Added multi-threaded collision detection. Original code is written for Cell SPU, but wrappers are provided to run on multi-core using Win32 Threads.
SpuLibspe2Support is on the todo list, so it can run on Cell Blade & PS3 Linux.
This commit is contained in:
@@ -0,0 +1,310 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "SpuGjkPairDetector.h"
|
||||
#include "SpuConvexPenetrationDepthSolver.h"
|
||||
#include "SpuLocalSupport.h"
|
||||
|
||||
|
||||
#if defined(DEBUG) || defined (_DEBUG)
|
||||
#include <stdio.h> //for debug printf
|
||||
#ifdef __SPU__
|
||||
#include <spu_printf.h>
|
||||
#define printf spu_printf
|
||||
#endif //__SPU__
|
||||
#endif
|
||||
|
||||
//must be above the machine epsilon
|
||||
#define REL_ERROR2 btScalar(1.0e-6)
|
||||
|
||||
//temp globals, to improve GJK/EPA/penetration calculations
|
||||
int gSpuNumDeepPenetrationChecks = 0;
|
||||
int gSpuNumGjkChecks = 0;
|
||||
|
||||
|
||||
|
||||
SpuGjkPairDetector::SpuGjkPairDetector(void* objectA,void* objectB,int shapeTypeA, int shapeTypeB, float marginA,float marginB,SpuVoronoiSimplexSolver* simplexSolver, const SpuConvexPenetrationDepthSolver* penetrationDepthSolver)
|
||||
:m_cachedSeparatingAxis(float(0.),float(0.),float(1.)),
|
||||
m_penetrationDepthSolver(penetrationDepthSolver),
|
||||
m_simplexSolver(simplexSolver),
|
||||
m_minkowskiA(objectA),
|
||||
m_minkowskiB(objectB),
|
||||
m_shapeTypeA(shapeTypeA),
|
||||
m_shapeTypeB(shapeTypeB),
|
||||
m_marginA(marginA),
|
||||
m_marginB(marginB),
|
||||
m_ignoreMargin(false),
|
||||
m_lastUsedMethod(-1),
|
||||
m_catchDegeneracies(1)
|
||||
{
|
||||
}
|
||||
|
||||
void SpuGjkPairDetector::getClosestPoints(const SpuClosestPointInput& input,SpuContactResult& output)
|
||||
{
|
||||
btScalar distance=btScalar(0.);
|
||||
btVector3 normalInB(btScalar(0.),btScalar(0.),btScalar(0.));
|
||||
btVector3 pointOnA,pointOnB;
|
||||
btTransform localTransA = input.m_transformA;
|
||||
btTransform localTransB = input.m_transformB;
|
||||
btVector3 positionOffset = (localTransA.getOrigin() + localTransB.getOrigin()) * btScalar(0.5);
|
||||
localTransA.getOrigin() -= positionOffset;
|
||||
localTransB.getOrigin() -= positionOffset;
|
||||
|
||||
btScalar marginA = m_marginA;
|
||||
btScalar marginB = m_marginB;
|
||||
|
||||
gSpuNumGjkChecks++;
|
||||
|
||||
//for CCD we don't use margins
|
||||
if (m_ignoreMargin)
|
||||
{
|
||||
marginA = btScalar(0.);
|
||||
marginB = btScalar(0.);
|
||||
}
|
||||
|
||||
m_curIter = 0;
|
||||
int gGjkMaxIter = 1000;//this is to catch invalid input, perhaps check for #NaN?
|
||||
m_cachedSeparatingAxis.setValue(0,1,0);
|
||||
|
||||
bool isValid = false;
|
||||
bool checkSimplex = false;
|
||||
bool checkPenetration = true;
|
||||
m_degenerateSimplex = 0;
|
||||
|
||||
m_lastUsedMethod = -1;
|
||||
|
||||
{
|
||||
btScalar squaredDistance = SIMD_INFINITY;
|
||||
btScalar delta = btScalar(0.);
|
||||
|
||||
btScalar margin = marginA + marginB;
|
||||
|
||||
|
||||
|
||||
m_simplexSolver->reset();
|
||||
|
||||
for ( ; ; )
|
||||
//while (true)
|
||||
{
|
||||
|
||||
btVector3 seperatingAxisInA = (-m_cachedSeparatingAxis)* input.m_transformA.getBasis();
|
||||
btVector3 seperatingAxisInB = m_cachedSeparatingAxis* input.m_transformB.getBasis();
|
||||
|
||||
// btVector3 pInA = m_minkowskiA->localGetSupportingVertexWithoutMargin(seperatingAxisInA);
|
||||
// btVector3 qInB = m_minkowskiB->localGetSupportingVertexWithoutMargin(seperatingAxisInB);
|
||||
|
||||
btVector3 pInA = localGetSupportingVertexWithoutMargin(m_shapeTypeA, m_minkowskiA, seperatingAxisInA,input.m_convexVertexData);//, &featureIndexA);
|
||||
btVector3 qInB = localGetSupportingVertexWithoutMargin(m_shapeTypeB, m_minkowskiB, seperatingAxisInB,input.m_convexVertexData);//, &featureIndexB);
|
||||
|
||||
|
||||
btPoint3 pWorld = localTransA(pInA);
|
||||
btPoint3 qWorld = localTransB(qInB);
|
||||
|
||||
btVector3 w = pWorld - qWorld;
|
||||
delta = m_cachedSeparatingAxis.dot(w);
|
||||
|
||||
// potential exit, they don't overlap
|
||||
if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared))
|
||||
{
|
||||
checkPenetration = false;
|
||||
break;
|
||||
}
|
||||
|
||||
//exit 0: the new point is already in the simplex, or we didn't come any closer
|
||||
if (m_simplexSolver->inSimplex(w))
|
||||
{
|
||||
m_degenerateSimplex = 1;
|
||||
checkSimplex = true;
|
||||
break;
|
||||
}
|
||||
// are we getting any closer ?
|
||||
btScalar f0 = squaredDistance - delta;
|
||||
btScalar f1 = squaredDistance * REL_ERROR2;
|
||||
|
||||
if (f0 <= f1)
|
||||
{
|
||||
if (f0 <= btScalar(0.))
|
||||
{
|
||||
m_degenerateSimplex = 2;
|
||||
}
|
||||
checkSimplex = true;
|
||||
break;
|
||||
}
|
||||
//add current vertex to simplex
|
||||
m_simplexSolver->addVertex(w, pWorld, qWorld);
|
||||
|
||||
//calculate the closest point to the origin (update vector v)
|
||||
if (!m_simplexSolver->closest(m_cachedSeparatingAxis))
|
||||
{
|
||||
m_degenerateSimplex = 3;
|
||||
checkSimplex = true;
|
||||
break;
|
||||
}
|
||||
|
||||
btScalar previousSquaredDistance = squaredDistance;
|
||||
squaredDistance = m_cachedSeparatingAxis.length2();
|
||||
|
||||
//redundant m_simplexSolver->compute_points(pointOnA, pointOnB);
|
||||
|
||||
//are we getting any closer ?
|
||||
if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance)
|
||||
{
|
||||
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
|
||||
checkSimplex = true;
|
||||
break;
|
||||
}
|
||||
|
||||
//degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject
|
||||
if (m_curIter++ > gGjkMaxIter)
|
||||
{
|
||||
#if defined(DEBUG) || defined (_DEBUG)
|
||||
|
||||
printf("SpuGjkPairDetector maxIter exceeded:%i\n",m_curIter);
|
||||
printf("sepAxis=(%f,%f,%f), squaredDistance = %f, shapeTypeA=%i,shapeTypeB=%i\n",
|
||||
m_cachedSeparatingAxis.getX(),
|
||||
m_cachedSeparatingAxis.getY(),
|
||||
m_cachedSeparatingAxis.getZ(),
|
||||
squaredDistance,
|
||||
m_shapeTypeA,
|
||||
m_shapeTypeB);
|
||||
|
||||
#endif
|
||||
break;
|
||||
|
||||
}
|
||||
|
||||
|
||||
bool check = (!m_simplexSolver->fullSimplex());
|
||||
//bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex());
|
||||
|
||||
if (!check)
|
||||
{
|
||||
//do we need this backup_closest here ?
|
||||
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (checkSimplex)
|
||||
{
|
||||
m_simplexSolver->compute_points(pointOnA, pointOnB);
|
||||
normalInB = pointOnA-pointOnB;
|
||||
btScalar lenSqr = m_cachedSeparatingAxis.length2();
|
||||
//valid normal
|
||||
if (lenSqr < 0.0001)
|
||||
{
|
||||
m_degenerateSimplex = 5;
|
||||
}
|
||||
if (lenSqr > SIMD_EPSILON*SIMD_EPSILON)
|
||||
{
|
||||
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
|
||||
normalInB *= rlen; //normalize
|
||||
btScalar s = btSqrt(squaredDistance);
|
||||
|
||||
btAssert(s > btScalar(0.0));
|
||||
pointOnA -= m_cachedSeparatingAxis * (marginA / s);
|
||||
pointOnB += m_cachedSeparatingAxis * (marginB / s);
|
||||
distance = ((btScalar(1.)/rlen) - margin);
|
||||
isValid = true;
|
||||
|
||||
m_lastUsedMethod = 1;
|
||||
} else
|
||||
{
|
||||
m_lastUsedMethod = 2;
|
||||
}
|
||||
}
|
||||
|
||||
bool catchDegeneratePenetrationCase =
|
||||
(m_catchDegeneracies && m_penetrationDepthSolver && m_degenerateSimplex && ((distance+margin) < 0.01));
|
||||
|
||||
//if (checkPenetration && !isValid)
|
||||
if (checkPenetration && (!isValid || catchDegeneratePenetrationCase ))
|
||||
{
|
||||
//penetration case
|
||||
|
||||
//if there is no way to handle penetrations, bail out
|
||||
if (m_penetrationDepthSolver)
|
||||
{
|
||||
// Penetration depth case.
|
||||
btVector3 tmpPointOnA,tmpPointOnB;
|
||||
|
||||
gSpuNumDeepPenetrationChecks++;
|
||||
|
||||
bool isValid2 = m_penetrationDepthSolver->calcPenDepth(
|
||||
*m_simplexSolver,
|
||||
m_minkowskiA,m_minkowskiB,
|
||||
m_shapeTypeA, m_shapeTypeB,
|
||||
marginA, marginB,
|
||||
localTransA,localTransB,
|
||||
m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB,
|
||||
0,input.m_stackAlloc,input.m_convexVertexData
|
||||
);
|
||||
|
||||
if (isValid2)
|
||||
{
|
||||
btVector3 tmpNormalInB = tmpPointOnB-tmpPointOnA;
|
||||
btScalar lenSqr = tmpNormalInB.length2();
|
||||
if (lenSqr > (SIMD_EPSILON*SIMD_EPSILON))
|
||||
{
|
||||
tmpNormalInB /= btSqrt(lenSqr);
|
||||
btScalar distance2 = -(tmpPointOnA-tmpPointOnB).length();
|
||||
//only replace valid penetrations when the result is deeper (check)
|
||||
if (!isValid || (distance2 < distance))
|
||||
{
|
||||
distance = distance2;
|
||||
pointOnA = tmpPointOnA;
|
||||
pointOnB = tmpPointOnB;
|
||||
normalInB = tmpNormalInB;
|
||||
isValid = true;
|
||||
m_lastUsedMethod = 3;
|
||||
} else
|
||||
{
|
||||
|
||||
}
|
||||
} else
|
||||
{
|
||||
//isValid = false;
|
||||
m_lastUsedMethod = 4;
|
||||
}
|
||||
} else
|
||||
{
|
||||
m_lastUsedMethod = 5;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (isValid)
|
||||
{
|
||||
#ifdef __SPU__
|
||||
//spu_printf("distance\n");
|
||||
#endif //__CELLOS_LV2__
|
||||
|
||||
|
||||
output.addContactPoint(
|
||||
normalInB,
|
||||
pointOnB+positionOffset,
|
||||
distance);
|
||||
//printf("gjk add:%f",distance);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user