Added multi-threaded collision detection. Original code is written for Cell SPU, but wrappers are provided to run on multi-core using Win32 Threads.
SpuLibspe2Support is on the todo list, so it can run on Cell Blade & PS3 Linux.
This commit is contained in:
@@ -0,0 +1,399 @@
|
||||
|
||||
#include "SpuGatheringCollisionTask.h"
|
||||
|
||||
#include "SpuDoubleBuffer.h"
|
||||
|
||||
#include "../SpuCollisionTaskProcess.h"
|
||||
#include "../SpuGatheringCollisionDispatcher.h" //for SPU_BATCHSIZE_BROADPHASE_PAIRS
|
||||
|
||||
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
|
||||
#include "SpuContactManifoldCollisionAlgorithm.h"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
|
||||
#include "SpuContactResult.h"
|
||||
#include "BulletCollision/CollisionShapes/btOptimizedBvh.h"
|
||||
#include "BulletCollision/CollisionShapes/btTriangleIndexVertexArray.h"
|
||||
#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
||||
#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h"
|
||||
#include "SpuMinkowskiPenetrationDepthSolver.h"
|
||||
#include "SpuGjkPairDetector.h"
|
||||
#include "SpuVoronoiSimplexSolver.h"
|
||||
|
||||
#include "SpuLocalSupport.h" //definition of SpuConvexPolyhedronVertexData
|
||||
|
||||
|
||||
#ifdef WIN32
|
||||
#define spu_printf printf
|
||||
#include <stdio.h>
|
||||
#endif
|
||||
|
||||
|
||||
//int gNumConvexPoints0=0;
|
||||
|
||||
///Make sure no destructors are called on this memory
|
||||
struct CollisionTask_LocalStoreMemory
|
||||
{
|
||||
|
||||
DoubleBuffer<unsigned char, MIDPHASE_WORKUNIT_PAGE_SIZE> g_workUnitTaskBuffers;
|
||||
btBroadphasePair gBroadphasePairs[SPU_BATCHSIZE_BROADPHASE_PAIRS];
|
||||
//SpuContactManifoldCollisionAlgorithm gSpuContactManifoldAlgo;
|
||||
ATTRIBUTE_ALIGNED16(char gSpuContactManifoldAlgo[sizeof(SpuContactManifoldCollisionAlgorithm)+128]);
|
||||
SpuContactManifoldCollisionAlgorithm* getlocalCollisionAlgorithm()
|
||||
{
|
||||
return (SpuContactManifoldCollisionAlgorithm*)&gSpuContactManifoldAlgo;
|
||||
|
||||
}
|
||||
btPersistentManifold gPersistentManifold;
|
||||
btBroadphaseProxy gProxy0;
|
||||
btBroadphaseProxy gProxy1;
|
||||
btCollisionObject gColObj0;
|
||||
btCollisionObject gColObj1;
|
||||
|
||||
static const int maxShapeSize = 256;//todo: make some compile-time assert that this is value is larger then sizeof(btCollisionShape)
|
||||
|
||||
ATTRIBUTE_ALIGNED16(char gCollisionShape0[maxShapeSize]);
|
||||
ATTRIBUTE_ALIGNED16(char gCollisionShape1[maxShapeSize]);
|
||||
|
||||
ATTRIBUTE_ALIGNED16(btScalar spuUnscaledVertex[4]);
|
||||
ATTRIBUTE_ALIGNED16(int spuIndices[16]);
|
||||
|
||||
ATTRIBUTE_ALIGNED16(btOptimizedBvh gOptimizedBvh);
|
||||
ATTRIBUTE_ALIGNED16(btTriangleIndexVertexArray gTriangleMeshInterface);
|
||||
///only a single mesh part for now, we can add support for multiple parts, but quantized trees don't support this at the moment
|
||||
ATTRIBUTE_ALIGNED16(btIndexedMesh gIndexMesh);
|
||||
|
||||
#define MAX_SPU_SUBTREE_HEADERS 32
|
||||
//1024
|
||||
ATTRIBUTE_ALIGNED16(btBvhSubtreeInfo gSubtreeHeaders[MAX_SPU_SUBTREE_HEADERS]);
|
||||
ATTRIBUTE_ALIGNED16(btQuantizedBvhNode gSubtreeNodes[MAX_SUBTREE_SIZE_IN_BYTES/sizeof(btQuantizedBvhNode)]);
|
||||
|
||||
SpuConvexPolyhedronVertexData* convexVertexData;
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
void* createCollisionLocalStoreMemory()
|
||||
{
|
||||
return new CollisionTask_LocalStoreMemory;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts)
|
||||
{
|
||||
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
//spu_printf("SPU: ProcessSpuConvexConvexCollision\n");
|
||||
#endif //DEBUG_SPU_COLLISION_DETECTION
|
||||
//CollisionShape* shape0 = (CollisionShape*)wuInput->m_collisionShapes[0];
|
||||
//CollisionShape* shape1 = (CollisionShape*)wuInput->m_collisionShapes[1];
|
||||
btPersistentManifold* manifold = (btPersistentManifold*)wuInput->m_persistentManifoldPtr;
|
||||
|
||||
|
||||
|
||||
bool genericGjk = true;
|
||||
|
||||
|
||||
|
||||
if (genericGjk)
|
||||
{
|
||||
//try generic GJK
|
||||
|
||||
SpuVoronoiSimplexSolver vsSolver;
|
||||
SpuMinkowskiPenetrationDepthSolver penetrationSolver;
|
||||
|
||||
void* shape0Ptr = wuInput->m_spuCollisionShapes[0];
|
||||
void* shape1Ptr = wuInput->m_spuCollisionShapes[1];
|
||||
int shapeType0 = wuInput->m_shapeType0;
|
||||
int shapeType1 = wuInput->m_shapeType1;
|
||||
float marginA = wuInput->m_collisionMargin0;
|
||||
float marginB = wuInput->m_collisionMargin1;
|
||||
|
||||
SpuClosestPointInput cpInput;
|
||||
cpInput.m_convexVertexData = lsMemPtr->convexVertexData;
|
||||
cpInput.m_transformA = wuInput->m_worldTransform0;
|
||||
cpInput.m_transformB = wuInput->m_worldTransform1;
|
||||
float sumMargin = (marginA+marginB);
|
||||
cpInput.m_maximumDistanceSquared = sumMargin * sumMargin;
|
||||
|
||||
uint64_t manifoldAddress = (uint64_t)manifold;
|
||||
btPersistentManifold* spuManifold=&lsMemPtr->gPersistentManifold;
|
||||
spuContacts.setContactInfo(spuManifold,manifoldAddress,wuInput->m_worldTransform0,wuInput->m_worldTransform1);
|
||||
|
||||
|
||||
SpuGjkPairDetector gjk(shape0Ptr,shape1Ptr,shapeType0,shapeType1,marginA,marginB,&vsSolver,&penetrationSolver);
|
||||
gjk.getClosestPoints(cpInput,spuContacts);//,debugDraw);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
void processCollisionTask(void* userPtr, void* lsMemPtr)
|
||||
{
|
||||
|
||||
SpuGatherAndProcessPairsTaskDesc* taskDescPtr = (SpuGatherAndProcessPairsTaskDesc*)userPtr;
|
||||
SpuGatherAndProcessPairsTaskDesc& taskDesc = *taskDescPtr;
|
||||
CollisionTask_LocalStoreMemory* colMemPtr = (CollisionTask_LocalStoreMemory*)lsMemPtr;
|
||||
CollisionTask_LocalStoreMemory& lsMem = *(colMemPtr);
|
||||
|
||||
SpuContactResult spuContacts;
|
||||
|
||||
uint64_t dmaInPtr = taskDesc.inPtr;
|
||||
unsigned int numPages = taskDesc.numPages;
|
||||
unsigned int numOnLastPage = taskDesc.numOnLastPage;
|
||||
|
||||
// prefetch first set of inputs and wait
|
||||
unsigned int nextNumOnPage = (numPages > 1)? MIDPHASE_NUM_WORKUNITS_PER_PAGE : numOnLastPage;
|
||||
lsMem.g_workUnitTaskBuffers.backBufferDmaGet(dmaInPtr, nextNumOnPage*sizeof(SpuGatherAndProcessWorkUnitInput), DMA_TAG(3));
|
||||
dmaInPtr += MIDPHASE_WORKUNIT_PAGE_SIZE;
|
||||
|
||||
for (unsigned int i = 0; i < numPages; i++)
|
||||
{
|
||||
// wait for back buffer dma and swap buffers
|
||||
unsigned char *inputPtr = lsMem.g_workUnitTaskBuffers.swapBuffers();
|
||||
|
||||
// number on current page is number prefetched last iteration
|
||||
unsigned int numOnPage = nextNumOnPage;
|
||||
|
||||
unsigned int j;
|
||||
|
||||
|
||||
// prefetch next set of inputs
|
||||
if (i < numPages-1)
|
||||
{
|
||||
nextNumOnPage = (i == numPages-2)? numOnLastPage : MIDPHASE_NUM_WORKUNITS_PER_PAGE;
|
||||
lsMem.g_workUnitTaskBuffers.backBufferDmaGet(dmaInPtr, nextNumOnPage*sizeof(SpuGatherAndProcessWorkUnitInput), DMA_TAG(3));
|
||||
dmaInPtr += MIDPHASE_WORKUNIT_PAGE_SIZE;
|
||||
}
|
||||
|
||||
SpuGatherAndProcessWorkUnitInput* wuInputs = reinterpret_cast<SpuGatherAndProcessWorkUnitInput *>(inputPtr);
|
||||
|
||||
for (j = 0; j < numOnPage; j++)
|
||||
{
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
printMidphaseInput(&wuInputs[j]);
|
||||
#endif //DEBUG_SPU_COLLISION_DETECTION
|
||||
|
||||
|
||||
int numPairs = wuInputs[j].m_endIndex - wuInputs[j].m_startIndex;
|
||||
|
||||
// printf("startIndex=%d, endIndex = %d\n",wuInputs[j].m_startIndex,wuInputs[j].m_endIndex);
|
||||
|
||||
|
||||
if (numPairs)
|
||||
{
|
||||
|
||||
{
|
||||
int dmaSize = numPairs*sizeof(SpuGatherAndProcessPairsTaskDesc);
|
||||
uint64_t dmaPpuAddress = wuInputs[j].m_pairArrayPtr+wuInputs[j].m_startIndex * sizeof(btBroadphasePair);
|
||||
cellDmaGet(&lsMem.gBroadphasePairs, dmaPpuAddress , dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
}
|
||||
|
||||
for (int p=0;p<numPairs;p++)
|
||||
{
|
||||
//for each broadphase pair, do something
|
||||
|
||||
btBroadphasePair& pair = lsMem.gBroadphasePairs[p];
|
||||
int userInfo = int(pair.m_userInfo);
|
||||
|
||||
if (userInfo == 2 && pair.m_algorithm && pair.m_pProxy0 && pair.m_pProxy1)
|
||||
{
|
||||
|
||||
{
|
||||
int dmaSize = sizeof(SpuContactManifoldCollisionAlgorithm);
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)pair.m_algorithm;
|
||||
cellDmaGet(&lsMem.gSpuContactManifoldAlgo, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
}
|
||||
|
||||
|
||||
|
||||
SpuCollisionPairInput collisionPairInput;
|
||||
collisionPairInput.m_persistentManifoldPtr = (uint64_t) lsMem.getlocalCollisionAlgorithm()->getContactManifoldPtr();
|
||||
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
spu_printf("SPU: manifoldPtr: %llx",collisionPairInput->m_persistentManifoldPtr);
|
||||
#endif //DEBUG_SPU_COLLISION_DETECTION
|
||||
|
||||
{
|
||||
int dmaSize = sizeof(btBroadphaseProxy);
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)pair.m_pProxy0;
|
||||
cellDmaGet(&lsMem.gProxy0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
}
|
||||
{
|
||||
int dmaSize = sizeof(btBroadphaseProxy);
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)pair.m_pProxy1;
|
||||
cellDmaGet(&lsMem.gProxy1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(2));
|
||||
}
|
||||
|
||||
//btCollisionObject* colObj0 = (btCollisionObject*)gProxy0.m_clientObject;
|
||||
//btCollisionObject* colObj1 = (btCollisionObject*)gProxy1.m_clientObject;
|
||||
|
||||
{
|
||||
int dmaSize = sizeof(btCollisionObject);
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gProxy0.m_clientObject;
|
||||
cellDmaGet(&lsMem.gColObj0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
}
|
||||
{
|
||||
int dmaSize = sizeof(btCollisionObject);
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gProxy1.m_clientObject;
|
||||
cellDmaGet(&lsMem.gColObj1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(2));
|
||||
}
|
||||
|
||||
|
||||
|
||||
///can wait on the combined DMA_MASK, or dma on the same tag
|
||||
|
||||
collisionPairInput.m_shapeType0 = lsMem.getlocalCollisionAlgorithm()->getShapeType0();
|
||||
collisionPairInput.m_shapeType1 = lsMem.getlocalCollisionAlgorithm()->getShapeType1();
|
||||
collisionPairInput.m_collisionMargin0 = lsMem.getlocalCollisionAlgorithm()->getCollisionMargin0();
|
||||
collisionPairInput.m_collisionMargin1 = lsMem.getlocalCollisionAlgorithm()->getCollisionMargin1();
|
||||
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
spu_printf("SPU collisionPairInput->m_shapeType0 = %d\n",collisionPairInput->m_shapeType0);
|
||||
spu_printf("SPU collisionPairInput->m_shapeType1 = %d\n",collisionPairInput->m_shapeType1);
|
||||
#endif //DEBUG_SPU_COLLISION_DETECTION
|
||||
|
||||
if (1)
|
||||
{
|
||||
|
||||
collisionPairInput.m_worldTransform0 = lsMem.gColObj0.getWorldTransform();
|
||||
collisionPairInput.m_worldTransform1 = lsMem.gColObj1.getWorldTransform();
|
||||
|
||||
|
||||
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
spu_printf("SPU worldTrans0.origin = (%f,%f,%f)\n",
|
||||
collisionPairInput->m_worldTransform0.getOrigin().getX(),
|
||||
collisionPairInput->m_worldTransform0.getOrigin().getY(),
|
||||
collisionPairInput->m_worldTransform0.getOrigin().getZ());
|
||||
|
||||
spu_printf("SPU worldTrans1.origin = (%f,%f,%f)\n",
|
||||
collisionPairInput->m_worldTransform1.getOrigin().getX(),
|
||||
collisionPairInput->m_worldTransform1.getOrigin().getY(),
|
||||
collisionPairInput->m_worldTransform1.getOrigin().getZ());
|
||||
#endif //DEBUG_SPU_COLLISION_DETECTION
|
||||
|
||||
|
||||
{
|
||||
int dmaSize = sizeof(btPersistentManifold);
|
||||
uint64_t dmaPpuAddress2 = collisionPairInput.m_persistentManifoldPtr;
|
||||
cellDmaGet(&lsMem.gPersistentManifold, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
}
|
||||
|
||||
if (btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType0)
|
||||
&& btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType1))
|
||||
{
|
||||
|
||||
{
|
||||
int dmaSize = lsMem.maxShapeSize;
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj0.getCollisionShape();
|
||||
cellDmaGet(lsMem.gCollisionShape0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
}
|
||||
{
|
||||
int dmaSize = lsMem.maxShapeSize;
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj1.getCollisionShape();
|
||||
cellDmaGet(lsMem.gCollisionShape1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(2));
|
||||
}
|
||||
|
||||
btConvexShape* spuConvexShape0 = (btConvexShape*)lsMem.gCollisionShape0;
|
||||
btConvexShape* spuConvexShape1 = (btConvexShape*)lsMem.gCollisionShape1;
|
||||
|
||||
btVector3 dim0 = spuConvexShape0->getImplicitShapeDimensions();
|
||||
btVector3 dim1 = spuConvexShape1->getImplicitShapeDimensions();
|
||||
|
||||
collisionPairInput.m_primitiveDimensions0 = dim0;
|
||||
collisionPairInput.m_primitiveDimensions1 = dim1;
|
||||
collisionPairInput.m_collisionShapes[0] = (uint64_t)lsMem.gColObj0.getCollisionShape();
|
||||
collisionPairInput.m_collisionShapes[1] = (uint64_t)lsMem.gColObj1.getCollisionShape();
|
||||
collisionPairInput.m_spuCollisionShapes[0] = spuConvexShape0;
|
||||
collisionPairInput.m_spuCollisionShapes[1] = spuConvexShape1;
|
||||
ProcessSpuConvexConvexCollision(&collisionPairInput,&lsMem, spuContacts);
|
||||
} else
|
||||
{
|
||||
//a non-convex shape is involved
|
||||
|
||||
bool isSwapped = false;
|
||||
bool handleConvexConcave = false;
|
||||
|
||||
if (btBroadphaseProxy::isConcave(collisionPairInput.m_shapeType0) &&
|
||||
btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType1))
|
||||
{
|
||||
isSwapped = true;
|
||||
spu_printf("SPU convex/concave swapped, unsupported!\n");
|
||||
handleConvexConcave = true;
|
||||
}
|
||||
if (btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType0)&&
|
||||
btBroadphaseProxy::isConcave(collisionPairInput.m_shapeType1))
|
||||
{
|
||||
handleConvexConcave = true;
|
||||
}
|
||||
if (handleConvexConcave && !isSwapped)
|
||||
{
|
||||
// spu_printf("SPU: non-convex detected\n");
|
||||
|
||||
{
|
||||
// uint64_t dmaPpuAddress2 = (uint64_t)gProxy1.m_clientObject;
|
||||
// spu_printf("SPU: gColObj1 trimesh = %llx\n",dmaPpuAddress2);
|
||||
}
|
||||
|
||||
///dma and initialize the convex object
|
||||
{
|
||||
int dmaSize = lsMem.maxShapeSize;
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj0.getCollisionShape();
|
||||
cellDmaGet(lsMem.gCollisionShape0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
}
|
||||
///dma and initialize the convex object
|
||||
{
|
||||
int dmaSize = lsMem.maxShapeSize;
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj1.getCollisionShape();
|
||||
// spu_printf("SPU: trimesh = %llx\n",dmaPpuAddress2);
|
||||
cellDmaGet(lsMem.gCollisionShape1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(2));
|
||||
}
|
||||
btConvexShape* spuConvexShape0 = (btConvexShape*)lsMem.gCollisionShape0;
|
||||
btBvhTriangleMeshShape* trimeshShape = (btBvhTriangleMeshShape*)lsMem.gCollisionShape1;
|
||||
|
||||
btVector3 dim0 = spuConvexShape0->getImplicitShapeDimensions();
|
||||
collisionPairInput.m_primitiveDimensions0 = dim0;
|
||||
collisionPairInput.m_collisionShapes[0] = (uint64_t)lsMem.gColObj0.getCollisionShape();
|
||||
collisionPairInput.m_collisionShapes[1] = (uint64_t)lsMem.gColObj1.getCollisionShape();
|
||||
collisionPairInput.m_spuCollisionShapes[0] = spuConvexShape0;
|
||||
collisionPairInput.m_spuCollisionShapes[1] = trimeshShape;
|
||||
|
||||
btAssert(0);
|
||||
//ProcessConvexConcaveSpuCollision(&collisionPairInput,spuContacts);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
spuContacts.flush();
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user