Initial work on batch raycast support.

This commit is contained in:
johnmccutchan
2008-01-08 23:38:33 +00:00
parent abfe5c81f7
commit 702323f27a
12 changed files with 1392 additions and 0 deletions

View File

@@ -0,0 +1,464 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "SpuCollisionShapes.h"
btPoint3 localGetSupportingVertexWithoutMargin(int shapeType, void* shape, btVector3& localDir,struct SpuConvexPolyhedronVertexData* convexVertexData)//, int *featureIndex)
{
switch (shapeType)
{
case SPHERE_SHAPE_PROXYTYPE:
{
return btPoint3(0,0,0);
}
case BOX_SHAPE_PROXYTYPE:
{
// spu_printf("SPU: getSupport BOX_SHAPE_PROXYTYPE\n");
btConvexInternalShape* convexShape = (btConvexInternalShape*)shape;
const btVector3& halfExtents = convexShape->getImplicitShapeDimensions();
return btPoint3(
localDir.getX() < 0.0f ? -halfExtents.x() : halfExtents.x(),
localDir.getY() < 0.0f ? -halfExtents.y() : halfExtents.y(),
localDir.getZ() < 0.0f ? -halfExtents.z() : halfExtents.z());
}
case TRIANGLE_SHAPE_PROXYTYPE:
{
btVector3 dir(localDir.getX(),localDir.getY(),localDir.getZ());
btVector3* vertices = (btVector3*)shape;
btVector3 dots(dir.dot(vertices[0]), dir.dot(vertices[1]), dir.dot(vertices[2]));
btVector3 sup = vertices[dots.maxAxis()];
return btPoint3(sup.getX(),sup.getY(),sup.getZ());
break;
}
case CYLINDER_SHAPE_PROXYTYPE:
{
btCylinderShape* cylShape = (btCylinderShape*)shape;
//mapping of halfextents/dimension onto radius/height depends on how cylinder local orientation is (upAxis)
btVector3 halfExtents = cylShape->getImplicitShapeDimensions();
btVector3 v(localDir.getX(),localDir.getY(),localDir.getZ());
int cylinderUpAxis = cylShape->getUpAxis();
int XX(1),YY(0),ZZ(2);
switch (cylinderUpAxis)
{
case 0:
{
XX = 1;
YY = 0;
ZZ = 2;
break;
}
case 1:
{
XX = 0;
YY = 1;
ZZ = 2;
break;
}
case 2:
{
XX = 0;
YY = 2;
ZZ = 1;
break;
}
default:
btAssert(0);
//printf("SPU:localGetSupportingVertexWithoutMargin unknown Cylinder up-axis\n");
};
btScalar radius = halfExtents[XX];
btScalar halfHeight = halfExtents[cylinderUpAxis];
btVector3 tmp;
btScalar d ;
btScalar s = btSqrt(v[XX] * v[XX] + v[ZZ] * v[ZZ]);
if (s != btScalar(0.0))
{
d = radius / s;
tmp[XX] = v[XX] * d;
tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
tmp[ZZ] = v[ZZ] * d;
return btPoint3(tmp.getX(),tmp.getY(),tmp.getZ());
}
else
{
tmp[XX] = radius;
tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
tmp[ZZ] = btScalar(0.0);
return btPoint3(tmp.getX(),tmp.getY(),tmp.getZ());
}
}
case CAPSULE_SHAPE_PROXYTYPE:
{
//spu_printf("SPU: todo: getSupport CAPSULE_SHAPE_PROXYTYPE\n");
btVector3 vec0(localDir.getX(),localDir.getY(),localDir.getZ());
btConvexInternalShape* cnvxShape = (btConvexInternalShape*)shape;
btVector3 halfExtents = cnvxShape->getImplicitShapeDimensions();
btScalar halfHeight = halfExtents.getY();
btScalar radius = halfExtents.getX();
btVector3 supVec(0,0,0);
btScalar maxDot(btScalar(-1e30));
btVector3 vec = vec0;
btScalar lenSqr = vec.length2();
if (lenSqr < btScalar(0.0001))
{
vec.setValue(1,0,0);
} else
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
vec *= rlen;
}
btVector3 vtx;
btScalar newDot;
{
btVector3 pos(0,halfHeight,0);
vtx = pos +vec*(radius);
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = vtx;
}
}
{
btVector3 pos(0,-halfHeight,0);
vtx = pos +vec*(radius);
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = vtx;
}
}
return btPoint3(supVec.getX(),supVec.getY(),supVec.getZ());
break;
};
case CONVEX_HULL_SHAPE_PROXYTYPE:
{
//spu_printf("SPU: todo: getSupport CONVEX_HULL_SHAPE_PROXYTYPE\n");
btPoint3* points = 0;
int numPoints = 0;
points = convexVertexData->gConvexPoints;
numPoints = convexVertexData->gNumConvexPoints;
// spu_printf("numPoints = %d\n",numPoints);
btVector3 supVec(btScalar(0.),btScalar(0.),btScalar(0.));
btScalar newDot,maxDot = btScalar(-1e30);
btVector3 vec0(localDir.getX(),localDir.getY(),localDir.getZ());
btVector3 vec = vec0;
btScalar lenSqr = vec.length2();
if (lenSqr < btScalar(0.0001))
{
vec.setValue(1,0,0);
} else
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
vec *= rlen;
}
for (int i=0;i<numPoints;i++)
{
btPoint3 vtx = points[i];// * m_localScaling;
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = vtx;
}
}
return btPoint3(supVec.getX(),supVec.getY(),supVec.getZ());
break;
};
default:
//spu_printf("SPU:(type %i) missing support function\n",shapeType);
#if __ASSERT
spu_printf("localGetSupportingVertexWithoutMargin() - Unsupported bound type: %d.\n", shapeType);
#endif // __ASSERT
return btPoint3(0.f, 0.f, 0.f);
}
}
void computeAabb (btVector3& aabbMin, btVector3& aabbMax, btConvexInternalShape* convexShape, ppu_address_t convexShapePtr, int shapeType, btTransform xform)
{
//calculate the aabb, given the types...
switch (shapeType)
{
case CYLINDER_SHAPE_PROXYTYPE:
/* fall through */
case BOX_SHAPE_PROXYTYPE:
{
float margin=convexShape->getMarginNV();
btVector3 halfExtents = convexShape->getImplicitShapeDimensions();
btTransform& t = xform;
btMatrix3x3 abs_b = t.getBasis().absolute();
btPoint3 center = t.getOrigin();
btVector3 extent = btVector3(abs_b[0].dot(halfExtents),abs_b[1].dot(halfExtents),abs_b[2].dot(halfExtents));
extent += btVector3(margin,margin,margin);
aabbMin = center - extent;
aabbMax = center + extent;
break;
}
case CAPSULE_SHAPE_PROXYTYPE:
{
float margin=convexShape->getMarginNV();
btVector3 halfExtents = convexShape->getImplicitShapeDimensions();
//add the radius to y-axis to get full height
btScalar radius = halfExtents[0];
halfExtents[1] += radius;
btTransform& t = xform;
btMatrix3x3 abs_b = t.getBasis().absolute();
btPoint3 center = t.getOrigin();
btVector3 extent = btVector3(abs_b[0].dot(halfExtents),abs_b[1].dot(halfExtents),abs_b[2].dot(halfExtents));
extent += btVector3(margin,margin,margin);
aabbMin = center - extent;
aabbMax = center + extent;
break;
}
case SPHERE_SHAPE_PROXYTYPE:
{
float radius = convexShape->getImplicitShapeDimensions().getX();// * convexShape->getLocalScaling().getX();
float margin = radius + convexShape->getMarginNV();
btTransform& t = xform;
const btVector3& center = t.getOrigin();
btVector3 extent(margin,margin,margin);
aabbMin = center - extent;
aabbMax = center + extent;
break;
}
case CONVEX_HULL_SHAPE_PROXYTYPE:
{
ATTRIBUTE_ALIGNED16(char convexHullShape0[sizeof(btConvexHullShape)]);
cellDmaGet(&convexHullShape0, convexShapePtr , sizeof(btConvexHullShape), DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
btConvexHullShape* localPtr = (btConvexHullShape*)&convexHullShape0;
btTransform& t = xform;
btScalar margin = convexShape->getMarginNV();
localPtr->getNonvirtualAabb(t,aabbMin,aabbMax,margin);
//spu_printf("SPU convex aabbMin=%f,%f,%f=\n",aabbMin.getX(),aabbMin.getY(),aabbMin.getZ());
//spu_printf("SPU convex aabbMax=%f,%f,%f=\n",aabbMax.getX(),aabbMax.getY(),aabbMax.getZ());
break;
}
default:
spu_printf("SPU: unsupported shapetype %d in AABB calculation\n");
};
}
void dmaBvhShapeData (bvhMeshShape_LocalStoreMemory* bvhMeshShape, btBvhTriangleMeshShape* triMeshShape)
{
register int dmaSize;
register ppu_address_t dmaPpuAddress2;
dmaSize = sizeof(btTriangleIndexVertexArray);
dmaPpuAddress2 = reinterpret_cast<ppu_address_t>(triMeshShape->getMeshInterface());
// spu_printf("trimeshShape->getMeshInterface() == %llx\n",dmaPpuAddress2);
bvhMeshShape->gTriangleMeshInterfacePtr = (btTriangleIndexVertexArray*)cellDmaGetReadOnly(&bvhMeshShape->gTriangleMeshInterfaceStorage, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
///now DMA over the BVH
dmaSize = sizeof(btOptimizedBvh);
dmaPpuAddress2 = reinterpret_cast<ppu_address_t>(triMeshShape->getOptimizedBvh());
//spu_printf("trimeshShape->getOptimizedBvh() == %llx\n",dmaPpuAddress2);
cellDmaGet(&bvhMeshShape->gOptimizedBvh, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(2));
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
}
void dmaBvhIndexedMesh (btIndexedMesh* IndexMesh, IndexedMeshArray& indexArray, int index, uint32_t dmaTag)
{
cellDmaGet(IndexMesh, (ppu_address_t)&indexArray[index] , sizeof(btIndexedMesh), DMA_TAG(dmaTag), 0, 0);
}
void dmaBvhSubTreeHeaders (btBvhSubtreeInfo* subTreeHeaders, ppu_address_t subTreePtr, int batchSize, uint32_t dmaTag)
{
cellDmaGet(subTreeHeaders, subTreePtr, batchSize * sizeof(btBvhSubtreeInfo), DMA_TAG(dmaTag), 0, 0);
}
void dmaBvhSubTreeNodes (btQuantizedBvhNode* nodes, const btBvhSubtreeInfo& subtree, QuantizedNodeArray& nodeArray, int dmaTag)
{
cellDmaGet(nodes, reinterpret_cast<ppu_address_t>(&nodeArray[subtree.m_rootNodeIndex]) , subtree.m_subtreeSize* sizeof(btQuantizedBvhNode), DMA_TAG(2), 0, 0);
}
///getShapeTypeSize could easily be optimized, but it is not likely a bottleneck
int getShapeTypeSize(int shapeType)
{
switch (shapeType)
{
case CYLINDER_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btCylinderShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case BOX_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btBoxShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case SPHERE_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btSphereShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case TRIANGLE_MESH_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btBvhTriangleMeshShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case CAPSULE_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btCapsuleShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case CONVEX_HULL_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btConvexHullShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case COMPOUND_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btCompoundShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
default:
btAssert(0);
//unsupported shapetype, please add here
return 0;
}
}
void dmaConvexVertexData (SpuConvexPolyhedronVertexData* convexVertexData, btConvexHullShape* convexShapeSPU)
{
convexVertexData->gNumConvexPoints = convexShapeSPU->getNumPoints();
if (convexVertexData->gNumConvexPoints>MAX_NUM_SPU_CONVEX_POINTS)
{
btAssert(0);
spu_printf("SPU: Error: MAX_NUM_SPU_CONVEX_POINTS(%d) exceeded: %d\n",MAX_NUM_SPU_CONVEX_POINTS,convexVertexData->gNumConvexPoints);
return;
}
register int dmaSize = convexVertexData->gNumConvexPoints*sizeof(btPoint3);
ppu_address_t pointsPPU = (ppu_address_t) convexShapeSPU->getPoints();
cellDmaGet(&convexVertexData->g_convexPointBuffer[0], pointsPPU , dmaSize, DMA_TAG(2), 0, 0);
}
void dmaCollisionShape (void* collisionShapeLocation, ppu_address_t collisionShapePtr, uint32_t dmaTag, int shapeType)
{
register int dmaSize = getShapeTypeSize(shapeType);
cellDmaGet(collisionShapeLocation, collisionShapePtr , dmaSize, DMA_TAG(dmaTag), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(dmaTag));
}
void dmaCompoundShapeInfo (CompoundShape_LocalStoreMemory* compoundShapeLocation, btCompoundShape* spuCompoundShape, uint32_t dmaTag)
{
register int dmaSize;
register ppu_address_t dmaPpuAddress2;
int childShapeCount = spuCompoundShape->getNumChildShapes();
dmaSize = childShapeCount * sizeof(btCompoundShapeChild);
dmaPpuAddress2 = (ppu_address_t)spuCompoundShape->getChildList();
cellDmaGet(&compoundShapeLocation->gSubshapes[0], dmaPpuAddress2, dmaSize, DMA_TAG(dmaTag), 0, 0);
}
void dmaCompoundSubShapes (CompoundShape_LocalStoreMemory* compoundShapeLocation, btCompoundShape* spuCompoundShape, uint32_t dmaTag)
{
int childShapeCount = spuCompoundShape->getNumChildShapes();
int i;
// DMA all the subshapes
for ( i = 0; i < childShapeCount; ++i)
{
btCompoundShapeChild& childShape = compoundShapeLocation->gSubshapes[i];
dmaCollisionShape (&compoundShapeLocation->gSubshapeShape[i],(ppu_address_t)childShape.m_childShape, dmaTag, childShape.m_childShapeType);
}
}
void spuWalkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,const btQuantizedBvhNode* rootNode,int startNodeIndex,int endNodeIndex)
{
int curIndex = startNodeIndex;
int walkIterations = 0;
int subTreeSize = endNodeIndex - startNodeIndex;
int escapeIndex;
unsigned int aabbOverlap, isLeafNode;
while (curIndex < endNodeIndex)
{
//catch bugs in tree data
assert (walkIterations < subTreeSize);
walkIterations++;
aabbOverlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
isLeafNode = rootNode->isLeafNode();
if (isLeafNode && aabbOverlap)
{
//printf("overlap with node %d\n",rootNode->getTriangleIndex());
nodeCallback->processNode(0,rootNode->getTriangleIndex());
// spu_printf("SPU: overlap detected with triangleIndex:%d\n",rootNode->getTriangleIndex());
}
if (aabbOverlap || isLeafNode)
{
rootNode++;
curIndex++;
} else
{
escapeIndex = rootNode->getEscapeIndex();
rootNode += escapeIndex;
curIndex += escapeIndex;
}
}
}

View File

@@ -0,0 +1,103 @@
#ifndef __SPU_COLLISION_SHAPES_H
#define __SPU_COLLISION_SHAPES_H
#include "../SpuDoubleBuffer.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/CollisionShapes/btConvexInternalShape.h"
#include "BulletCollision/CollisionShapes/btCylinderShape.h"
#include "BulletCollision/CollisionShapes/btOptimizedBvh.h"
#include "BulletCollision/CollisionShapes/btTriangleIndexVertexArray.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btCapsuleShape.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h"
#include "BulletCollision/CollisionShapes/btConvexHullShape.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#define MAX_NUM_SPU_CONVEX_POINTS 128
struct SpuConvexPolyhedronVertexData
{
void* gSpuConvexShapePtr;
btPoint3* gConvexPoints;
int gNumConvexPoints;
ATTRIBUTE_ALIGNED16(btPoint3 g_convexPointBuffer[MAX_NUM_SPU_CONVEX_POINTS]);
};
#define MAX_SHAPE_SIZE 256
struct CollisionShape_LocalStoreMemory
{
ATTRIBUTE_ALIGNED16(char collisionShape[MAX_SHAPE_SIZE]);
};
struct CompoundShape_LocalStoreMemory
{
// Compound data
#define MAX_SPU_COMPOUND_SUBSHAPES 16
ATTRIBUTE_ALIGNED16(btCompoundShapeChild gSubshapes[MAX_SPU_COMPOUND_SUBSHAPES]);
ATTRIBUTE_ALIGNED16(char gSubshapeShape[MAX_SPU_COMPOUND_SUBSHAPES][MAX_SHAPE_SIZE]);
};
struct bvhMeshShape_LocalStoreMemory
{
//ATTRIBUTE_ALIGNED16(btOptimizedBvh gOptimizedBvh);
ATTRIBUTE_ALIGNED16(char gOptimizedBvh[sizeof(btOptimizedBvh)+16]);
btOptimizedBvh* getOptimizedBvh()
{
return (btOptimizedBvh*) gOptimizedBvh;
}
ATTRIBUTE_ALIGNED16(btTriangleIndexVertexArray gTriangleMeshInterfaceStorage);
btTriangleIndexVertexArray* gTriangleMeshInterfacePtr;
///only a single mesh part for now, we can add support for multiple parts, but quantized trees don't support this at the moment
ATTRIBUTE_ALIGNED16(btIndexedMesh gIndexMesh);
#define MAX_SPU_SUBTREE_HEADERS 32
//1024
ATTRIBUTE_ALIGNED16(btBvhSubtreeInfo gSubtreeHeaders[MAX_SPU_SUBTREE_HEADERS]);
ATTRIBUTE_ALIGNED16(btQuantizedBvhNode gSubtreeNodes[MAX_SUBTREE_SIZE_IN_BYTES/sizeof(btQuantizedBvhNode)]);
};
btPoint3 localGetSupportingVertexWithoutMargin(int shapeType, void* shape, btVector3& localDir,struct SpuConvexPolyhedronVertexData* convexVertexData);//, int *featureIndex)
void computeAabb (btVector3& aabbMin, btVector3& aabbMax, btConvexInternalShape* convexShape, ppu_address_t convexShapePtr, int shapeType, btTransform xform);
void dmaBvhShapeData (bvhMeshShape_LocalStoreMemory* bvhMeshShape, btBvhTriangleMeshShape* triMeshShape);
void dmaBvhIndexedMesh (btIndexedMesh* IndexMesh, IndexedMeshArray& indexArray, int index, uint32_t dmaTag);
void dmaBvhSubTreeHeaders (btBvhSubtreeInfo* subTreeHeaders, ppu_address_t subTreePtr, int batchSize, uint32_t dmaTag);
void dmaBvhSubTreeNodes (btQuantizedBvhNode* nodes, const btBvhSubtreeInfo& subtree, QuantizedNodeArray& nodeArray, int dmaTag);
int getShapeTypeSize(int shapeType);
void dmaConvexVertexData (SpuConvexPolyhedronVertexData* convexVertexData, btConvexHullShape* convexShapeSPU);
void dmaCollisionShape (void* collisionShapeLocation, ppu_address_t collisionShapePtr, uint32_t dmaTag, int shapeType);
void dmaCompoundShapeInfo (CompoundShape_LocalStoreMemory* compoundShapeLocation, btCompoundShape* spuCompoundShape, uint32_t dmaTag);
void dmaCompoundSubShapes (CompoundShape_LocalStoreMemory* compoundShapeLocation, btCompoundShape* spuCompoundShape, uint32_t dmaTag);
#define USE_BRANCHFREE_TEST 1
#ifdef USE_BRANCHFREE_TEST
SIMD_FORCE_INLINE unsigned int spuTestQuantizedAabbAgainstQuantizedAabb(unsigned short int* aabbMin1,unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2)
{
return btSelect((unsigned)((aabbMin1[0] <= aabbMax2[0]) & (aabbMax1[0] >= aabbMin2[0])
& (aabbMin1[2] <= aabbMax2[2]) & (aabbMax1[2] >= aabbMin2[2])
& (aabbMin1[1] <= aabbMax2[1]) & (aabbMax1[1] >= aabbMin2[1])),
1, 0);
}
#else
unsigned int spuTestQuantizedAabbAgainstQuantizedAabb(const unsigned short int* aabbMin1,const unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2)
{
unsigned int overlap = 1;
overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? 0 : overlap;
overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? 0 : overlap;
overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? 0 : overlap;
return overlap;
}
#endif
void spuWalkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,const btQuantizedBvhNode* rootNode,int startNodeIndex,int endNodeIndex);
#endif