline void listremove(T* item,T*& list)
{
if(item->links[0]) item->links[0]->links[1]=item->links[1]; else list=item->links[1];
if(item->links[1]) item->links[1]->links[0]=item->links[0];
}
//
template <typename T>
static inline int listcount(T* root)
{
int n=0;
while(root) { ++n;root=root->links[1]; }
return(n);
}
//
template <typename T>
static inline void clear(T& value)
{
static const T zerodummy;
value=zerodummy;
}
//
// Collider
//
struct btDbvtBroadphaseCollider : btDbvt::ICollide
{
btDbvtBroadphase* pbp;
int pid;
btDbvtBroadphaseCollider(btDbvtBroadphase* p,int id) : pbp(p),pid(id) {}
void Process(const btDbvt::Node* na,const btDbvt::Node* nb)
{
btDbvtProxy* pa=(btDbvtProxy*)na->data;
btDbvtProxy* pb=(btDbvtProxy*)nb->data;
#if DBVT_BP_DISCRETPAIRS
if(Intersect(pa->aabb,pb->aabb))
#endif
{
btBroadphasePair* pp=pbp->m_paircache->addOverlappingPair(pa,pb);
if(pp) pp->m_userInfo=*(void**)&pid;
}
}
};
//
// btDbvtBroadphase
//
//
btDbvtBroadphase::btDbvtBroadphase()
{
m_fcursor = 0;
m_dcursor = 0;
m_stageCurrent = 0;
m_fupdates = 1;
m_dupdates = 0;
m_paircache = new btHashedOverlappingPairCache();
m_gid = 0;
m_pid = 0;
for(int i=0;i<=STAGECOUNT;++i)
{
m_stageRoots[i]=0;
}
#if DBVT_BP_PROFILE
clear(m_profiling);
#endif
}
//
btDbvtBroadphase::~btDbvtBroadphase()
{
delete m_paircache;
}
//
btBroadphaseProxy* btDbvtBroadphase::createProxy( const btVector3& aabbMin,
const btVector3& aabbMax,
int shapeType,
void* userPtr,
short int collisionFilterGroup,
short int collisionFilterMask,
btDispatcher* dispatcher,
void* multiSapProxy)
{
btDbvtProxy* proxy=new btDbvtProxy(userPtr,collisionFilterGroup,collisionFilterMask);
proxy->aabb = btDbvtAabbMm::FromMM(aabbMin,aabbMax);
proxy->leaf = m_sets[0].insert(proxy->aabb,proxy);
proxy->stage = m_stageCurrent;
proxy->m_uniqueId = ++m_gid;
listappend(proxy,m_stageRoots[m_stageCurrent]);
return(proxy);
}
//
void btDbvtBroadphase::destroyProxy( btBroadphaseProxy* absproxy,
btDispatcher* dispatcher)
{
btDbvtProxy* proxy=(btDbvtProxy*)absproxy;
if(proxy->stage==STAGECOUNT)
m_sets[1].remove(proxy->leaf);
else
m_sets[0].remove(proxy->leaf);
listremove(proxy,m_stageRoots[proxy->stage]);
m_paircache->removeOverlappingPairsContainingProxy(proxy,dispatcher);
delete proxy;
}
//
void btDbvtBroadphase::setAabb( btBroadphaseProxy* absproxy,
const btVector3& aabbMin,
const btVector3& aabbMax,
btDispatcher* dispatcher)
{
btDbvtProxy* proxy=(btDbvtProxy*)absproxy;
btDbvtAabbMm aabb=btDbvtAabbMm::FromMM(aabbMin,aabbMax);
if(proxy->stage==STAGECOUNT)
{/* fixed -> dynamic set */
m_sets[1].remove(proxy->leaf);
proxy->leaf=m_sets[0].insert(aabb,proxy);
m_fcursor=0;
}
else
{/* dynamic set */
const btVector3 delta=(aabbMin+aabbMax)/2-proxy->aabb.Center();
m_sets[0].update(proxy->leaf,aabb,delta*PREDICTED_FRAMES,DBVT_BP_MARGIN);
}
listremove(proxy,m_stageRoots[proxy->stage]);
proxy->aabb = aabb;
proxy->stage = m_stageCurrent;
listappend(proxy,m_stageRoots[m_stageCurrent]);
}
//
void btDbvtBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
{
collide(dispatcher);
#if DBVT_BP_PROFILE
if(0==(m_pid%DBVT_BP_PROFILING_RATE))
{
printf("fixed(%u) dynamics(%u) pairs(%u)\r\n",m_sets[1].m_leafs,m_sets[0].m_leafs,m_paircache->getNumOverlappingPairs());
unsigned int total=m_profiling.m_total;
if(total<=0) total=1;
printf("ddcollide: %u%% (%uus)\r\n",(50+m_profiling.m_ddcollide*100)/total,m_profiling.m_ddcollide/DBVT_BP_PROFILING_RATE);
printf("fdcollide: %u%% (%uus)\r\n",(50+m_profiling.m_fdcollide*100)/total,m_profiling.m_fdcollide/DBVT_BP_PROFILING_RATE);
printf("cleanup: %u%% (%uus)\r\n",(50+m_profiling.m_cleanup*100)/total,m_profiling.m_cleanup/DBVT_BP_PROFILING_RATE);
printf("total: %uus\r\n",total/DBVT_BP_PROFILING_RATE);
const unsigned long sum=m_profiling.m_ddcollide+
m_profiling.m_fdcollide+
m_profiling.m_cleanup;
printf("leaked: %u%% (%uus)\r\n",100-((50+sum*100)/total),(total-sum)/DBVT_BP_PROFILING_RATE);
clear(m_profiling);
m_clock.reset();
}
#endif
}
//
void btDbvtBroadphase::collide(btDispatcher* dispatcher)
{
SPC(m_profiling.m_total);
/* refine dynamic */
if(m_stageRoots[m_stageCurrent]&&(m_dupdates>0))
{
const int count=1+(m_sets[0].m_leafs*m_dupdates)/100;
for(int i=0;i<count;++i)
{
if(!m_dcursor) m_dcursor=m_stageRoots[m_stageCurrent];
m_sets[0].update(m_dcursor->leaf);
m_dcursor=m_dcursor->links[1];
}
}
/* dynamic -> fixed set */
m_stageCurrent=(m_stageCurrent+1)%STAGECOUNT;
btDbvtProxy* current=m_stageRoots[m_stageCurrent];
if(current)
{
btDbvtBroadphaseCollider collider(this,m_pid);
do {
btDbvtProxy* next=current->links[1];
if(m_dcursor==current) m_dcursor=0;
listremove(current,m_stageRoots[current->stage]);
listappend(current,m_stageRoots[STAGECOUNT]);
m_sets[1].collideGeneric(current->leaf,collider);
m_sets[0].remove(current->leaf);
current->leaf = m_sets[1].insert(current->aabb,current);
current->stage = STAGECOUNT;
current = next;
} while(current);
}
/* refine fixed */
if(m_stageRoots[STAGECOUNT]&&(m_fupdates>0))
{
const int count=1+(m_sets[1].m_leafs*m_fupdates)/100;
for(int i=0;i<count;++i)
{
if(!m_fcursor) m_fcursor=m_stageRoots[STAGECOUNT];
m_sets[1].update(m_fcursor->leaf);
m_fcursor=m_fcursor->links[1];
}
}
/* collide dynamics */
btDbvtBroadphaseCollider collider(this,m_pid);
{
SPC(m_profiling.m_fdcollide);
m_sets[0].collideGeneric(&m_sets[1],collider);
}
{
SPC(m_profiling.m_ddcollide);
m_sets[0].collideGeneric(&m_sets[0],collider);
}
/* clean up */
{
SPC(m_profiling.m_cleanup);
btBroadphasePairArray& pairs=m_paircache->getOverlappingPairArray();
for(int i=0,ni=pairs.size();i<ni;++i)
{
btBroadphasePair& p=pairs[i];
if(m_pid!=(*(int*)&p.m_userInfo))
{
btDbvtProxy* pa=(btDbvtProxy*)p.m_pProxy0;
btDbvtProxy* pb=(btDbvtProxy*)p.m_pProxy1;
if(!Intersect(pa->aabb,pb->aabb))
{
m_paircache->removeOverlappingPair(pa,pb,dispatcher);
--ni;--i;
}
}
}
}
++m_pid;
}
//
btOverlappingPairCache* btDbvtBroadphase::getOverlappingPairCache()
{
return(m_paircache);
}
//
const btOverlappingPairCache* btDbvtBroadphase::getOverlappingPairCache() const
{
return(m_paircache);
}
//
void btDbvtBroadphase::getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const
{
btDbvtAabbMm bounds;
if(!m_sets[0].empty())
if(!m_sets[1].empty()) Merge( m_sets[0].m_root->volume,
m_sets[1].m_root->volume,bounds);
else
bounds=m_sets[0].m_root->volume;
else if(!m_sets[1].empty()) bounds=m_sets[1].m_root->volume;
else
bounds=btDbvtAabbMm::FromCR(btVector3(0,0,0),0);
aabbMin=bounds.Mins();
aabbMax=bounds.Maxs();
}
//
void btDbvtBroadphase::printStats()
{}
#if DBVT_BP_PROFILE
#undef SPC
#endif