This commit is contained in:
Erwin Coumans
2018-11-06 12:33:53 -08:00
46 changed files with 948 additions and 1663 deletions

View File

@@ -176,7 +176,7 @@ int compareInverseAndForwardDynamics(vecx &q, vecx &u, vecx &dot_u, btVector3 &g
btAlignedObjectArray<btQuaternion> world_to_local;
btAlignedObjectArray<btVector3> local_origin;
btmb->forwardKinematics(world_to_local, local_origin);
btmb->computeAccelerationsArticulatedBodyAlgorithmMultiDof(dt, scratch_r, scratch_v, scratch_m, isConstraintPass);
btmb->computeAccelerationsArticulatedBodyAlgorithmMultiDof(dt, scratch_r, scratch_v, scratch_m, isConstraintPass, false, false);
// read generalized accelerations back from btMultiBody
// the mapping from scratch variables to accelerations is taken from the implementation

586
data/humanoid.urdf Normal file
View File

@@ -0,0 +1,586 @@
<?xml version="0.0" ?>
<robot name="">
<link name="torso">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="-0.01000 0.00000 -0.12000"/>
<mass value="8.90746"/>
<inertia ixx="0.21526" ixy="0" ixz="0" iyy="0.18112" iyz="0" izz="0.08225"/>
</inertial>
<collision>
<origin rpy="-1.57080 0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<geometry>
<capsule length="0.14000" radius="0.07000"/>
</geometry>
</collision>
<collision>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.19000"/>
<geometry>
<sphere radius="0.09000"/>
</geometry>
</collision>
<collision>
<origin rpy="-1.57080 0.00000 0.00000" xyz="-0.01000 0.00000 -0.12000"/>
<geometry>
<capsule length="0.12000" radius="0.06000"/>
</geometry>
</collision>
</link>
<link name="link1_2">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="link1_3">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="lwaist">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="2.26195"/>
<inertia ixx="0.01357" ixy="0" ixz="0" iyy="0.00543" iyz="0" izz="0.01357"/>
</inertial>
<collision>
<origin rpy="-1.57080 0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<geometry>
<capsule length="0.12000" radius="0.06000"/>
</geometry>
</collision>
</link>
<link name="link1_5">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="pelvis">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="-0.02000 0.00000 0.00000"/>
<mass value="6.61619"/>
<inertia ixx="0.07432" ixy="0" ixz="0" iyy="0.03573" iyz="0" izz="0.07432"/>
</inertial>
<collision>
<origin rpy="-1.57080 0.00000 0.00000" xyz="-0.02000 0.00000 0.00000"/>
<geometry>
<capsule length="0.14000" radius="0.09000"/>
</geometry>
</collision>
</link>
<link name="link1_7">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="link1_8">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="link1_9">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="right_thigh">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00500 -0.17000"/>
<mass value="4.75175"/>
<inertia ixx="0.09212" ixy="0" ixz="0" iyy="0.09076" iyz="0" izz="0.01276"/>
</inertial>
<collision>
<origin rpy="-3.11219 -0.00000 0.00000" xyz="0.00000 0.00500 -0.17000"/>
<geometry>
<capsule length="0.34015" radius="0.06000"/>
</geometry>
</collision>
</link>
<link name="link1_11">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="right_shin">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 -0.15000"/>
<mass value="2.75570"/>
<inertia ixx="0.03858" ixy="0" ixz="0" iyy="0.03858" iyz="0" izz="0.00441"/>
</inertial>
<collision>
<origin rpy="3.14159 -0.00000 3.14159" xyz="0.00000 0.00000 -0.15000"/>
<geometry>
<capsule length="0.30000" radius="0.04900"/>
</geometry>
</collision>
</link>
<link name="link1_13">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="link1_14">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="right_foot">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.03500 0.01000 0.00000"/>
<mass value="1.13114"/>
<inertia ixx="0.00177" ixy="0" ixz="0" iyy="0.00716" iyz="0" izz="0.00828"/>
</inertial>
<collision>
<origin rpy="1.57080 1.47585 1.47585" xyz="0.03500 -0.03000 0.00000"/>
<geometry>
<capsule length="0.21095" radius="0.02700"/>
</geometry>
</collision>
<collision>
<origin rpy="-1.57080 1.47585 -1.47585" xyz="0.03500 0.01000 0.00000"/>
<geometry>
<capsule length="0.21095" radius="0.02700"/>
</geometry>
</collision>
</link>
<link name="link1_16">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="link1_17">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="link1_18">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="left_thigh">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 -0.00500 -0.17000"/>
<mass value="4.75175"/>
<inertia ixx="0.09212" ixy="0" ixz="0" iyy="0.09076" iyz="0" izz="0.01276"/>
</inertial>
<collision>
<origin rpy="3.11219 -0.00000 0.00000" xyz="0.00000 -0.00500 -0.17000"/>
<geometry>
<capsule length="0.34015" radius="0.06000"/>
</geometry>
</collision>
</link>
<link name="link1_20">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="left_shin">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 -0.15000"/>
<mass value="2.75570"/>
<inertia ixx="0.03858" ixy="0" ixz="0" iyy="0.03858" iyz="0" izz="0.00441"/>
</inertial>
<collision>
<origin rpy="3.14159 -0.00000 3.14159" xyz="0.00000 0.00000 -0.15000"/>
<geometry>
<capsule length="0.30000" radius="0.04900"/>
</geometry>
</collision>
</link>
<link name="link1_22">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="link1_23">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="left_foot">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.03500 -0.01000 0.00000"/>
<mass value="1.13114"/>
<inertia ixx="0.00177" ixy="0" ixz="0" iyy="0.00716" iyz="0" izz="0.00828"/>
</inertial>
<collision>
<origin rpy="-1.57080 1.47585 -1.47585" xyz="0.03500 0.03000 0.00000"/>
<geometry>
<capsule length="0.21095" radius="0.02700"/>
</geometry>
</collision>
<collision>
<origin rpy="1.57080 1.47585 1.47585" xyz="0.03500 -0.01000 0.00000"/>
<geometry>
<capsule length="0.21095" radius="0.02700"/>
</geometry>
</collision>
</link>
<link name="link1_25">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="link1_26">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="right_upper_arm">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.08000 -0.08000 -0.08000"/>
<mass value="1.66108"/>
<inertia ixx="0.02368" ixy="0" ixz="0" iyy="0.02368" iyz="0" izz="0.02267"/>
</inertial>
<collision>
<origin rpy="2.35619 0.61548 1.30900" xyz="0.08000 -0.08000 -0.08000"/>
<geometry>
<capsule length="0.27713" radius="0.04000"/>
</geometry>
</collision>
</link>
<link name="link1_28">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="right_lower_arm">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="1.22954"/>
<inertia ixx="0.01419" ixy="0" ixz="0" iyy="0.01419" iyz="0" izz="0.01374"/>
</inertial>
<collision>
<origin rpy="-0.78540 0.61548 -0.26180" xyz="0.09000 0.09000 0.09000"/>
<geometry>
<capsule length="0.27713" radius="0.03100"/>
</geometry>
</collision>
<collision>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.18000 0.18000 0.18000"/>
<geometry>
<sphere radius="0.04000"/>
</geometry>
</collision>
</link>
<link name="link1_30">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="link1_31">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="left_upper_arm">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.08000 0.08000 -0.08000"/>
<mass value="1.66108"/>
<inertia ixx="0.02368" ixy="0" ixz="0" iyy="0.02368" iyz="0" izz="0.02267"/>
</inertial>
<collision>
<origin rpy="-2.35619 0.61548 -1.30900" xyz="0.08000 0.08000 -0.08000"/>
<geometry>
<capsule length="0.27713" radius="0.04000"/>
</geometry>
</collision>
</link>
<link name="link1_33">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="0.00000"/>
<inertia ixx="0.00000" ixy="0" ixz="0" iyy="0.00000" iyz="0" izz="0.00000"/>
</inertial>
</link>
<link name="left_lower_arm">
<inertial>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<mass value="1.22954"/>
<inertia ixx="0.01419" ixy="0" ixz="0" iyy="0.01419" iyz="0" izz="0.01374"/>
</inertial>
<collision>
<origin rpy="0.78540 0.61548 0.26180" xyz="0.09000 -0.09000 0.09000"/>
<geometry>
<capsule length="0.27713" radius="0.03100"/>
</geometry>
</collision>
<collision>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.18000 -0.18000 0.18000"/>
<geometry>
<sphere radius="0.04000"/>
</geometry>
</collision>
</link>
<joint name="abdomen_z" type="continuous">
<parent link="torso"/>
<child link="link1_2"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00400 0.00000" xyz="-0.01026 0.00000 -0.19500"/>
<axis xyz="0.00000 0.00000 1.00000"/>
</joint>
<joint name="abdomen_y" type="continuous">
<parent link="link1_2"/>
<child link="link1_3"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<axis xyz="0.00000 1.00000 0.00000"/>
</joint>
<joint name="jointfix_7_3" type="fixed">
<parent link="link1_3"/>
<child link="lwaist"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 -0.06500"/>
<axis xyz="0.00000 0.00000 0.00000"/>
</joint>
<joint name="abdomen_x" type="continuous">
<parent link="lwaist"/>
<child link="link1_5"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00400 0.00000" xyz="-0.00040 0.00000 -0.06500"/>
<axis xyz="1.00000 0.00000 0.00000"/>
</joint>
<joint name="jointfix_6_5" type="fixed">
<parent link="link1_5"/>
<child link="pelvis"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 -0.10000"/>
<axis xyz="0.00000 0.00000 0.00000"/>
</joint>
<joint name="right_hip_x" type="continuous">
<parent link="pelvis"/>
<child link="link1_7"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 -0.10000 -0.04000"/>
<axis xyz="1.00000 0.00000 0.00000"/>
</joint>
<joint name="right_hip_z" type="continuous">
<parent link="link1_7"/>
<child link="link1_8"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<axis xyz="0.00000 0.00000 1.00000"/>
</joint>
<joint name="right_hip_y" type="continuous">
<parent link="link1_8"/>
<child link="link1_9"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<axis xyz="0.00000 1.00000 0.00000"/>
</joint>
<joint name="jointfix_2_9" type="fixed">
<parent link="link1_9"/>
<child link="right_thigh"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<axis xyz="0.00000 0.00000 0.00000"/>
</joint>
<joint name="right_knee" type="continuous">
<parent link="right_thigh"/>
<child link="link1_11"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.01000 -0.38300"/>
<axis xyz="0.00000 -1.00000 0.00000"/>
</joint>
<joint name="jointfix_1_11" type="fixed">
<parent link="link1_11"/>
<child link="right_shin"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 -0.02000"/>
<axis xyz="0.00000 0.00000 0.00000"/>
</joint>
<joint name="right_ankle_y" type="continuous">
<parent link="right_shin"/>
<child link="link1_13"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 -0.31000"/>
<axis xyz="0.00000 1.00000 0.00000"/>
</joint>
<joint name="right_ankle_x" type="continuous">
<parent link="link1_13"/>
<child link="link1_14"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 -0.04000"/>
<axis xyz="1.00000 0.00000 0.50000"/>
</joint>
<joint name="jointfix_0_14" type="fixed">
<parent link="link1_14"/>
<child link="right_foot"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 -0.08000"/>
<axis xyz="0.00000 0.00000 0.00000"/>
</joint>
<joint name="left_hip_x" type="continuous">
<parent link="pelvis"/>
<child link="link1_16"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.10000 -0.04000"/>
<axis xyz="-1.00000 0.00000 0.00000"/>
</joint>
<joint name="left_hip_z" type="continuous">
<parent link="link1_16"/>
<child link="link1_17"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<axis xyz="0.00000 0.00000 -1.00000"/>
</joint>
<joint name="left_hip_y" type="continuous">
<parent link="link1_17"/>
<child link="link1_18"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<axis xyz="0.00000 1.00000 0.00000"/>
</joint>
<joint name="jointfix_5_18" type="fixed">
<parent link="link1_18"/>
<child link="left_thigh"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<axis xyz="0.00000 0.00000 0.00000"/>
</joint>
<joint name="left_knee" type="continuous">
<parent link="left_thigh"/>
<child link="link1_20"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 -0.01000 -0.38300"/>
<axis xyz="0.00000 -1.00000 0.00000"/>
</joint>
<joint name="jointfix_4_20" type="fixed">
<parent link="link1_20"/>
<child link="left_shin"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 -0.02000"/>
<axis xyz="0.00000 0.00000 0.00000"/>
</joint>
<joint name="left_ankle_y" type="continuous">
<parent link="left_shin"/>
<child link="link1_22"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 -0.31000"/>
<axis xyz="0.00000 1.00000 0.00000"/>
</joint>
<joint name="left_ankle_x" type="continuous">
<parent link="link1_22"/>
<child link="link1_23"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 -0.04000"/>
<axis xyz="1.00000 0.00000 0.50000"/>
</joint>
<joint name="jointfix_3_23" type="fixed">
<parent link="link1_23"/>
<child link="left_foot"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 -0.08000"/>
<axis xyz="0.00000 0.00000 0.00000"/>
</joint>
<joint name="right_shoulder1" type="continuous">
<parent link="torso"/>
<child link="link1_25"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 -0.17000 0.06000"/>
<axis xyz="2.00000 1.00000 1.00000"/>
</joint>
<joint name="right_shoulder2" type="continuous">
<parent link="link1_25"/>
<child link="link1_26"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<axis xyz="0.00000 -1.00000 1.00000"/>
</joint>
<joint name="jointfix_9_26" type="fixed">
<parent link="link1_26"/>
<child link="right_upper_arm"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<axis xyz="0.00000 0.00000 0.00000"/>
</joint>
<joint name="right_elbow" type="continuous">
<parent link="right_upper_arm"/>
<child link="link1_28"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.18000 -0.18000 -0.18000"/>
<axis xyz="0.00000 -1.00000 1.00000"/>
</joint>
<joint name="jointfix_8_28" type="fixed">
<parent link="link1_28"/>
<child link="right_lower_arm"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<axis xyz="0.00000 0.00000 0.00000"/>
</joint>
<joint name="left_shoulder1" type="continuous">
<parent link="torso"/>
<child link="link1_30"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.17000 0.06000"/>
<axis xyz="2.00000 -1.00000 1.00000"/>
</joint>
<joint name="left_shoulder2" type="continuous">
<parent link="link1_30"/>
<child link="link1_31"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<axis xyz="0.00000 1.00000 1.00000"/>
</joint>
<joint name="jointfix_11_31" type="fixed">
<parent link="link1_31"/>
<child link="left_upper_arm"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<axis xyz="0.00000 0.00000 0.00000"/>
</joint>
<joint name="left_elbow" type="continuous">
<parent link="left_upper_arm"/>
<child link="link1_33"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.18000 0.18000 -0.18000"/>
<axis xyz="0.00000 -1.00000 -1.00000"/>
</joint>
<joint name="jointfix_10_33" type="fixed">
<parent link="link1_33"/>
<child link="left_lower_arm"/>
<dynamics damping="1.0" friction="0.0001"/>
<origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000"/>
<axis xyz="0.00000 0.00000 0.00000"/>
</joint>
</robot>

Binary file not shown.

View File

@@ -1008,7 +1008,7 @@ void BenchmarkDemo::createTest4()
}
//this will enable polyhedral contact clipping, better quality, slightly slower
//convexHullShape->initializePolyhedralFeatures();
convexHullShape->initializePolyhedralFeatures();
btTransform trans;
trans.setIdentity();

View File

@@ -251,7 +251,6 @@ void MyKeyboardCallback(int key, int state)
if (key == 'p')
{
#ifndef BT_NO_PROFILE
if (state)
{
b3ChromeUtilsStartTimings();
@@ -260,7 +259,6 @@ void MyKeyboardCallback(int key, int state)
{
b3ChromeUtilsStopTimingsAndWriteJsonFile("timings");
}
#endif //BT_NO_PROFILE
}
#ifndef NO_OPENGL3
@@ -1129,6 +1127,7 @@ bool OpenGLExampleBrowser::init(int argc, char* argv[])
gui2->registerFileOpenCallback(fileOpenCallback);
gui2->registerQuitCallback(quitCallback);
}
return true;

View File

@@ -883,6 +883,15 @@ void BulletURDFImporter::convertURDFToVisualShapeInternal(const UrdfVisual* visu
switch (visual->m_geometry.m_type)
{
case URDF_GEOM_CAPSULE:
{
btScalar radius = visual->m_geometry.m_capsuleRadius;
btScalar height = visual->m_geometry.m_capsuleHeight;
btCapsuleShapeZ* capsuleShape = new btCapsuleShapeZ(radius, height);
convexColShape = capsuleShape;
convexColShape->setMargin(gUrdfDefaultCollisionMargin);
break;
}
case URDF_GEOM_CYLINDER:
{
btAlignedObjectArray<btVector3> vertices;

View File

@@ -48,9 +48,6 @@ InvertedPendulumPDControl::~InvertedPendulumPDControl()
{
}
///this is a temporary global, until we determine if we need the option or not
extern bool gJointFeedbackInWorldSpace;
extern bool gJointFeedbackInJointFrame;
btMultiBody* createInvertedPendulumMultiBody(btMultiBodyDynamicsWorld* world, GUIHelperInterface* guiHelper, const btTransform& baseWorldTrans, bool fixedBase)
{
@@ -315,8 +312,10 @@ void InvertedPendulumPDControl::initPhysics()
}
int upAxis = 1;
gJointFeedbackInWorldSpace = true;
gJointFeedbackInJointFrame = true;
m_dynamicsWorld->getSolverInfo().m_jointFeedbackInWorldSpace = true;
m_dynamicsWorld->getSolverInfo().m_jointFeedbackInJointFrame = true;
m_guiHelper->setUpAxis(upAxis);

View File

@@ -44,14 +44,9 @@ MultiBodyConstraintFeedbackSetup::~MultiBodyConstraintFeedbackSetup()
{
}
///this is a temporary global, until we determine if we need the option or not
extern bool gJointFeedbackInWorldSpace;
extern bool gJointFeedbackInJointFrame;
void MultiBodyConstraintFeedbackSetup::initPhysics()
{
int upAxis = 2;
gJointFeedbackInWorldSpace = true;
gJointFeedbackInJointFrame = true;
m_guiHelper->setUpAxis(upAxis);
btVector4 colors[4] =
@@ -69,6 +64,10 @@ void MultiBodyConstraintFeedbackSetup::initPhysics()
//btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawWireframe + btIDebugDraw::DBG_DrawContactPoints + btIDebugDraw::DBG_DrawAabb); //+btIDebugDraw::DBG_DrawConstraintLimits);
m_dynamicsWorld->getSolverInfo().m_jointFeedbackInWorldSpace = true;
m_dynamicsWorld->getSolverInfo().m_jointFeedbackInJointFrame = true;
//create a static ground object
if (1)
{

View File

@@ -44,15 +44,10 @@ TestJointTorqueSetup::~TestJointTorqueSetup()
{
}
///this is a temporary global, until we determine if we need the option or not
extern bool gJointFeedbackInWorldSpace;
extern bool gJointFeedbackInJointFrame;
void TestJointTorqueSetup::initPhysics()
{
int upAxis = 1;
gJointFeedbackInWorldSpace = true;
gJointFeedbackInJointFrame = true;
m_guiHelper->setUpAxis(upAxis);
@@ -71,6 +66,10 @@ void TestJointTorqueSetup::initPhysics()
//btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawWireframe + btIDebugDraw::DBG_DrawContactPoints + btIDebugDraw::DBG_DrawAabb); //+btIDebugDraw::DBG_DrawConstraintLimits);
m_dynamicsWorld->getSolverInfo().m_jointFeedbackInWorldSpace = true;
m_dynamicsWorld->getSolverInfo().m_jointFeedbackInJointFrame = true;
//create a static ground object
if (1)
{

View File

@@ -96,8 +96,6 @@
#include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h"
#endif
extern bool gJointFeedbackInWorldSpace;
extern bool gJointFeedbackInJointFrame;
int gInternalSimFlags = 0;
bool gResetSimulation = 0;
@@ -7697,11 +7695,11 @@ bool PhysicsServerCommandProcessor::processRequestPhysicsSimulationParametersCom
serverCmd.m_simulationParameterResultArgs.m_gravityAcceleration[2] = grav[2];
serverCmd.m_simulationParameterResultArgs.m_internalSimFlags = gInternalSimFlags;
serverCmd.m_simulationParameterResultArgs.m_jointFeedbackMode = 0;
if (gJointFeedbackInWorldSpace)
if (m_data->m_dynamicsWorld->getSolverInfo().m_jointFeedbackInWorldSpace)
{
serverCmd.m_simulationParameterResultArgs.m_jointFeedbackMode |= JOINT_FEEDBACK_IN_WORLD_SPACE;
}
if (gJointFeedbackInJointFrame)
if (m_data->m_dynamicsWorld->getSolverInfo().m_jointFeedbackInJointFrame)
{
serverCmd.m_simulationParameterResultArgs.m_jointFeedbackMode |= JOINT_FEEDBACK_IN_JOINT_FRAME;
}
@@ -7747,8 +7745,8 @@ bool PhysicsServerCommandProcessor::processSendPhysicsParametersCommand(const st
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_JOINT_FEEDBACK_MODE)
{
gJointFeedbackInWorldSpace = (clientCmd.m_physSimParamArgs.m_jointFeedbackMode & JOINT_FEEDBACK_IN_WORLD_SPACE) != 0;
gJointFeedbackInJointFrame = (clientCmd.m_physSimParamArgs.m_jointFeedbackMode & JOINT_FEEDBACK_IN_JOINT_FRAME) != 0;
m_data->m_dynamicsWorld->getSolverInfo().m_jointFeedbackInWorldSpace = (clientCmd.m_physSimParamArgs.m_jointFeedbackMode & JOINT_FEEDBACK_IN_WORLD_SPACE) != 0;
m_data->m_dynamicsWorld->getSolverInfo().m_jointFeedbackInJointFrame = (clientCmd.m_physSimParamArgs.m_jointFeedbackMode & JOINT_FEEDBACK_IN_JOINT_FRAME) != 0;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_DELTA_TIME)
@@ -9642,6 +9640,16 @@ int PhysicsServerCommandProcessor::extractCollisionShapes(const btCollisionShape
switch (colShape->getShapeType())
{
case STATIC_PLANE_PROXYTYPE:
{
btStaticPlaneShape* plane = (btStaticPlaneShape*) colShape;
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_PLANE;
collisionShapeBuffer[0].m_dimensions[0] = plane->getPlaneNormal()[0];
collisionShapeBuffer[0].m_dimensions[1] = plane->getPlaneNormal()[1];
collisionShapeBuffer[0].m_dimensions[2] = plane->getPlaneNormal()[2];
numConverted += 1;
break;
}
case CONVEX_HULL_SHAPE_PROXYTYPE:
{
UrdfCollision* urdfCol = m_data->m_bulletCollisionShape2UrdfCollision.find(colShape);

View File

@@ -27,7 +27,6 @@ bool gEnableRendering = true;
bool gActivedVRRealTimeSimulation = false;
bool gEnableSyncPhysicsRendering = true;
bool gEnableUpdateDebugDrawLines = true;
static int gCamVisualizerWidth = 228;
static int gCamVisualizerHeight = 192;
@@ -177,6 +176,7 @@ struct MotionArgs
{
MotionArgs()
: m_debugDrawFlags(0),
m_enableUpdateDebugDrawLines(true),
m_physicsServerPtr(0)
{
for (int i = 0; i < MAX_VR_CONTROLLERS; i++)
@@ -201,7 +201,7 @@ struct MotionArgs
b3CriticalSection* m_csGUI;
int m_debugDrawFlags;
bool m_enableUpdateDebugDrawLines;
btAlignedObjectArray<MyMouseCommand> m_mouseCommands;
b3VRControllerEvent m_vrControllerEvents[MAX_VR_CONTROLLERS];
@@ -424,13 +424,13 @@ void MotionThreadFunc(void* userPtr, void* lsMemory)
args->m_physicsServerPtr->stepSimulationRealTime(deltaTimeInSeconds, args->m_sendVrControllerEvents, numSendVrControllers, keyEvents, args->m_sendKeyEvents.size(), mouseEvents, args->m_sendMouseEvents.size());
}
{
if (gEnableUpdateDebugDrawLines)
args->m_csGUI->lock();
if (args->m_enableUpdateDebugDrawLines)
{
args->m_csGUI->lock();
args->m_physicsServerPtr->physicsDebugDraw(args->m_debugDrawFlags);
gEnableUpdateDebugDrawLines = false;
args->m_csGUI->unlock();
args->m_enableUpdateDebugDrawLines = false;
}
args->m_csGUI->unlock();
}
deltaTimeInSeconds = 0;
}
@@ -1737,6 +1737,11 @@ void PhysicsServerExample::initPhysics()
m_args[w].m_cs2 = m_threadSupport->createCriticalSection();
m_args[w].m_cs3 = m_threadSupport->createCriticalSection();
m_args[w].m_csGUI = m_threadSupport->createCriticalSection();
m_multiThreadedHelper->setCriticalSection(m_args[w].m_cs);
m_multiThreadedHelper->setCriticalSection2(m_args[w].m_cs2);
m_multiThreadedHelper->setCriticalSection3(m_args[w].m_cs3);
m_multiThreadedHelper->setCriticalSectionGUI(m_args[w].m_csGUI);
m_args[w].m_cs->lock();
m_args[w].m_cs->setSharedParam(0, eMotionIsUnInitialized);
m_args[w].m_cs->unlock();
@@ -1758,13 +1763,9 @@ void PhysicsServerExample::initPhysics()
#endif
}
}
m_args[0].m_cs->lock();
m_args[0].m_cs->setSharedParam(1, eGUIHelperIdle);
m_multiThreadedHelper->setCriticalSection(m_args[0].m_cs);
m_multiThreadedHelper->setCriticalSection2(m_args[0].m_cs2);
m_multiThreadedHelper->setCriticalSection3(m_args[0].m_cs3);
m_multiThreadedHelper->setCriticalSectionGUI(m_args[0].m_csGUI);
m_args[0].m_cs->unlock();
m_args[0].m_cs2->lock();
{
@@ -2843,7 +2844,7 @@ void PhysicsServerExample::physicsDebugDraw(int debugDrawFlags)
//draw stuff and flush?
this->m_multiThreadedHelper->m_debugDraw->drawDebugDrawerLines();
m_args[0].m_debugDrawFlags = debugDrawFlags;
gEnableUpdateDebugDrawLines = true;
m_args[0].m_enableUpdateDebugDrawLines = true;
m_args[0].m_csGUI->unlock();
}
}

View File

@@ -928,7 +928,7 @@ enum eFileIOTypes
};
//limits for vertices/indices in PyBullet::createCollisionShape
#define B3_MAX_NUM_VERTICES 1024
#define B3_MAX_NUM_INDICES 1024
#define B3_MAX_NUM_VERTICES 16
#define B3_MAX_NUM_INDICES 16
#endif //SHARED_MEMORY_PUBLIC_H

View File

@@ -174,7 +174,7 @@ void MyEnterProfileZoneFunc(const char* msg)
{
if (gProfileDisabled)
return;
#ifndef BT_NO_PROFILE
int threadId = btQuickprofGetCurrentThreadIndex2();
if (threadId < 0 || threadId >= BT_QUICKPROF_MAX_THREAD_COUNT)
return;
@@ -191,13 +191,13 @@ void MyEnterProfileZoneFunc(const char* msg)
gStartTimes[threadId][gStackDepths[threadId]] = 1 + gStartTimes[threadId][gStackDepths[threadId] - 1];
}
gStackDepths[threadId]++;
#endif
}
void MyLeaveProfileZoneFunc()
{
if (gProfileDisabled)
return;
#ifndef BT_NO_PROFILE
int threadId = btQuickprofGetCurrentThreadIndex2();
if (threadId < 0 || threadId >= BT_QUICKPROF_MAX_THREAD_COUNT)
return;
@@ -214,7 +214,7 @@ void MyLeaveProfileZoneFunc()
unsigned long long int endTime = clk.getTimeNanoseconds();
gTimings[threadId].addTiming(name, threadId, startTime, endTime);
#endif //BT_NO_PROFILE
}
void b3ChromeUtilsStartTimings()

View File

@@ -21,28 +21,6 @@ colSphereId = p.createCollisionShape(p.GEOM_SPHERE,radius=sphereRadius)
#convex mesh from obj
stoneId = p.createCollisionShape(p.GEOM_MESH,fileName="stone.obj")
#concave mesh from obj
stoneId = p.createCollisionShape(p.GEOM_MESH,fileName="stone.obj", flags=p.GEOM_FORCE_CONCAVE_TRIMESH)
verts=[[-0.246350, -0.246483, -0.000624],
[ -0.151407, -0.176325, 0.172867],
[ -0.246350, 0.249205, -0.000624],
[ -0.151407, 0.129477, 0.172867],
[ 0.249338, -0.246483, -0.000624],
[ 0.154395, -0.176325, 0.172867],
[ 0.249338, 0.249205, -0.000624],
[ 0.154395, 0.129477, 0.172867]]
#convex mesh from vertices
stoneConvexId = p.createCollisionShape(p.GEOM_MESH,vertices=verts)
indices=[0,3,2,3,6,2,7,4,6,5,0,4,6,0,2,3,5,7,0,1,3,3,7,6,7,5,4,5,1,0,6,4,0,3,1,5]
#concave mesh from vertices+indices
stoneConcaveId = p.createCollisionShape(p.GEOM_MESH,vertices=verts, indices=indices)
stoneId = stoneConvexId
#stoneId = stoneConcaveId
boxHalfLength = 0.5

View File

@@ -1,397 +1,142 @@
"""Internal implementation of the Augmented Random Search method."""
# AI 2018
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
os.sys.path.insert(0,currentdir)
from concurrent import futures
import copy
# Importing the libraries
import os
import time
import gym
import numpy as np
import logz
import utils
import optimizers
#from google3.pyglib import gfile
import policies
import shared_noise
import utility
class Worker(object):
"""Object class for parallel rollout generation."""
def __init__(self,
env_seed,
env_callback,
policy_params=None,
deltas=None,
rollout_length=1000,
delta_std=0.02):
# initialize OpenAI environment for each worker
self.env = env_callback()
self.env.seed(env_seed)
# each worker gets access to the shared noise table
# with independent random streams for sampling
# from the shared noise table.
self.deltas = shared_noise.SharedNoiseTable(deltas, env_seed + 7)
self.policy_params = policy_params
if policy_params['type'] == 'linear':
self.policy = policies.LinearPolicy(policy_params)
else:
raise NotImplementedError
self.delta_std = delta_std
self.rollout_length = rollout_length
def get_weights_plus_stats(self):
"""
Get current policy weights and current statistics of past states.
"""
assert self.policy_params['type'] == 'linear'
return self.policy.get_weights_plus_stats()
def rollout(self, shift=0., rollout_length=None):
"""Performs one rollout of maximum length rollout_length.
At each time-step it substracts shift from the reward.
"""
if rollout_length is None:
rollout_length = self.rollout_length
total_reward = 0.
steps = 0
ob = self.env.reset()
for i in range(rollout_length):
action = self.policy.act(ob)
ob, reward, done, _ = self.env.step(action)
steps += 1
total_reward += (reward - shift)
if done:
break
return total_reward, steps
def do_rollouts(self, w_policy, num_rollouts=1, shift=1, evaluate=False):
"""
Generate multiple rollouts with a policy parametrized by w_policy.
"""
print('Doing {} rollouts'.format(num_rollouts))
rollout_rewards, deltas_idx = [], []
steps = 0
for i in range(num_rollouts):
if evaluate:
self.policy.update_weights(w_policy)
deltas_idx.append(-1)
# set to false so that evaluation rollouts are not used for updating state statistics
self.policy.update_filter = False
# for evaluation we do not shift the rewards (shift = 0) and we use the
# default rollout length (1000 for the MuJoCo locomotion tasks)
reward, r_steps = self.rollout(
shift=0., rollout_length=self.rollout_length)
rollout_rewards.append(reward)
else:
idx, delta = self.deltas.get_delta(w_policy.size)
delta = (self.delta_std * delta).reshape(w_policy.shape)
deltas_idx.append(idx)
# set to true so that state statistics are updated
self.policy.update_filter = True
# compute reward and number of timesteps used for positive perturbation rollout
self.policy.update_weights(w_policy + delta)
pos_reward, pos_steps = self.rollout(shift=shift)
# compute reward and number of timesteps used for negative pertubation rollout
self.policy.update_weights(w_policy - delta)
neg_reward, neg_steps = self.rollout(shift=shift)
steps += pos_steps + neg_steps
rollout_rewards.append([pos_reward, neg_reward])
return {
'deltas_idx': deltas_idx,
'rollout_rewards': rollout_rewards,
'steps': steps
}
def stats_increment(self):
self.policy.observation_filter.stats_increment()
return
def get_weights(self):
return self.policy.get_weights()
def get_filter(self):
return self.policy.observation_filter
def sync_filter(self, other):
self.policy.observation_filter.sync(other)
return
class ARSLearner(object):
"""
Object class implementing the ARS algorithm.
"""
def __init__(self,
env_callback,
policy_params=None,
num_workers=32,
num_deltas=320,
deltas_used=320,
delta_std=0.02,
logdir=None,
rollout_length=1000,
step_size=0.01,
shift='constant zero',
params=None,
seed=123):
logz.configure_output_dir(logdir)
# params_to_save = copy.deepcopy(params)
# params_to_save['env'] = None
# logz.save_params(params_to_save)
utility.save_config(params, logdir)
env = env_callback()
self.timesteps = 0
self.action_size = env.action_space.shape[0]
self.ob_size = env.observation_space.shape[0]
self.num_deltas = num_deltas
self.deltas_used = deltas_used
self.rollout_length = rollout_length
self.step_size = step_size
self.delta_std = delta_std
self.logdir = logdir
self.shift = shift
self.params = params
self.max_past_avg_reward = float('-inf')
self.num_episodes_used = float('inf')
# create shared table for storing noise
print('Creating deltas table.')
deltas = shared_noise.create_shared_noise()
self.deltas = shared_noise.SharedNoiseTable(deltas, seed=seed + 3)
print('Created deltas table.')
# initialize workers with different random seeds
print('Initializing workers.')
self.num_workers = num_workers
self.workers = [
Worker(
seed + 7 * i,
env_callback=env_callback,
policy_params=policy_params,
deltas=deltas,
rollout_length=rollout_length,
delta_std=delta_std) for i in range(num_workers)
]
# initialize policy
if policy_params['type'] == 'linear':
self.policy = policies.LinearPolicy(policy_params)
self.w_policy = self.policy.get_weights()
else:
raise NotImplementedError
# initialize optimization algorithm
self.optimizer = optimizers.SGD(self.w_policy, self.step_size)
print('Initialization of ARS complete.')
def aggregate_rollouts(self, num_rollouts=None, evaluate=False):
"""
Aggregate update step from rollouts generated in parallel.
"""
if num_rollouts is None:
num_deltas = self.num_deltas
else:
num_deltas = num_rollouts
results_one = [] #rollout_ids_one
results_two = [] #rollout_ids_two
t1 = time.time()
num_rollouts = int(num_deltas / self.num_workers)
# if num_rollouts > 0:
# with futures.ThreadPoolExecutor(
# max_workers=self.num_workers) as executor:
# workers = [
# executor.submit(
# worker.do_rollouts,
# self.w_policy,
# num_rollouts=num_rollouts,
# shift=self.shift,
# evaluate=evaluate) for worker in self.workers
# ]
# for worker in futures.as_completed(workers):
# results_one.append(worker.result())
#
# workers = [
# executor.submit(
# worker.do_rollouts,
# self.w_policy,
# num_rollouts=1,
# shift=self.shift,
# evaluate=evaluate)
# for worker in self.workers[:(num_deltas % self.num_workers)]
# ]
# for worker in futures.as_completed(workers):
# results_two.append(worker.result())
# parallel generation of rollouts
rollout_ids_one = [
worker.do_rollouts(
self.w_policy,
num_rollouts=num_rollouts,
shift=self.shift,
evaluate=evaluate) for worker in self.workers
]
rollout_ids_two = [
worker.do_rollouts(
self.w_policy, num_rollouts=1, shift=self.shift, evaluate=evaluate)
for worker in self.workers[:(num_deltas % self.num_workers)]
]
results_one = rollout_ids_one
results_two = rollout_ids_two
# gather results
rollout_rewards, deltas_idx = [], []
for result in results_one:
if not evaluate:
self.timesteps += result['steps']
deltas_idx += result['deltas_idx']
rollout_rewards += result['rollout_rewards']
for result in results_two:
if not evaluate:
self.timesteps += result['steps']
deltas_idx += result['deltas_idx']
rollout_rewards += result['rollout_rewards']
deltas_idx = np.array(deltas_idx)
rollout_rewards = np.array(rollout_rewards, dtype=np.float64)
print('Maximum reward of collected rollouts:', rollout_rewards.max())
info_dict = {
"max_reward": rollout_rewards.max()
}
t2 = time.time()
print('Time to generate rollouts:', t2 - t1)
if evaluate:
return rollout_rewards
# select top performing directions if deltas_used < num_deltas
max_rewards = np.max(rollout_rewards, axis=1)
if self.deltas_used > self.num_deltas:
self.deltas_used = self.num_deltas
idx = np.arange(max_rewards.size)[max_rewards >= np.percentile(
max_rewards, 100 * (1 - (self.deltas_used / self.num_deltas)))]
deltas_idx = deltas_idx[idx]
rollout_rewards = rollout_rewards[idx, :]
# normalize rewards by their standard deviation
rollout_rewards /= np.std(rollout_rewards)
t1 = time.time()
# aggregate rollouts to form g_hat, the gradient used to compute SGD step
g_hat, count = utils.batched_weighted_sum(
rollout_rewards[:, 0] - rollout_rewards[:, 1],
(self.deltas.get(idx, self.w_policy.size) for idx in deltas_idx),
batch_size=500)
g_hat /= deltas_idx.size
t2 = time.time()
print('time to aggregate rollouts', t2 - t1)
return g_hat, info_dict
def train_step(self):
"""
Perform one update step of the policy weights.
"""
g_hat, info_dict = self.aggregate_rollouts()
print('Euclidean norm of update step:', np.linalg.norm(g_hat))
self.w_policy -= self.optimizer._compute_step(g_hat).reshape(
self.w_policy.shape)
return info_dict
def train(self, num_iter):
start = time.time()
for i in range(num_iter):
t1 = time.time()
info_dict = self.train_step()
t2 = time.time()
print('total time of one step', t2 - t1)
print('iter ', i, ' done')
# record statistics every 10 iterations
if ((i) % 10 == 0):
rewards = self.aggregate_rollouts(num_rollouts=8, evaluate=True)
w = self.workers[0].get_weights_plus_stats()
checkpoint_filename = os.path.join(
self.logdir, 'lin_policy_plus_{:03d}.npz'.format(i))
print('Save checkpoints to {}...', checkpoint_filename)
checkpoint_file = open(checkpoint_filename, 'w')
np.savez(checkpoint_file, w)
print('End save checkpoints.')
print(sorted(self.params.items()))
logz.log_tabular('Time', time.time() - start)
logz.log_tabular('Iteration', i + 1)
logz.log_tabular('AverageReward', np.mean(rewards))
logz.log_tabular('StdRewards', np.std(rewards))
logz.log_tabular('MaxRewardRollout', np.max(rewards))
logz.log_tabular('MinRewardRollout', np.min(rewards))
logz.log_tabular('timesteps', self.timesteps)
logz.dump_tabular()
t1 = time.time()
# get statistics from all workers
for j in range(self.num_workers):
self.policy.observation_filter.update(self.workers[j].get_filter())
self.policy.observation_filter.stats_increment()
# make sure master filter buffer is clear
self.policy.observation_filter.clear_buffer()
# sync all workers
#filter_id = ray.put(self.policy.observation_filter)
setting_filters_ids = [
worker.sync_filter(self.policy.observation_filter)
for worker in self.workers
]
# waiting for sync of all workers
#ray.get(setting_filters_ids)
increment_filters_ids = [
worker.stats_increment() for worker in self.workers
]
# waiting for increment of all workers
#ray.get(increment_filters_ids)
t2 = time.time()
print('Time to sync statistics:', t2 - t1)
return info_dict
import gym
from gym import wrappers
import pybullet_envs
# Setting the Hyper Parameters
class Hp():
def __init__(self):
self.nb_steps = 1000
self.episode_length = 1000
self.learning_rate = 0.02
self.nb_directions = 16
self.nb_best_directions = 16
assert self.nb_best_directions <= self.nb_directions
self.noise = 0.03
self.seed = 1
self.env_name = 'HalfCheetahBulletEnv-v0'
# Normalizing the states
class Normalizer():
def __init__(self, nb_inputs):
self.n = np.zeros(nb_inputs)
self.mean = np.zeros(nb_inputs)
self.mean_diff = np.zeros(nb_inputs)
self.var = np.zeros(nb_inputs)
def observe(self, x):
self.n += 1.
last_mean = self.mean.copy()
self.mean += (x - self.mean) / self.n
self.mean_diff += (x - last_mean) * (x - self.mean)
self.var = (self.mean_diff / self.n).clip(min = 1e-2)
def normalize(self, inputs):
obs_mean = self.mean
obs_std = np.sqrt(self.var)
return (inputs - obs_mean) / obs_std
# Building the AI
class Policy():
def __init__(self, input_size, output_size):
self.theta = np.zeros((output_size, input_size))
print("self.theta=",self.theta)
def evaluate(self, input, delta = None, direction = None):
if direction is None:
return np.clip(self.theta.dot(input), -1.0, 1.0)
elif direction == "positive":
return np.clip((self.theta + hp.noise*delta).dot(input), -1.0, 1.0)
else:
return np.clip((self.theta - hp.noise*delta).dot(input), -1.0, 1.0)
def sample_deltas(self):
return [np.random.randn(*self.theta.shape) for _ in range(hp.nb_directions)]
def update(self, rollouts, sigma_r):
step = np.zeros(self.theta.shape)
for r_pos, r_neg, d in rollouts:
step += (r_pos - r_neg) * d
self.theta += hp.learning_rate / (hp.nb_best_directions * sigma_r) * step
# Exploring the policy on one specific direction and over one episode
def explore(env, normalizer, policy, direction = None, delta = None):
state = env.reset()
done = False
num_plays = 0.
sum_rewards = 0
while not done and num_plays < hp.episode_length:
normalizer.observe(state)
state = normalizer.normalize(state)
action = policy.evaluate(state, delta, direction)
state, reward, done, _ = env.step(action)
reward = max(min(reward, 1), -1)
sum_rewards += reward
num_plays += 1
return sum_rewards
# Training the AI
def train(env, policy, normalizer, hp):
for step in range(hp.nb_steps):
# Initializing the perturbations deltas and the positive/negative rewards
deltas = policy.sample_deltas()
positive_rewards = [0] * hp.nb_directions
negative_rewards = [0] * hp.nb_directions
# Getting the positive rewards in the positive directions
for k in range(hp.nb_directions):
positive_rewards[k] = explore(env, normalizer, policy, direction = "positive", delta = deltas[k])
# Getting the negative rewards in the negative/opposite directions
for k in range(hp.nb_directions):
negative_rewards[k] = explore(env, normalizer, policy, direction = "negative", delta = deltas[k])
# Gathering all the positive/negative rewards to compute the standard deviation of these rewards
all_rewards = np.array(positive_rewards + negative_rewards)
sigma_r = all_rewards.std()
# Sorting the rollouts by the max(r_pos, r_neg) and selecting the best directions
scores = {k:max(r_pos, r_neg) for k,(r_pos,r_neg) in enumerate(zip(positive_rewards, negative_rewards))}
order = sorted(scores.keys(), key = lambda x:scores[x])[:hp.nb_best_directions]
rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in order]
# Updating our policy
policy.update(rollouts, sigma_r)
# Printing the final reward of the policy after the update
reward_evaluation = explore(env, normalizer, policy)
print('Step:', step, 'Reward:', reward_evaluation)
# Running the main code
def mkdir(base, name):
path = os.path.join(base, name)
if not os.path.exists(path):
os.makedirs(path)
return path
work_dir = mkdir('exp', 'brs')
monitor_dir = mkdir(work_dir, 'monitor')
hp = Hp()
np.random.seed(hp.seed)
env = gym.make(hp.env_name)
# env.render(mode = "human")
#env = wrappers.Monitor(env, monitor_dir, force = True)
nb_inputs = env.observation_space.shape[0]
nb_outputs = env.action_space.shape[0]
policy = Policy(nb_inputs, nb_outputs)
normalizer = Normalizer(nb_inputs)
train(env, policy, normalizer, hp)

View File

@@ -1,62 +0,0 @@
"""
blaze build -c opt //experimental/users/jietan/ARS:ars_server
blaze-bin/experimental/users/jietan/ARS/ars_server \
--config_name=MINITAUR_GYM_CONFIG
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
from absl import app
from absl import flags
from concurrent import futures
import grpc
from grpc import loas2
from google3.robotics.reinforcement_learning.minitaur.envs import minitaur_gym_env
from google3.robotics.reinforcement_learning.minitaur.envs import minitaur_reactive_env
from google3.robotics.reinforcement_learning.minitaur.envs.env_randomizers import minitaur_env_randomizer
from google3.robotics.reinforcement_learning.minitaur.envs.env_randomizers import minitaur_env_randomizer_from_config as randomizer_config_lib
from google3.experimental.users.jietan.ARS import ars_evaluation_service_pb2_grpc
from google3.experimental.users.jietan.ARS import ars_evaluation_service
FLAGS = flags.FLAGS
flags.DEFINE_integer("server_id", 0, "number of servers")
flags.DEFINE_integer("port", 20000, "port number.")
flags.DEFINE_string("config_name", None, "The name of the config dictionary.")
flags.DEFINE_bool('run_on_borg', False,
'Whether the servers are running on borg.')
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
def main(unused_argv):
servers = []
server_creds = loas2.loas2_server_credentials()
port = FLAGS.port
if not FLAGS.run_on_borg:
port = 20000 + FLAGS.server_id
server = grpc.server(
futures.ThreadPoolExecutor(max_workers=10), ports=(port,))
servicer = ars_evaluation_service.ParameterEvaluationServicer(
FLAGS.config_name, worker_id=FLAGS.server_id)
ars_evaluation_service_pb2_grpc.add_EvaluationServicer_to_server(
servicer, server)
server.add_secure_port("[::]:{}".format(port), server_creds)
servers.append(server)
server.start()
print("Start server {}".format(FLAGS.server_id))
# prevent the main thread from exiting
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
for server in servers:
server.stop(0)
if __name__ == "__main__":
app.run(main)

View File

@@ -1,83 +0,0 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from pybullet_envs.minitaur.envs import minitaur_gym_env
from pybullet_envs.minitaur.envs import minitaur_reactive_env
from pybullet_envs.minitaur.envs.env_randomizers import minitaur_env_randomizer
from pybullet_envs.minitaur.envs.env_randomizers import minitaur_env_randomizer_from_config as randomizer_config_lib
MAX_LENGTH = 1000
def merge_two_dicts(x, y):
"""Given two dicts, merge them into a new dict as a shallow copy."""
z = dict(x)
z.update(y)
return z
# The default configurations.
DEFAULT_CONFIG = dict(
num_workers=8,
num_directions=8,
num_iterations=1000,
deltas_used=8,
step_size=0.02,
delta_std=0.03,
rollout_length=MAX_LENGTH,
shift=0,
seed=237,
policy_type="linear",
filter="MeanStdFilter",
)
# Configuration specific to minitaur_gym_env.MinitaurGymEnv class.
MINITAUR_GYM_CONFIG_ADDITIONS = dict(
env=functools.partial(
minitaur_gym_env.MinitaurGymEnv,
urdf_version=minitaur_gym_env.DERPY_V0_URDF_VERSION,
accurate_motor_model_enabled=True,
motor_overheat_protection=True,
pd_control_enabled=True,
env_randomizer=None,#minitaur_env_randomizer.MinitaurEnvRandomizer(),
render=False,
num_steps_to_log=MAX_LENGTH))
MINITAUR_GYM_CONFIG = merge_two_dicts(DEFAULT_CONFIG,
MINITAUR_GYM_CONFIG_ADDITIONS)
# Configuration specific to MinitaurReactiveEnv class.
MINITAUR_REACTIVE_CONFIG_ADDITIONS = dict(
env=functools.partial(
minitaur_reactive_env.MinitaurReactiveEnv,
urdf_version=minitaur_gym_env.RAINBOW_DASH_V0_URDF_VERSION,
energy_weight=0.005,
accurate_motor_model_enabled=True,
pd_latency=0.003,
control_latency=0.02,
motor_kd=0.015,
remove_default_joint_damping=True,
env_randomizer=None,
render=False,
num_steps_to_log=MAX_LENGTH))
MINITAUR_REACTIVE_CONFIG = merge_two_dicts(DEFAULT_CONFIG,
MINITAUR_REACTIVE_CONFIG_ADDITIONS)
# Configuration specific to MinitaurReactiveEnv class with randomizer.
MINITAUR_REACTIVE_RANDOMIZER_CONFIG_ADDITIONS = dict(
env=functools.partial(
minitaur_reactive_env.MinitaurReactiveEnv,
urdf_version=minitaur_gym_env.RAINBOW_DASH_V0_URDF_VERSION,
energy_weight=0.005,
accurate_motor_model_enabled=True,
pd_latency=0.003,
control_latency=0.02,
motor_kd=0.015,
remove_default_joint_damping=True,
env_randomizer=randomizer_config_lib.MinitaurEnvRandomizerFromConfig(),
render=False,
num_steps_to_log=MAX_LENGTH))
MINITAUR_REACTIVE_RANDOMIZER_CONFIG = merge_two_dicts(
DEFAULT_CONFIG, MINITAUR_REACTIVE_RANDOMIZER_CONFIG_ADDITIONS)

View File

@@ -1,99 +0,0 @@
"""
blaze run -c opt //experimental/users/jietan/ARS:eval_ars -- \
--logdir=/cns/ij-d/home/jietan/experiment/ARS/ars_react_nr01.191950338.191950550/ \
--checkpoint=lin_policy_plus_990.npz \
--num_rollouts=10
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, inspect
import time
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
os.sys.path.insert(0,currentdir)
from absl import app
from absl import flags
import pdb
import os
import numpy as np
import gym
import config_ars
import utility
import policies
FLAGS = flags.FLAGS
flags.DEFINE_string('logdir', None, 'The path of the checkpoint.')
flags.DEFINE_string('checkpoint', None, 'The file name of the checkpoint.')
flags.DEFINE_integer('num_rollouts', 1, 'The number of rollouts.')
def main(argv):
del argv # Unused.
print('loading and building expert policy')
checkpoint_file = os.path.join(FLAGS.logdir, FLAGS.checkpoint)
lin_policy = np.load(checkpoint_file, encoding='bytes')
lin_policy = lin_policy.items()[0][1]
M = lin_policy[0]
# mean and std of state vectors estimated online by ARS.
mean = lin_policy[1]
std = lin_policy[2]
config = utility.load_config(FLAGS.logdir)
print("config=",config)
env = config['env'](hard_reset=True, render=True)
ob_dim = env.observation_space.shape[0]
ac_dim = env.action_space.shape[0]
# set policy parameters. Possible filters: 'MeanStdFilter' for v2, 'NoFilter' for v1.
policy_params = {
'type': 'linear',
'ob_filter': config['filter'],
'ob_dim': ob_dim,
'ac_dim': ac_dim,
"weights": M,
"mean": mean,
"std": std,
}
policy = policies.LinearPolicy(policy_params, update_filter=False)
returns = []
observations = []
actions = []
for i in range(FLAGS.num_rollouts):
print('iter', i)
obs = env.reset()
done = False
totalr = 0.
steps = 0
while not done:
action = policy.act(obs)
observations.append(obs)
actions.append(action)
obs, r, done, _ = env.step(action)
time.sleep(1./100.)
totalr += r
steps += 1
if steps % 100 == 0:
print('%i/%i' % (steps, config['rollout_length']))
if steps >= config['rollout_length']:
break
returns.append(totalr)
print('returns', returns)
print('mean return', np.mean(returns))
print('std of return', np.std(returns))
if __name__ == '__main__':
flags.mark_flag_as_required('logdir')
flags.mark_flag_as_required('checkpoint')
app.run(main)

View File

@@ -1,280 +0,0 @@
# Code in this file is copied and adapted from
# https://github.com/ray-project/ray/blob/master/python/ray/rllib/utils/filter.py
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
class Filter(object):
"""Processes input, possibly statefully."""
def update(self, other, *args, **kwargs):
"""Updates self with "new state" from other filter."""
raise NotImplementedError
def copy(self):
"""Creates a new object with same state as self.
Returns:
copy (Filter): Copy of self"""
raise NotImplementedError
def sync(self, other):
"""Copies all state from other filter to self."""
raise NotImplementedError
class NoFilter(Filter):
def __init__(self, *args):
pass
def __call__(self, x, update=True):
return np.asarray(x, dtype = np.float64)
def update(self, other, *args, **kwargs):
pass
def copy(self):
return self
def sync(self, other):
pass
def stats_increment(self):
pass
def clear_buffer(self):
pass
def get_stats(self):
return 0, 1
@property
def mean(self):
return 0
@property
def var(self):
return 1
@property
def std(self):
return 1
# http://www.johndcook.com/blog/standard_deviation/
class RunningStat(object):
def __init__(self, shape=None):
self._n = 0
self._M = np.zeros(shape, dtype = np.float64)
self._S = np.zeros(shape, dtype = np.float64)
self._M2 = np.zeros(shape, dtype = np.float64)
def copy(self):
other = RunningStat()
other._n = self._n
other._M = np.copy(self._M)
other._S = np.copy(self._S)
return other
def push(self, x):
x = np.asarray(x)
# Unvectorized update of the running statistics.
assert x.shape == self._M.shape, ("x.shape = {}, self.shape = {}"
.format(x.shape, self._M.shape))
n1 = self._n
self._n += 1
if self._n == 1:
self._M[...] = x
else:
delta = x - self._M
deltaM2 = np.square(x) - self._M2
self._M[...] += delta / self._n
self._S[...] += delta * delta * n1 / self._n
def update(self, other):
n1 = self._n
n2 = other._n
n = n1 + n2
delta = self._M - other._M
delta2 = delta * delta
M = (n1 * self._M + n2 * other._M) / n
S = self._S + other._S + delta2 * n1 * n2 / n
self._n = n
self._M = M
self._S = S
def __repr__(self):
return '(n={}, mean_mean={}, mean_std={})'.format(
self.n, np.mean(self.mean), np.mean(self.std))
@property
def n(self):
return self._n
@property
def mean(self):
return self._M
@property
def var(self):
return self._S / (self._n - 1) if self._n > 1 else np.square(self._M)
@property
def std(self):
return np.sqrt(self.var)
@property
def shape(self):
return self._M.shape
class MeanStdFilter(Filter):
"""Keeps track of a running mean for seen states"""
def __init__(self, shape, demean=True, destd=True):
self.shape = shape
self.demean = demean
self.destd = destd
self.rs = RunningStat(shape)
# In distributed rollouts, each worker sees different states.
# The buffer is used to keep track of deltas amongst all the
# observation filters.
self.buffer = RunningStat(shape)
self.mean = np.zeros(shape, dtype = np.float64)
self.std = np.ones(shape, dtype = np.float64)
def clear_buffer(self):
self.buffer = RunningStat(self.shape)
return
def update(self, other, copy_buffer=False):
"""Takes another filter and only applies the information from the
buffer.
Using notation `F(state, buffer)`
Given `Filter1(x1, y1)` and `Filter2(x2, yt)`,
`update` modifies `Filter1` to `Filter1(x1 + yt, y1)`
If `copy_buffer`, then `Filter1` is modified to
`Filter1(x1 + yt, yt)`.
"""
self.rs.update(other.buffer)
if copy_buffer:
self.buffer = other.buffer.copy()
return
def copy(self):
"""Returns a copy of Filter."""
other = MeanStdFilter(self.shape)
other.demean = self.demean
other.destd = self.destd
other.rs = self.rs.copy()
other.buffer = self.buffer.copy()
return other
def sync(self, other):
"""Syncs all fields together from other filter.
Using notation `F(state, buffer)`
Given `Filter1(x1, y1)` and `Filter2(x2, yt)`,
`sync` modifies `Filter1` to `Filter1(x2, yt)`
"""
assert other.shape == self.shape, "Shapes don't match!"
self.demean = other.demean
self.destd = other.destd
self.rs = other.rs.copy()
self.buffer = other.buffer.copy()
return
def __call__(self, x, update=True):
x = np.asarray(x, dtype = np.float64)
if update:
if len(x.shape) == len(self.rs.shape) + 1:
# The vectorized case.
for i in range(x.shape[0]):
self.rs.push(x[i])
self.buffer.push(x[i])
else:
# The unvectorized case.
self.rs.push(x)
self.buffer.push(x)
if self.demean:
x = x - self.mean
if self.destd:
x = x / (self.std + 1e-8)
return x
def stats_increment(self):
self.mean = self.rs.mean
self.std = self.rs.std
# Set values for std less than 1e-7 to +inf to avoid
# dividing by zero. State elements with zero variance
# are set to zero as a result.
self.std[self.std < 1e-7] = float("inf")
return
def get_stats(self):
return self.rs.mean, (self.rs.std + 1e-8)
def __repr__(self):
return 'MeanStdFilter({}, {}, {}, {}, {}, {})'.format(
self.shape, self.demean,
self.rs, self.buffer)
def get_filter(filter_config, shape = None):
if filter_config == "MeanStdFilter":
return MeanStdFilter(shape)
elif filter_config == "NoFilter":
return NoFilter()
else:
raise Exception("Unknown observation_filter: " +
str(filter_config))
def test_running_stat():
for shp in ((), (3,), (3, 4)):
li = []
rs = RunningStat(shp)
for _ in range(5):
val = np.random.randn(*shp)
rs.push(val)
li.append(val)
m = np.mean(li, axis=0)
assert np.allclose(rs.mean, m)
v = np.square(m) if (len(li) == 1) else np.var(li, ddof=1, axis=0)
assert np.allclose(rs.var, v)
def test_combining_stat():
for shape in [(), (3,), (3, 4)]:
li = []
rs1 = RunningStat(shape)
rs2 = RunningStat(shape)
rs = RunningStat(shape)
for _ in range(5):
val = np.random.randn(*shape)
rs1.push(val)
rs.push(val)
li.append(val)
for _ in range(9):
rs2.push(val)
rs.push(val)
li.append(val)
rs1.update(rs2)
assert np.allclose(rs.mean, rs1.mean)
assert np.allclose(rs.std, rs1.std)
test_running_stat()
test_combining_stat()

View File

@@ -1,29 +0,0 @@
delta_std: 0.03
deltas_used: 8
env: !!python/object/apply:functools.partial
args:
- &id001 !!python/name:pybullet_envs.minitaur.envs.minitaur_reactive_env.MinitaurReactiveEnv ''
state: !!python/tuple
- *id001
- !!python/tuple []
- accurate_motor_model_enabled: true
control_latency: 0.02
energy_weight: 0.005
env_randomizer: null
motor_kd: 0.015
num_steps_to_log: 1000
pd_latency: 0.003
remove_default_joint_damping: true
render: false
urdf_version: rainbow_dash_v0
- null
filter: MeanStdFilter
num_directions: 8
num_iterations: 1000
num_workers: 8
policy_type: linear
rollout_length: 1000
seed: 237
shift: 0
step_size: 0.02

View File

@@ -1,104 +0,0 @@
# Code in this file is copied and adapted from
# https://github.com/berkeleydeeprlcourse
import json
"""
Some simple logging functionality, inspired by rllab's logging.
Assumes that each diagnostic gets logged each iteration
Call logz.configure_output_dir() to start logging to a
tab-separated-values file (some_folder_name/log.txt)
"""
import os.path as osp, shutil, time, atexit, os, subprocess
color2num = dict(
gray=30,
red=31,
green=32,
yellow=33,
blue=34,
magenta=35,
cyan=36,
white=37,
crimson=38
)
def colorize(string, color, bold=False, highlight=False):
attr = []
num = color2num[color]
if highlight: num += 10
attr.append(str(num))
if bold: attr.append('1')
return '\x1b[%sm%s\x1b[0m' % (';'.join(attr), string)
class G(object):
output_dir = None
output_file = None
first_row = True
log_headers = []
log_current_row = {}
def configure_output_dir(d=None):
"""
Set output directory to d, or to /tmp/somerandomnumber if d is None
"""
G.first_row = True
G.log_headers = []
G.log_current_row = {}
G.output_dir = d or "/tmp/experiments/%i"%int(time.time())
if not osp.exists(G.output_dir):
os.makedirs(G.output_dir)
G.output_file = open(osp.join(G.output_dir, "log.txt"), 'w')
atexit.register(G.output_file.close)
print(colorize("Logging data to %s"%G.output_file.name, 'green', bold=True))
def log_tabular(key, val):
"""
Log a value of some diagnostic
Call this once for each diagnostic quantity, each iteration
"""
if G.first_row:
G.log_headers.append(key)
else:
assert key in G.log_headers, "Trying to introduce a new key %s that you didn't include in the first iteration"%key
assert key not in G.log_current_row, "You already set %s this iteration. Maybe you forgot to call dump_tabular()"%key
G.log_current_row[key] = val
def save_params(params):
with open(osp.join(G.output_dir, "params.json"), 'w') as out:
out.write(json.dumps(params, separators=(',\n','\t:\t'), sort_keys=True))
def dump_tabular():
"""
Write all of the diagnostics from the current iteration
"""
vals = []
key_lens = [len(key) for key in G.log_headers]
max_key_len = max(15,max(key_lens))
keystr = '%'+'%d'%max_key_len
fmt = "| " + keystr + "s | %15s |"
n_slashes = 22 + max_key_len
print("-"*n_slashes)
for key in G.log_headers:
val = G.log_current_row.get(key, "")
if hasattr(val, "__float__"): valstr = "%8.3g"%val
else: valstr = val
print(fmt%(key, valstr))
vals.append(val)
print("-"*n_slashes)
if G.output_file is not None:
if G.first_row:
G.output_file.write("\t".join(G.log_headers))
G.output_file.write("\n")
G.output_file.write("\t".join(map(str,vals)))
G.output_file.write("\n")
G.output_file.flush()
G.log_current_row.clear()
G.first_row=False

View File

@@ -1,35 +0,0 @@
# Code in this file is copied and adapted from
# https://github.com/openai/evolution-strategies-starter.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
# OPTIMIZERS FOR MINIMIZING OBJECTIVES
class Optimizer(object):
def __init__(self, w_policy):
self.w_policy = w_policy.flatten()
self.dim = w_policy.size
self.t = 0
def update(self, globalg):
self.t += 1
step = self._compute_step(globalg)
ratio = np.linalg.norm(step) / (np.linalg.norm(self.w_policy) + 1e-5)
return self.w_policy + step, ratio
def _compute_step(self, globalg):
raise NotImplementedError
class SGD(Optimizer):
def __init__(self, pi, stepsize):
Optimizer.__init__(self, pi)
self.stepsize = stepsize
def _compute_step(self, globalg):
step = -self.stepsize * globalg
return step

View File

@@ -1,72 +0,0 @@
"""
Policy class for computing action from weights and observation vector.
Horia Mania --- hmania@berkeley.edu
Aurelia Guy
Benjamin Recht
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import filter
class Policy(object):
def __init__(self, policy_params):
self.ob_dim = policy_params['ob_dim']
self.ac_dim = policy_params['ac_dim']
self.weights = np.empty(0)
# a filter for updating statistics of the observations and normalizing
# inputs to the policies
self.observation_filter = filter.get_filter(
policy_params['ob_filter'], shape=(self.ob_dim,))
self.update_filter = True
def update_weights(self, new_weights):
self.weights[:] = new_weights[:]
return
def get_weights(self):
return self.weights
def get_observation_filter(self):
return self.observation_filter
def act(self, ob):
raise NotImplementedError
def copy(self):
raise NotImplementedError
class LinearPolicy(Policy):
"""
Linear policy class that computes action as <w, ob>.
"""
def __init__(self, policy_params, update_filter=True):
Policy.__init__(self, policy_params)
self.weights = np.zeros(self.ac_dim * self.ob_dim, dtype=np.float64)
if "weights" in policy_params:
self.weights = policy_params["weights"]
if "mean" in policy_params:
self.observation_filter.mean = policy_params["mean"]
if "std" in policy_params:
self.observation_filter.std = policy_params["std"]
self.update_filter = update_filter
def act(self, ob):
ob = self.observation_filter(ob, update=self.update_filter)
matrix_weights = np.reshape(self.weights, (self.ac_dim, self.ob_dim))
return np.clip(np.dot(matrix_weights, ob), -1.0, 1.0)
def get_weights_plus_stats(self):
mu, std = self.observation_filter.get_stats()
aux = np.asarray([self.weights, mu, std])
return aux

View File

@@ -1,40 +0,0 @@
"""
Code in this file is copied and adapted from
https://github.com/ray-project/ray/tree/master/python/ray/rllib/es
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
def create_shared_noise():
"""
Create a large array of noise to be shared by all workers. Used
for avoiding the communication of the random perturbations delta.
"""
seed = 12345
count = 250000000
noise = np.random.RandomState(seed).randn(count).astype(np.float64)
return noise
class SharedNoiseTable(object):
def __init__(self, noise, seed = 11):
self.rg = np.random.RandomState(seed)
self.noise = noise
assert self.noise.dtype == np.float64
def get(self, i, dim):
return self.noise[i:i + dim]
def sample_index(self, dim):
return self.rg.randint(0, len(self.noise) - dim + 1)
def get_delta(self, dim):
idx = self.sample_index(dim)
return idx, self.get(idx, dim)

View File

@@ -1,27 +0,0 @@
"""
blaze build -c opt //experimental/users/jietan/ARS:start_ars_servers
blaze-bin/experimental/users/jietan/ARS/start_ars_servers
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import subprocess
from absl import app
from absl import flags
FLAGS = flags.FLAGS
flags.DEFINE_integer("num_servers", 8, "number of servers")
def main(argv):
del argv # Unused.
for server_id in xrange(FLAGS.num_servers):
args = ["blaze-bin/experimental/users/jietan/ARS/ars_server", "--config_name=MINITAUR_GYM_CONFIG", "--server_id={}".format(server_id), "--run_on_borg=False"]
subprocess.Popen(args)
if __name__ == '__main__':
app.run(main)

View File

@@ -1,93 +0,0 @@
// Example borg file to do a parameter sweep.
//
// To run:
// echo `srcfs get_readonly`-`g4 p | head -1 | awk '{print $2}'`
// blaze build -c opt experimental/users/jietan/ARS:ars_server.par
// blaze build -c opt experimental/users/jietan/ARS:ars_client.par
// borgcfg --skip_confirmation --vars 'base_cl=191950338,my_cl=191950550,label=ars_react_nr01,config=MINITAUR_REACTIVE_CONFIG' experimental/users/jietan/ARS/train_ars.borg reload
// borgcfg --skip_confirmation --vars 'base_cl=191950338,my_cl=191950550,label=ars_react_rd01,config=MINITAUR_REACTIVE_RANDOMIZER_CONFIG' experimental/users/jietan/ARS/train_ars.borg reload
import '//production/borg/templates/lambda/buildtool_support.borg' as build
import '//production/borg/templates/lambda/dnsname.borg' as dns
vars = {
cell = 'atlanta'
charged_user = 'robotics'
base_cl = 0
my_cl = 0
label = external
user = real_username()
workers = 8
config = external
cns_home = "/cns/ij-d/home/%user%"
logdir = "%cns_home%/experiment/ARS/%label%.%base_cl%.%my_cl%/"
}
service augmented_random_search {
runtime {
cell = vars.cell
}
scheduling = {
priority = 100
batch_quota = {
strategy = 'RUN_SOON'
}
deadline = 3600 * 24
}
accounting = {
charged_user = vars.charged_user
}
requirements {
autopilot = true
}
params = {
mygoogle3 = build.google3dir(myfilename())
experiment_dir = 'experimental/users/jietan/ARS/'
}
job ars_server = {
runtime {
cell = vars.cell
}
name = real_username() + '_server_' + vars.label
replicas = vars.workers
binary_path = build.binfile_v2(params.mygoogle3,
params.experiment_dir + 'ars_server')
runfiles = binary_path + '.runfiles/google3/'
packages = {
package third_party = {
directory = runfiles + 'third_party/'
}
}
binary = build.binfile(params.mygoogle3,
params.experiment_dir + 'ars_server.par')
args = {
server_id = '%task%'
config_name = vars.config
port = '%port%'
run_on_borg = true
}
}
job ars_client = {
name = real_username() + '_client_' + vars.label
binary_path = build.binfile_v2(params.mygoogle3,
params.experiment_dir + 'ars_client')
runfiles = binary_path + '.runfiles/google3/'
packages = {
package third_party = {
directory = runfiles + 'third_party/'
}
}
binary = build.binfile(params.mygoogle3,
params.experiment_dir + 'ars_client.par')
args = {
server_address = dns.borg_dns_name(ars_server)
num_servers = vars.workers
config_name = vars.config
logdir = vars.logdir
run_on_borg = true
}
}
}

View File

@@ -1,64 +0,0 @@
"""
blaze build -c opt //experimental/users/jietan/ARS:train_ars
blaze-bin/experimental/users/jietan/ARS/train_ars \
--logdir=/cns/ij-d/home/jietan/experiment/ARS/test1 \
--config_name=MINITAUR_GYM_CONFIG
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import app
from absl import flags
import ars
import config_ars
FLAGS = flags.FLAGS
flags.DEFINE_string('logdir', None, 'The directory to write the log file.')
flags.DEFINE_string('config_name', None, 'The name of the config dictionary')
def run_ars(config, logdir):
env = config["env"]()
ob_dim = env.observation_space.shape[0]
ac_dim = env.action_space.shape[0]
# set policy parameters. Possible filters: 'MeanStdFilter' for v2, 'NoFilter' for v1.
policy_params = {
'type': 'linear',
'ob_filter': config['filter'],
'ob_dim': ob_dim,
'ac_dim': ac_dim
}
ARS = ars.ARSLearner(
env_callback=config['env'],
policy_params=policy_params,
num_deltas=config['num_directions'],
deltas_used=config['deltas_used'],
step_size=config['step_size'],
delta_std=config['delta_std'],
logdir=logdir,
rollout_length=config['rollout_length'],
shift=config['shift'],
params=config,
seed=config['seed'])
return ARS.train(config['num_iterations'])
def main(argv):
del argv # Unused.
config = getattr(config_ars, FLAGS.config_name)
run_ars(config=config, logdir=FLAGS.logdir)
if __name__ == '__main__':
flags.mark_flag_as_required('logdir')
flags.mark_flag_as_required('config_name')
app.run(main)

View File

@@ -1,29 +0,0 @@
"""Tests for google3.experimental.users.jietan.ARS.train_ars.
blaze build -c opt //experimental/users/jietan/ARS:train_ars_test
blaze-bin/experimental/users/jietan/ARS/train_ars_test
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
from google3.testing.pybase import googletest
from google3.experimental.users.jietan.ARS import train_ars
from google3.experimental.users.jietan.ARS import config_ars
FLAGS = flags.FLAGS
MAX_RETURN_AFTER_TWO_ITEATIONS = 0.0890905394617
class TrainArsTest(googletest.TestCase):
def testArsTwoStepResult(self):
config = getattr(config_ars, "MINITAUR_REACTIVE_CONFIG")
config['num_iterations'] = 2
info = train_ars.run_ars(config=config, logdir=FLAGS.test_tmpdir)
print (info)
self.assertAlmostEqual(info["max_reward"], MAX_RETURN_AFTER_TWO_ITEATIONS)
if __name__ == '__main__':
googletest.main()

View File

@@ -1,52 +0,0 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import ruamel.yaml as yaml
def save_config(config, logdir):
"""Save a new configuration by name.
If a logging directory is specified, is will be created and the configuration
will be stored there. Otherwise, a log message will be printed.
Args:
config: Configuration object.
logdir: Location for writing summaries and checkpoints if specified.
Returns:
Configuration object.
"""
message = 'Start a new run and write summaries and checkpoints to {}.'
print(message.format(logdir))
config_path = os.path.join(logdir, 'config.yaml')
yaml.dump(config, config_path, default_flow_style=False)
return config
def load_config(logdir):
"""Load a configuration from the log directory.
Args:
logdir: The logging directory containing the configuration file.
Raises:
IOError: The logging directory does not contain a configuration file.
Returns:
Configuration object.
"""
config_path = logdir and os.path.join(logdir, 'config.yaml')
if not config_path:
message = (
'Cannot resume an existing run since the logging directory does not '
'contain a configuration file.')
raise IOError(message)
print("config_path=",config_path)
stream = open(config_path, 'r')
config = yaml.load(stream)
message = 'Resume run and write summaries and checkpoints to {}.'
print(message.format(logdir))
return config

View File

@@ -1,28 +0,0 @@
# Code in this file is copied and adapted from
# https://github.com/openai/evolution-strategies-starter.
import numpy as np
def itergroups(items, group_size):
assert group_size >= 1
group = []
for x in items:
group.append(x)
if len(group) == group_size:
yield tuple(group)
del group[:]
if group:
yield tuple(group)
def batched_weighted_sum(weights, vecs, batch_size):
total = 0
num_items_summed = 0
for batch_weights, batch_vecs in zip(itergroups(weights, batch_size),
itergroups(vecs, batch_size)):
assert len(batch_weights) == len(batch_vecs) <= batch_size
total += np.dot(np.asarray(batch_weights, dtype=np.float64),
np.asarray(batch_vecs, dtype=np.float64))
num_items_summed += len(batch_weights)
return total, num_items_summed

View File

@@ -0,0 +1,21 @@
#rudimentary MuJoCo mjcf to ROS URDF converter using the UrdfEditor
import pybullet_utils.bullet_client as bc
import pybullet_data as pd
import pybullet_utils.urdfEditor as ed
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--mjcf', help='MuJoCo xml file to be converted to URDF', default='mjcf/humanoid.xml')
args = parser.parse_args()
p = bc.BulletClient()
p.setAdditionalSearchPath(pd.getDataPath())
objs = p.loadMJCF(args.mjcf, flags=p.URDF_USE_IMPLICIT_CYLINDER)
for o in objs:
#print("o=",o, p.getBodyInfo(o), p.getNumJoints(o))
humanoid = objs[o]
ed0 = ed.UrdfEditor()
ed0.initializeFromBulletBody(humanoid, p._client)
ed0.saveUrdf(p.getBodyInfo(0)[1]+"_"+p.getBodyInfo(o)[0]+".urdf")

View File

@@ -1,7 +1,6 @@
import pybullet as p
import time
class UrdfInertial(object):
def __init__(self):
self.mass = 1
@@ -201,6 +200,10 @@ class UrdfEditor(object):
file.write("\t\t</inertial>\n")
def writeVisualShape(self,file,urdfVisual, precision=5):
#we don't support loading capsule types from visuals, so auto-convert from collision shape
if urdfVisual.geom_type == p.GEOM_CAPSULE:
return
file.write("\t\t<visual>\n")
str = '\t\t\t<origin rpy="{:.{prec}f} {:.{prec}f} {:.{prec}f}" xyz="{:.{prec}f} {:.{prec}f} {:.{prec}f}"/>\n'.format(\
urdfVisual.origin_rpy[0],urdfVisual.origin_rpy[1],urdfVisual.origin_rpy[2],
@@ -276,8 +279,13 @@ class UrdfEditor(object):
file.write("\">\n")
self.writeInertial(file,urdfLink.urdf_inertial)
hasCapsules = False
for v in urdfLink.urdf_visual_shapes:
self.writeVisualShape(file,v)
if (v.geom_type == p.GEOM_CAPSULE):
hasCapsules = True
if (not hasCapsules):
for v in urdfLink.urdf_visual_shapes:
self.writeVisualShape(file,v)
for c in urdfLink.urdf_collision_shapes:
self.writeCollisionShape(file,c)
file.write("\t</link>\n")

View File

@@ -6464,7 +6464,7 @@ static PyObject* pybullet_createCollisionShape(PyObject* self, PyObject* args, P
{
pybullet_internalSetVector4d(collisionFrameOrientationObj, collisionFrameOrientation);
}
b3CreateVisualShapeSetChildTransform(commandHandle, shapeIndex, collisionFramePosition, collisionFrameOrientation);
b3CreateCollisionShapeSetChildTransform(commandHandle, shapeIndex, collisionFramePosition, collisionFrameOrientation);
}
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, commandHandle);
statusType = b3GetStatusType(statusHandle);

View File

@@ -463,15 +463,16 @@ egl_renderer_sources = \
+["src/BulletCollision/CollisionShapes/btConvexInternalShape.cpp"]\
+["src/Bullet3Common/b3Logging.cpp"]\
+["src/LinearMath/btAlignedAllocator.cpp"]\
+["src/LinearMath/btGeometryUtil.cpp"]\
+["src/LinearMath/btConvexHull.cpp"]\
+["src/LinearMath/btConvexHullComputer.cpp"]\
+["src/LinearMath/btConvexHullComputer.cpp"] \
+["src/LinearMath/btGeometryUtil.cpp"]\
+["src/LinearMath/btQuickprof.cpp"] \
+["src/LinearMath/btThreads.cpp"] \
+["src/Bullet3Common/b3AlignedAllocator.cpp"] \
+["examples/ThirdPartyLibs/glad/gl.c"]\
+["examples/OpenGLWindow/GLInstancingRenderer.cpp"]\
+["examples/OpenGLWindow/GLRenderToTexture.cpp"] \
+["examples/OpenGLWindow/LoadShader.cpp"] \
+["src/LinearMath/btQuickprof.cpp"]
+["examples/OpenGLWindow/LoadShader.cpp"]
if 'BT_USE_EGL' in CXX_FLAGS:
sources += ['examples/ThirdPartyLibs/glad/egl.c']

View File

@@ -15,9 +15,11 @@ subject to the following restrictions:
#include "b3AlignedAllocator.h"
#ifdef B3_ALLOCATOR_STATISTICS
int b3g_numAlignedAllocs = 0;
int b3g_numAlignedFree = 0;
int b3g_totalBytesAlignedAllocs = 0; //detect memory leaks
#endif
static void *b3AllocDefault(size_t size)
{
@@ -109,10 +111,10 @@ void *b3AlignedAllocInternal(size_t size, int alignment, int line, char *filenam
{
void *ret;
char *real;
#ifdef B3_ALLOCATOR_STATISTICS
b3g_totalBytesAlignedAllocs += size;
b3g_numAlignedAllocs++;
#endif
real = (char *)b3s_allocFunc(size + 2 * sizeof(void *) + (alignment - 1));
if (real)
{
@@ -135,14 +137,16 @@ void *b3AlignedAllocInternal(size_t size, int alignment, int line, char *filenam
void b3AlignedFreeInternal(void *ptr, int line, char *filename)
{
void *real;
#ifdef B3_ALLOCATOR_STATISTICS
b3g_numAlignedFree++;
#endif
if (ptr)
{
real = *((void **)(ptr)-1);
int size = *((int *)(ptr)-2);
#ifdef B3_ALLOCATOR_STATISTICS
b3g_totalBytesAlignedAllocs -= size;
#endif
b3Printf("free #%d at address %x, from %s,line %d, size %d\n", b3g_numAlignedFree, real, filename, line, size);
b3s_freeFunc(real);
@@ -157,7 +161,9 @@ void b3AlignedFreeInternal(void *ptr, int line, char *filename)
void *b3AlignedAllocInternal(size_t size, int alignment)
{
#ifdef B3_ALLOCATOR_STATISTICS
b3g_numAlignedAllocs++;
#endif
void *ptr;
ptr = b3s_alignedAllocFunc(size, alignment);
// b3Printf("b3AlignedAllocInternal %d, %x\n",size,ptr);
@@ -170,8 +176,9 @@ void b3AlignedFreeInternal(void *ptr)
{
return;
}
#ifdef B3_ALLOCATOR_STATISTICS
b3g_numAlignedFree++;
#endif
// b3Printf("b3AlignedFreeInternal %x\n",ptr);
b3s_alignedFreeFunc(ptr);
}

View File

@@ -34,6 +34,8 @@ class btCollisionObject;
class btCollisionShape;
extern btShapePairCallback gCompoundCompoundChildShapePairCallback;
/// btCompoundCompoundCollisionAlgorithm supports collision between two btCompoundCollisionShape shapes
class btCompoundCompoundCollisionAlgorithm : public btCompoundCollisionAlgorithm
{

View File

@@ -1,5 +1,5 @@
#ifndef GIM_BOX_SET_H_INCLUDED
#define GIM_BOX_SET_H_INCLUDED
#ifndef BT_GIMPACT_BVH_H_INCLUDED
#define BT_GIMPACT_BVH_H_INCLUDED
/*! \file gim_box_set.h
\author Francisco Leon Najera
@@ -306,4 +306,4 @@ public:
btPairSet& collision_pairs);
};
#endif // GIM_BOXPRUNING_H_INCLUDED
#endif // BT_GIMPACT_BVH_H_INCLUDED

View File

@@ -36,9 +36,6 @@ btScalar gGjkEpaPenetrationTolerance = 1.0e-12;
btScalar gGjkEpaPenetrationTolerance = 0.001;
#endif
//temp globals, to improve GJK/EPA/penetration calculations
int gNumDeepPenetrationChecks = 0;
int gNumGjkChecks = 0;
btGjkPairDetector::btGjkPairDetector(const btConvexShape *objectA, const btConvexShape *objectB, btSimplexSolverInterface *simplexSolver, btConvexPenetrationDepthSolver *penetrationDepthSolver)
: m_cachedSeparatingAxis(btScalar(0.), btScalar(1.), btScalar(0.)),
@@ -708,7 +705,6 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput &inpu
btScalar marginA = m_marginA;
btScalar marginB = m_marginB;
gNumGjkChecks++;
//for CCD we don't use margins
if (m_ignoreMargin)
@@ -1021,7 +1017,6 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput &inpu
// Penetration depth case.
btVector3 tmpPointOnA, tmpPointOnB;
gNumDeepPenetrationChecks++;
m_cachedSeparatingAxis.setZero();
bool isValid2 = m_penetrationDepthSolver->calcPenDepth(

View File

@@ -62,6 +62,8 @@ struct btContactSolverInfoData
btScalar m_singleAxisRollingFrictionThreshold;
btScalar m_leastSquaresResidualThreshold;
btScalar m_restitutionVelocityThreshold;
bool m_jointFeedbackInWorldSpace;
bool m_jointFeedbackInJointFrame;
};
struct btContactSolverInfo : public btContactSolverInfoData
@@ -94,6 +96,8 @@ struct btContactSolverInfo : public btContactSolverInfoData
m_singleAxisRollingFrictionThreshold = 1e30f; ///if the velocity is above this threshold, it will use a single constraint row (axis), otherwise 3 rows.
m_leastSquaresResidualThreshold = 0.f;
m_restitutionVelocityThreshold = 0.2f; //if the relative velocity is below this threshold, there is zero restitution
m_jointFeedbackInWorldSpace = false;
m_jointFeedbackInJointFrame = false;
}
};

View File

@@ -30,9 +30,6 @@
//#include "Bullet3Common/b3Logging.h"
// #define INCLUDE_GYRO_TERM
///todo: determine if we need these options. If so, make a proper API, otherwise delete those globals
bool gJointFeedbackInWorldSpace = false;
bool gJointFeedbackInJointFrame = false;
namespace
{
@@ -718,10 +715,12 @@ inline btMatrix3x3 outerProduct(const btVector3 &v0, const btVector3 &v1) //ren
//
void btMultiBody::computeAccelerationsArticulatedBodyAlgorithmMultiDof(btScalar dt,
btAlignedObjectArray<btScalar> &scratch_r,
btAlignedObjectArray<btVector3> &scratch_v,
btAlignedObjectArray<btMatrix3x3> &scratch_m,
bool isConstraintPass)
btAlignedObjectArray<btScalar> &scratch_r,
btAlignedObjectArray<btVector3> &scratch_v,
btAlignedObjectArray<btMatrix3x3> &scratch_m,
bool isConstraintPass,
bool jointFeedbackInWorldSpace,
bool jointFeedbackInJointFrame)
{
// Implement Featherstone's algorithm to calculate joint accelerations (q_double_dot)
// and the base linear & angular accelerations.
@@ -1124,7 +1123,7 @@ void btMultiBody::computeAccelerationsArticulatedBodyAlgorithmMultiDof(btScalar
btVector3 angularBotVec = (spatInertia[i + 1] * spatAcc[i + 1] + zeroAccSpatFrc[i + 1]).m_bottomVec;
btVector3 linearTopVec = (spatInertia[i + 1] * spatAcc[i + 1] + zeroAccSpatFrc[i + 1]).m_topVec;
if (gJointFeedbackInJointFrame)
if (jointFeedbackInJointFrame)
{
//shift the reaction forces to the joint frame
//linear (force) component is the same
@@ -1132,7 +1131,7 @@ void btMultiBody::computeAccelerationsArticulatedBodyAlgorithmMultiDof(btScalar
angularBotVec = angularBotVec - linearTopVec.cross(m_links[i].m_dVector);
}
if (gJointFeedbackInWorldSpace)
if (jointFeedbackInWorldSpace)
{
if (isConstraintPass)
{

View File

@@ -338,17 +338,20 @@ public:
btAlignedObjectArray<btScalar> & scratch_r,
btAlignedObjectArray<btVector3> & scratch_v,
btAlignedObjectArray<btMatrix3x3> & scratch_m,
bool isConstraintPass = false);
bool isConstraintPass,
bool jointFeedbackInWorldSpace,
bool jointFeedbackInJointFrame
);
///stepVelocitiesMultiDof is deprecated, use computeAccelerationsArticulatedBodyAlgorithmMultiDof instead
void stepVelocitiesMultiDof(btScalar dt,
btAlignedObjectArray<btScalar> & scratch_r,
btAlignedObjectArray<btVector3> & scratch_v,
btAlignedObjectArray<btMatrix3x3> & scratch_m,
bool isConstraintPass = false)
{
computeAccelerationsArticulatedBodyAlgorithmMultiDof(dt, scratch_r, scratch_v, scratch_m, isConstraintPass);
}
//void stepVelocitiesMultiDof(btScalar dt,
// btAlignedObjectArray<btScalar> & scratch_r,
// btAlignedObjectArray<btVector3> & scratch_v,
// btAlignedObjectArray<btMatrix3x3> & scratch_m,
// bool isConstraintPass = false)
//{
// computeAccelerationsArticulatedBodyAlgorithmMultiDof(dt, scratch_r, scratch_v, scratch_m, isConstraintPass, false, false);
//}
// calcAccelerationDeltasMultiDof
// input: force vector (in same format as jacobian, i.e.:

View File

@@ -491,11 +491,14 @@ void btMultiBodyDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
m_scratch_v.resize(bod->getNumLinks() + 1);
m_scratch_m.resize(bod->getNumLinks() + 1);
bool doNotUpdatePos = false;
bool isConstraintPass = false;
{
if (!bod->isUsingRK4Integration())
{
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(solverInfo.m_timeStep, m_scratch_r, m_scratch_v, m_scratch_m);
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(solverInfo.m_timeStep,
m_scratch_r, m_scratch_v, m_scratch_m,isConstraintPass,
getSolverInfo().m_jointFeedbackInWorldSpace,
getSolverInfo().m_jointFeedbackInJointFrame);
}
else
{
@@ -593,7 +596,9 @@ void btMultiBodyDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
btScalar h = solverInfo.m_timeStep;
#define output &m_scratch_r[bod->getNumDofs()]
//calc qdd0 from: q0 & qd0
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m);
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m,
isConstraintPass,getSolverInfo().m_jointFeedbackInWorldSpace,
getSolverInfo().m_jointFeedbackInJointFrame);
pCopy(output, scratch_qdd0, 0, numDofs);
//calc q1 = q0 + h/2 * qd0
pResetQx();
@@ -603,7 +608,9 @@ void btMultiBodyDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
//
//calc qdd1 from: q1 & qd1
pCopyToVelocityVector(bod, scratch_qd1);
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m);
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m,
isConstraintPass,getSolverInfo().m_jointFeedbackInWorldSpace,
getSolverInfo().m_jointFeedbackInJointFrame);
pCopy(output, scratch_qdd1, 0, numDofs);
//calc q2 = q0 + h/2 * qd1
pResetQx();
@@ -613,7 +620,9 @@ void btMultiBodyDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
//
//calc qdd2 from: q2 & qd2
pCopyToVelocityVector(bod, scratch_qd2);
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m);
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m,
isConstraintPass,getSolverInfo().m_jointFeedbackInWorldSpace,
getSolverInfo().m_jointFeedbackInJointFrame);
pCopy(output, scratch_qdd2, 0, numDofs);
//calc q3 = q0 + h * qd2
pResetQx();
@@ -623,7 +632,9 @@ void btMultiBodyDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
//
//calc qdd3 from: q3 & qd3
pCopyToVelocityVector(bod, scratch_qd3);
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m);
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m,
isConstraintPass,getSolverInfo().m_jointFeedbackInWorldSpace,
getSolverInfo().m_jointFeedbackInJointFrame);
pCopy(output, scratch_qdd3, 0, numDofs);
//
@@ -660,7 +671,9 @@ void btMultiBodyDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
{
for (int link = 0; link < bod->getNumLinks(); ++link)
bod->getLink(link).updateCacheMultiDof();
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0, m_scratch_r, m_scratch_v, m_scratch_m);
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0, m_scratch_r, m_scratch_v, m_scratch_m,
isConstraintPass,getSolverInfo().m_jointFeedbackInWorldSpace,
getSolverInfo().m_jointFeedbackInJointFrame);
}
}
}
@@ -708,7 +721,9 @@ void btMultiBodyDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
if (!bod->isUsingRK4Integration())
{
bool isConstraintPass = true;
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(solverInfo.m_timeStep, m_scratch_r, m_scratch_v, m_scratch_m, isConstraintPass);
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(solverInfo.m_timeStep, m_scratch_r, m_scratch_v, m_scratch_m, isConstraintPass,
getSolverInfo().m_jointFeedbackInWorldSpace,
getSolverInfo().m_jointFeedbackInJointFrame);
}
}
}

View File

@@ -1,3 +1,4 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2018 Erwin Coumans http://bulletphysics.com
@@ -72,7 +73,7 @@ public:
pthread_t thread;
//each tread will wait until this signal to start its work
sem_t* startSemaphore;
btCriticalSection* m_cs;
// this is a copy of m_mainSemaphore,
//each tread will signal once it is finished with its work
sem_t* m_mainSemaphore;
@@ -90,7 +91,7 @@ private:
void startThreads(const ConstructionInfo& threadInfo);
void stopThreads();
int waitForResponse();
btCriticalSection* m_cs;
public:
btThreadSupportPosix(const ConstructionInfo& threadConstructionInfo);
virtual ~btThreadSupportPosix();
@@ -119,6 +120,7 @@ public:
btThreadSupportPosix::btThreadSupportPosix(const ConstructionInfo& threadConstructionInfo)
{
m_cs = createCriticalSection();
startThreads(threadConstructionInfo);
}
@@ -126,6 +128,8 @@ btThreadSupportPosix::btThreadSupportPosix(const ConstructionInfo& threadConstru
btThreadSupportPosix::~btThreadSupportPosix()
{
stopThreads();
deleteCriticalSection(m_cs);
m_cs=0;
}
#if (defined(__APPLE__))
@@ -181,21 +185,23 @@ static void* threadFunction(void* argument)
{
btAssert(status->m_status);
status->m_userThreadFunc(userPtr);
status->m_cs->lock();
status->m_status = 2;
status->m_cs->unlock();
checkPThreadFunction(sem_post(status->m_mainSemaphore));
status->threadUsed++;
}
else
{
//exit Thread
status->m_cs->lock();
status->m_status = 3;
status->m_cs->unlock();
checkPThreadFunction(sem_post(status->m_mainSemaphore));
printf("Thread with taskId %i exiting\n", status->m_taskId);
break;
}
}
printf("Thread TERMINATED\n");
return 0;
}
@@ -206,7 +212,7 @@ void btThreadSupportPosix::runTask(int threadIndex, void* userData)
btThreadStatus& threadStatus = m_activeThreadStatus[threadIndex];
btAssert(threadIndex >= 0);
btAssert(threadIndex < m_activeThreadStatus.size());
threadStatus.m_cs = m_cs;
threadStatus.m_commandId = 1;
threadStatus.m_status = 1;
threadStatus.m_userPtr = userData;
@@ -231,7 +237,10 @@ int btThreadSupportPosix::waitForResponse()
for (size_t t = 0; t < size_t(m_activeThreadStatus.size()); ++t)
{
if (2 == m_activeThreadStatus[t].m_status)
m_cs->lock();
bool hasFinished = (2 == m_activeThreadStatus[t].m_status);
m_cs->unlock();
if (hasFinished)
{
last = t;
break;
@@ -261,7 +270,6 @@ void btThreadSupportPosix::waitForAllTasks()
void btThreadSupportPosix::startThreads(const ConstructionInfo& threadConstructionInfo)
{
m_numThreads = btGetNumHardwareThreads() - 1; // main thread exists already
printf("%s creating %i threads.\n", __FUNCTION__, m_numThreads);
m_activeThreadStatus.resize(m_numThreads);
m_startedThreadsMask = 0;
@@ -270,20 +278,18 @@ void btThreadSupportPosix::startThreads(const ConstructionInfo& threadConstructi
for (int i = 0; i < m_numThreads; i++)
{
printf("starting thread %d\n", i);
btThreadStatus& threadStatus = m_activeThreadStatus[i];
threadStatus.startSemaphore = createSem("threadLocal");
checkPThreadFunction(pthread_create(&threadStatus.thread, NULL, &threadFunction, (void*)&threadStatus));
threadStatus.m_userPtr = 0;
threadStatus.m_cs = m_cs;
threadStatus.m_taskId = i;
threadStatus.m_commandId = 0;
threadStatus.m_status = 0;
threadStatus.m_mainSemaphore = m_mainSemaphore;
threadStatus.m_userThreadFunc = threadConstructionInfo.m_userThreadFunc;
threadStatus.threadUsed = 0;
checkPThreadFunction(pthread_create(&threadStatus.thread, NULL, &threadFunction, (void*)&threadStatus));
printf("started thread %d \n", i);
}
}
@@ -293,20 +299,15 @@ void btThreadSupportPosix::stopThreads()
for (size_t t = 0; t < size_t(m_activeThreadStatus.size()); ++t)
{
btThreadStatus& threadStatus = m_activeThreadStatus[t];
printf("%s: Thread %i used: %ld\n", __FUNCTION__, int(t), threadStatus.threadUsed);
threadStatus.m_userPtr = 0;
checkPThreadFunction(sem_post(threadStatus.startSemaphore));
checkPThreadFunction(sem_wait(m_mainSemaphore));
printf("destroy semaphore\n");
destroySem(threadStatus.startSemaphore);
printf("semaphore destroyed\n");
checkPThreadFunction(pthread_join(threadStatus.thread, 0));
}
printf("destroy main semaphore\n");
destroySem(m_mainSemaphore);
printf("main semaphore destroyed\n");
m_activeThreadStatus.clear();
}

View File

@@ -694,6 +694,24 @@ void CProfileManager::dumpAll()
CProfileManager::Release_Iterator(profileIterator);
}
void btEnterProfileZoneDefault(const char* name)
{
}
void btLeaveProfileZoneDefault()
{
}
#else
void btEnterProfileZoneDefault(const char* name)
{
}
void btLeaveProfileZoneDefault()
{
}
#endif //BT_NO_PROFILE
// clang-format off
#if defined(_WIN32) && (defined(__MINGW32__) || defined(__MINGW64__))
#define BT_HAVE_TLS 1
@@ -743,22 +761,6 @@ unsigned int btQuickprofGetCurrentThreadIndex2()
#endif //BT_THREADSAFE
}
void btEnterProfileZoneDefault(const char* name)
{
}
void btLeaveProfileZoneDefault()
{
}
#else
void btEnterProfileZoneDefault(const char* name)
{
}
void btLeaveProfileZoneDefault()
{
}
#endif //BT_NO_PROFILE
static btEnterProfileZoneFunc* bts_enterFunc = btEnterProfileZoneDefault;
static btLeaveProfileZoneFunc* bts_leaveFunc = btLeaveProfileZoneDefault;

View File

@@ -61,18 +61,19 @@ btLeaveProfileZoneFunc* btGetCurrentLeaveProfileZoneFunc();
void btSetCustomEnterProfileZoneFunc(btEnterProfileZoneFunc* enterFunc);
void btSetCustomLeaveProfileZoneFunc(btLeaveProfileZoneFunc* leaveFunc);
#ifndef BT_NO_PROFILE // FIX redefinition
//To disable built-in profiling, please comment out next line
//#define BT_NO_PROFILE 1
#ifndef BT_ENABLE_PROFILE
#define BT_NO_PROFILE 1
#endif //BT_NO_PROFILE
const unsigned int BT_QUICKPROF_MAX_THREAD_COUNT = 64;
#ifndef BT_NO_PROFILE
//btQuickprofGetCurrentThreadIndex will return -1 if thread index cannot be determined,
//otherwise returns thread index in range [0..maxThreads]
unsigned int btQuickprofGetCurrentThreadIndex2();
#ifndef BT_NO_PROFILE
#include <stdio.h> //@todo remove this, backwards compatibility
#include "btAlignedAllocator.h"