fix a number of issues in a series of new Minitaur environments

add them to pybullet_envs through __init__.py
    id='MinitaurReactiveEnv-v0',
    id='MinitaurTrottingEnv-v0',
    id='MinitaurBallGymEnv-v0',
    id='MinitaurStandGymEnv-v0',
    id='MinitaurAlternatingLegsEnv-v0',
    id='MinitaurFourLegStandEnv-v0',

disable reflection of minitaur_four_leg_stand_env, since the floor changes orientation (reflection is a fixed plane with [0,0,1] normal)

from pybullet_envs.minitaur.envs.minitaur_alternating_legs_env import MinitaurAlternatingLegsEnv
from pybullet_envs.minitaur.envs.minitaur_ball_gym_env import MinitaurBallGymEnv
from pybullet_envs.minitaur.envs.minitaur_randomize_terrain_gym_env import MinitaurRandomizeTerrainGymEnv
from pybullet_envs.minitaur.envs.minitaur_reactive_env import MinitaurReactiveEnv
from pybullet_envs.minitaur.envs.minitaur_stand_gym_env import MinitaurStandGymEnv
from pybullet_envs.minitaur.envs.minitaur_trotting_env import MinitaurTrottingEnv
from pybullet_envs.minitaur.envs.minitaur_four_leg_stand_env import MinitaurFourLegStandEnv
This commit is contained in:
erwincoumans
2018-04-11 10:09:03 -07:00
parent c2869e0a3c
commit 698b20938f
14 changed files with 91 additions and 25 deletions

View File

@@ -30,6 +30,53 @@ register(
)
register(
id='MinitaurReactiveEnv-v0',
entry_point='pybullet_envs.minitaur.envs:MinitaurReactiveEnv',
render=True,
timestep_limit=1000,
reward_threshold=5.0,
)
register(
id='MinitaurBallGymEnv-v0',
entry_point='pybullet_envs.minitaur.envs:MinitaurBallGymEnv',
timestep_limit=1000,
reward_threshold=5.0,
)
register(
id='MinitaurTrottingEnv-v0',
entry_point='pybullet_envs.minitaur.envs:MinitaurTrottingEnv',
timestep_limit=1000,
reward_threshold=5.0,
)
register(
id='MinitaurStandGymEnv-v0',
entry_point='pybullet_envs.minitaur.envs:MinitaurStandGymEnv',
timestep_limit=1000,
reward_threshold=5.0,
)
register(
id='MinitaurAlternatingLegsEnv-v0',
entry_point='pybullet_envs.minitaur.envs:MinitaurAlternatingLegsEnv',
timestep_limit=1000,
reward_threshold=5.0,
)
register(
id='MinitaurFourLegStandEnv-v0',
entry_point='pybullet_envs.minitaur.envs:MinitaurFourLegStandEnv',
timestep_limit=1000,
reward_threshold=5.0,
)
register(
id='RacecarBulletEnv-v0',
entry_point='pybullet_envs.bullet:RacecarGymEnv',