Apple contribution for OSX SSE and iOS NEON optimizations unit tests, thanks to Jordan Hubbard, Ian Ollmann and Hristo Hristov.
For OSX: cd build ./premake_osx xcode4 for iOS: cd build ./ios_build.sh ./ios_run.sh Also integrated the branches/StackAllocation to make it easier to multi-thread collision detection in the near future. It avoids changing the btCollisionObject while performing collision detection. As this is a large patch, some stuff might be temporarily broken, I'll keep an eye out on issues.
This commit is contained in:
@@ -18,6 +18,18 @@ subject to the following restrictions:
|
||||
|
||||
#include "btVector3.h"
|
||||
#include "btQuaternion.h"
|
||||
#include <stdio.h>
|
||||
|
||||
#ifdef BT_USE_SSE
|
||||
//const __m128 ATTRIBUTE_ALIGNED16(v2220) = {2.0f, 2.0f, 2.0f, 0.0f};
|
||||
const __m128 ATTRIBUTE_ALIGNED16(vMPPP) = {-0.0f, +0.0f, +0.0f, +0.0f};
|
||||
#endif
|
||||
|
||||
#if defined(BT_USE_SSE) || defined(BT_USE_NEON)
|
||||
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v1000) = {1.0f, 0.0f, 0.0f, 0.0f};
|
||||
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0100) = {0.0f, 1.0f, 0.0f, 0.0f};
|
||||
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0010) = {0.0f, 0.0f, 1.0f, 0.0f};
|
||||
#endif
|
||||
|
||||
#ifdef BT_USE_DOUBLE_PRECISION
|
||||
#define btMatrix3x3Data btMatrix3x3DoubleData
|
||||
@@ -28,7 +40,7 @@ subject to the following restrictions:
|
||||
|
||||
/**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
|
||||
* Make sure to only include a pure orthogonal matrix without scaling. */
|
||||
class btMatrix3x3 {
|
||||
ATTRIBUTE_ALIGNED16(class) btMatrix3x3 {
|
||||
|
||||
///Data storage for the matrix, each vector is a row of the matrix
|
||||
btVector3 m_el[3];
|
||||
@@ -57,6 +69,42 @@ public:
|
||||
yx, yy, yz,
|
||||
zx, zy, zz);
|
||||
}
|
||||
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
|
||||
SIMD_FORCE_INLINE btMatrix3x3 (const btSimdFloat4 v0, const btSimdFloat4 v1, const btSimdFloat4 v2 )
|
||||
{
|
||||
m_el[0].mVec128 = v0;
|
||||
m_el[1].mVec128 = v1;
|
||||
m_el[2].mVec128 = v2;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btMatrix3x3 (const btVector3& v0, const btVector3& v1, const btVector3& v2 )
|
||||
{
|
||||
m_el[0] = v0;
|
||||
m_el[1] = v1;
|
||||
m_el[2] = v2;
|
||||
}
|
||||
|
||||
// Copy constructor
|
||||
SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& rhs)
|
||||
{
|
||||
m_el[0].mVec128 = rhs.m_el[0].mVec128;
|
||||
m_el[1].mVec128 = rhs.m_el[1].mVec128;
|
||||
m_el[2].mVec128 = rhs.m_el[2].mVec128;
|
||||
}
|
||||
|
||||
// Assignment Operator
|
||||
SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& m)
|
||||
{
|
||||
m_el[0].mVec128 = m.m_el[0].mVec128;
|
||||
m_el[1].mVec128 = m.m_el[1].mVec128;
|
||||
m_el[2].mVec128 = m.m_el[2].mVec128;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/** @brief Copy constructor */
|
||||
SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other)
|
||||
{
|
||||
@@ -64,6 +112,7 @@ public:
|
||||
m_el[1] = other.m_el[1];
|
||||
m_el[2] = other.m_el[2];
|
||||
}
|
||||
|
||||
/** @brief Assignment Operator */
|
||||
SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
|
||||
{
|
||||
@@ -73,6 +122,8 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/** @brief Get a column of the matrix as a vector
|
||||
* @param i Column number 0 indexed */
|
||||
SIMD_FORCE_INLINE btVector3 getColumn(int i) const
|
||||
@@ -155,14 +206,69 @@ public:
|
||||
btScalar d = q.length2();
|
||||
btFullAssert(d != btScalar(0.0));
|
||||
btScalar s = btScalar(2.0) / d;
|
||||
|
||||
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
||||
__m128 vs, Q = q.get128();
|
||||
__m128i Qi = btCastfTo128i(Q);
|
||||
__m128 Y, Z;
|
||||
__m128 V1, V2, V3;
|
||||
__m128 V11, V21, V31;
|
||||
__m128 NQ = _mm_xor_ps(Q, btvMzeroMask);
|
||||
__m128i NQi = btCastfTo128i(NQ);
|
||||
|
||||
V1 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,2,3))); // Y X Z W
|
||||
V2 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(0,0,1,3)); // -X -X Y W
|
||||
V3 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(2,1,0,3))); // Z Y X W
|
||||
V1 = _mm_xor_ps(V1, vMPPP); // change the sign of the first element
|
||||
|
||||
V11 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,1,0,3))); // Y Y X W
|
||||
V21 = _mm_unpackhi_ps(Q, Q); // Z Z W W
|
||||
V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(0,2,0,3)); // X Z -X -W
|
||||
|
||||
V2 = V2 * V1; //
|
||||
V1 = V1 * V11; //
|
||||
V3 = V3 * V31; //
|
||||
|
||||
V11 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(2,3,1,3)); // -Z -W Y W
|
||||
V11 = V11 * V21; //
|
||||
V21 = _mm_xor_ps(V21, vMPPP); // change the sign of the first element
|
||||
V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(3,3,1,3)); // W W -Y -W
|
||||
V31 = _mm_xor_ps(V31, vMPPP); // change the sign of the first element
|
||||
Y = btCastiTo128f(_mm_shuffle_epi32 (NQi, BT_SHUFFLE(3,2,0,3))); // -W -Z -X -W
|
||||
Z = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,1,3))); // Y X Y W
|
||||
|
||||
vs = _mm_load_ss(&s);
|
||||
V21 = V21 * Y;
|
||||
V31 = V31 * Z;
|
||||
|
||||
V1 = V1 + V11;
|
||||
V2 = V2 + V21;
|
||||
V3 = V3 + V31;
|
||||
|
||||
vs = bt_splat3_ps(vs, 0);
|
||||
// s ready
|
||||
V1 = V1 * vs;
|
||||
V2 = V2 * vs;
|
||||
V3 = V3 * vs;
|
||||
|
||||
V1 = V1 + v1000;
|
||||
V2 = V2 + v0100;
|
||||
V3 = V3 + v0010;
|
||||
|
||||
m_el[0] = V1;
|
||||
m_el[1] = V2;
|
||||
m_el[2] = V3;
|
||||
#else
|
||||
btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s;
|
||||
btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs;
|
||||
btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs;
|
||||
btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs;
|
||||
setValue(btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
|
||||
setValue(
|
||||
btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
|
||||
xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
|
||||
xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/** @brief Set the matrix from euler angles using YPR around YXZ respectively
|
||||
@@ -205,16 +311,29 @@ public:
|
||||
/**@brief Set the matrix to the identity */
|
||||
void setIdentity()
|
||||
{
|
||||
#if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON)
|
||||
m_el[0] = v1000;
|
||||
m_el[1] = v0100;
|
||||
m_el[2] = v0010;
|
||||
#else
|
||||
setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),
|
||||
btScalar(0.0), btScalar(1.0), btScalar(0.0),
|
||||
btScalar(0.0), btScalar(0.0), btScalar(1.0));
|
||||
#endif
|
||||
}
|
||||
|
||||
static const btMatrix3x3& getIdentity()
|
||||
{
|
||||
static const btMatrix3x3 identityMatrix(btScalar(1.0), btScalar(0.0), btScalar(0.0),
|
||||
#if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON)
|
||||
static const btMatrix3x3
|
||||
identityMatrix(v1000, v0100, v0010);
|
||||
#else
|
||||
static const btMatrix3x3
|
||||
identityMatrix(
|
||||
btScalar(1.0), btScalar(0.0), btScalar(0.0),
|
||||
btScalar(0.0), btScalar(1.0), btScalar(0.0),
|
||||
btScalar(0.0), btScalar(0.0), btScalar(1.0));
|
||||
#endif
|
||||
return identityMatrix;
|
||||
}
|
||||
|
||||
@@ -222,6 +341,40 @@ public:
|
||||
* @param m The array to be filled */
|
||||
void getOpenGLSubMatrix(btScalar *m) const
|
||||
{
|
||||
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
||||
__m128 v0 = m_el[0].mVec128;
|
||||
__m128 v1 = m_el[1].mVec128;
|
||||
__m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
|
||||
__m128 *vm = (__m128 *)m;
|
||||
__m128 vT;
|
||||
|
||||
v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
|
||||
|
||||
vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
|
||||
v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
|
||||
|
||||
v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) ); // y0 y1 y2 0
|
||||
v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) ); // x0 x1 x2 0
|
||||
v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
|
||||
|
||||
vm[0] = v0;
|
||||
vm[1] = v1;
|
||||
vm[2] = v2;
|
||||
#elif defined(BT_USE_NEON)
|
||||
// note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
|
||||
static const uint32x2_t zMask = (const uint32x2_t) {-1, 0 };
|
||||
float32x4_t *vm = (float32x4_t *)m;
|
||||
float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 ); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
|
||||
float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) ); // {x2 0 }, {y2 0}
|
||||
float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] );
|
||||
float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] );
|
||||
float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask );
|
||||
float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q ); // z0 z1 z2 0
|
||||
|
||||
vm[0] = v0;
|
||||
vm[1] = v1;
|
||||
vm[2] = v2;
|
||||
#else
|
||||
m[0] = btScalar(m_el[0].x());
|
||||
m[1] = btScalar(m_el[1].x());
|
||||
m[2] = btScalar(m_el[2].x());
|
||||
@@ -234,13 +387,67 @@ public:
|
||||
m[9] = btScalar(m_el[1].z());
|
||||
m[10] = btScalar(m_el[2].z());
|
||||
m[11] = btScalar(0.0);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**@brief Get the matrix represented as a quaternion
|
||||
* @param q The quaternion which will be set */
|
||||
void getRotation(btQuaternion& q) const
|
||||
{
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
|
||||
btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
|
||||
btScalar s, x;
|
||||
|
||||
union {
|
||||
btSimdFloat4 vec;
|
||||
btScalar f[4];
|
||||
} temp;
|
||||
|
||||
if (trace > btScalar(0.0))
|
||||
{
|
||||
x = trace + btScalar(1.0);
|
||||
|
||||
temp.f[0]=m_el[2].y() - m_el[1].z();
|
||||
temp.f[1]=m_el[0].z() - m_el[2].x();
|
||||
temp.f[2]=m_el[1].x() - m_el[0].y();
|
||||
temp.f[3]=x;
|
||||
//temp.f[3]= s * btScalar(0.5);
|
||||
}
|
||||
else
|
||||
{
|
||||
int i, j, k;
|
||||
if(m_el[0].x() < m_el[1].y())
|
||||
{
|
||||
if( m_el[1].y() < m_el[2].z() )
|
||||
{ i = 2; j = 0; k = 1; }
|
||||
else
|
||||
{ i = 1; j = 2; k = 0; }
|
||||
}
|
||||
else
|
||||
{
|
||||
if( m_el[0].x() < m_el[2].z())
|
||||
{ i = 2; j = 0; k = 1; }
|
||||
else
|
||||
{ i = 0; j = 1; k = 2; }
|
||||
}
|
||||
|
||||
x = m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0);
|
||||
|
||||
temp.f[3] = (m_el[k][j] - m_el[j][k]);
|
||||
temp.f[j] = (m_el[j][i] + m_el[i][j]);
|
||||
temp.f[k] = (m_el[k][i] + m_el[i][k]);
|
||||
temp.f[i] = x;
|
||||
//temp.f[i] = s * btScalar(0.5);
|
||||
}
|
||||
|
||||
s = btSqrt(x);
|
||||
q.set128(temp.vec);
|
||||
s = btScalar(0.5) / s;
|
||||
|
||||
q *= s;
|
||||
#else
|
||||
btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
|
||||
|
||||
btScalar temp[4];
|
||||
|
||||
if (trace > btScalar(0.0))
|
||||
@@ -270,6 +477,7 @@ public:
|
||||
temp[k] = (m_el[k][i] + m_el[i][k]) * s;
|
||||
}
|
||||
q.setValue(temp[0],temp[1],temp[2],temp[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
|
||||
@@ -376,9 +584,14 @@ public:
|
||||
|
||||
btMatrix3x3 scaled(const btVector3& s) const
|
||||
{
|
||||
return btMatrix3x3(m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
|
||||
return btMatrix3x3(m_el[0] * s, m_el[1] * s, m_el[2] * s);
|
||||
#else
|
||||
return btMatrix3x3(
|
||||
m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
|
||||
m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
|
||||
m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
|
||||
#endif
|
||||
}
|
||||
|
||||
/**@brief Return the determinant of the matrix */
|
||||
@@ -527,15 +740,101 @@ public:
|
||||
SIMD_FORCE_INLINE btMatrix3x3&
|
||||
btMatrix3x3::operator*=(const btMatrix3x3& m)
|
||||
{
|
||||
setValue(m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
|
||||
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
||||
__m128 rv00, rv01, rv02;
|
||||
__m128 rv10, rv11, rv12;
|
||||
__m128 rv20, rv21, rv22;
|
||||
__m128 mv0, mv1, mv2;
|
||||
|
||||
rv02 = m_el[0].mVec128;
|
||||
rv12 = m_el[1].mVec128;
|
||||
rv22 = m_el[2].mVec128;
|
||||
|
||||
mv0 = _mm_and_ps(m[0].mVec128, btvFFF0fMask);
|
||||
mv1 = _mm_and_ps(m[1].mVec128, btvFFF0fMask);
|
||||
mv2 = _mm_and_ps(m[2].mVec128, btvFFF0fMask);
|
||||
|
||||
// rv0
|
||||
rv00 = bt_splat_ps(rv02, 0);
|
||||
rv01 = bt_splat_ps(rv02, 1);
|
||||
rv02 = bt_splat_ps(rv02, 2);
|
||||
|
||||
rv00 = _mm_mul_ps(rv00, mv0);
|
||||
rv01 = _mm_mul_ps(rv01, mv1);
|
||||
rv02 = _mm_mul_ps(rv02, mv2);
|
||||
|
||||
// rv1
|
||||
rv10 = bt_splat_ps(rv12, 0);
|
||||
rv11 = bt_splat_ps(rv12, 1);
|
||||
rv12 = bt_splat_ps(rv12, 2);
|
||||
|
||||
rv10 = _mm_mul_ps(rv10, mv0);
|
||||
rv11 = _mm_mul_ps(rv11, mv1);
|
||||
rv12 = _mm_mul_ps(rv12, mv2);
|
||||
|
||||
// rv2
|
||||
rv20 = bt_splat_ps(rv22, 0);
|
||||
rv21 = bt_splat_ps(rv22, 1);
|
||||
rv22 = bt_splat_ps(rv22, 2);
|
||||
|
||||
rv20 = _mm_mul_ps(rv20, mv0);
|
||||
rv21 = _mm_mul_ps(rv21, mv1);
|
||||
rv22 = _mm_mul_ps(rv22, mv2);
|
||||
|
||||
rv00 = _mm_add_ps(rv00, rv01);
|
||||
rv10 = _mm_add_ps(rv10, rv11);
|
||||
rv20 = _mm_add_ps(rv20, rv21);
|
||||
|
||||
m_el[0].mVec128 = _mm_add_ps(rv00, rv02);
|
||||
m_el[1].mVec128 = _mm_add_ps(rv10, rv12);
|
||||
m_el[2].mVec128 = _mm_add_ps(rv20, rv22);
|
||||
|
||||
#elif defined(BT_USE_NEON)
|
||||
|
||||
float32x4_t rv0, rv1, rv2;
|
||||
float32x4_t v0, v1, v2;
|
||||
float32x4_t mv0, mv1, mv2;
|
||||
|
||||
v0 = m_el[0].mVec128;
|
||||
v1 = m_el[1].mVec128;
|
||||
v2 = m_el[2].mVec128;
|
||||
|
||||
mv0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
|
||||
mv1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
|
||||
mv2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
|
||||
|
||||
rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
|
||||
rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
|
||||
rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
|
||||
|
||||
rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
|
||||
rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
|
||||
rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
|
||||
|
||||
rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
|
||||
rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
|
||||
rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
|
||||
|
||||
m_el[0].mVec128 = rv0;
|
||||
m_el[1].mVec128 = rv1;
|
||||
m_el[2].mVec128 = rv2;
|
||||
#else
|
||||
setValue(
|
||||
m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
|
||||
m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
|
||||
m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
|
||||
#endif
|
||||
return *this;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btMatrix3x3&
|
||||
btMatrix3x3::operator+=(const btMatrix3x3& m)
|
||||
{
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
|
||||
m_el[0].mVec128 = m_el[0].mVec128 + m.m_el[0].mVec128;
|
||||
m_el[1].mVec128 = m_el[1].mVec128 + m.m_el[1].mVec128;
|
||||
m_el[2].mVec128 = m_el[2].mVec128 + m.m_el[2].mVec128;
|
||||
#else
|
||||
setValue(
|
||||
m_el[0][0]+m.m_el[0][0],
|
||||
m_el[0][1]+m.m_el[0][1],
|
||||
@@ -546,52 +845,89 @@ btMatrix3x3::operator+=(const btMatrix3x3& m)
|
||||
m_el[2][0]+m.m_el[2][0],
|
||||
m_el[2][1]+m.m_el[2][1],
|
||||
m_el[2][2]+m.m_el[2][2]);
|
||||
#endif
|
||||
return *this;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btMatrix3x3
|
||||
operator*(const btMatrix3x3& m, const btScalar & k)
|
||||
{
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
|
||||
__m128 vk = bt_splat_ps(_mm_load_ss((float *)&k), 0x80);
|
||||
return btMatrix3x3(
|
||||
_mm_mul_ps(m[0].mVec128, vk),
|
||||
_mm_mul_ps(m[1].mVec128, vk),
|
||||
_mm_mul_ps(m[2].mVec128, vk));
|
||||
#elif defined(BT_USE_NEON)
|
||||
return btMatrix3x3(
|
||||
vmulq_n_f32(m[0].mVec128, k),
|
||||
vmulq_n_f32(m[1].mVec128, k),
|
||||
vmulq_n_f32(m[2].mVec128, k));
|
||||
#else
|
||||
return btMatrix3x3(
|
||||
m[0].x()*k,m[0].y()*k,m[0].z()*k,
|
||||
m[1].x()*k,m[1].y()*k,m[1].z()*k,
|
||||
m[2].x()*k,m[2].y()*k,m[2].z()*k);
|
||||
#endif
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btMatrix3x3
|
||||
SIMD_FORCE_INLINE btMatrix3x3
|
||||
operator+(const btMatrix3x3& m1, const btMatrix3x3& m2)
|
||||
{
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
|
||||
return btMatrix3x3(
|
||||
m1[0][0]+m2[0][0],
|
||||
m1[0][1]+m2[0][1],
|
||||
m1[0][2]+m2[0][2],
|
||||
m1[1][0]+m2[1][0],
|
||||
m1[1][1]+m2[1][1],
|
||||
m1[1][2]+m2[1][2],
|
||||
m1[2][0]+m2[2][0],
|
||||
m1[2][1]+m2[2][1],
|
||||
m1[2][2]+m2[2][2]);
|
||||
m1[0].mVec128 + m2[0].mVec128,
|
||||
m1[1].mVec128 + m2[1].mVec128,
|
||||
m1[2].mVec128 + m2[2].mVec128);
|
||||
#else
|
||||
return btMatrix3x3(
|
||||
m1[0][0]+m2[0][0],
|
||||
m1[0][1]+m2[0][1],
|
||||
m1[0][2]+m2[0][2],
|
||||
|
||||
m1[1][0]+m2[1][0],
|
||||
m1[1][1]+m2[1][1],
|
||||
m1[1][2]+m2[1][2],
|
||||
|
||||
m1[2][0]+m2[2][0],
|
||||
m1[2][1]+m2[2][1],
|
||||
m1[2][2]+m2[2][2]);
|
||||
#endif
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btMatrix3x3
|
||||
operator-(const btMatrix3x3& m1, const btMatrix3x3& m2)
|
||||
{
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
|
||||
return btMatrix3x3(
|
||||
m1[0][0]-m2[0][0],
|
||||
m1[0][1]-m2[0][1],
|
||||
m1[0][2]-m2[0][2],
|
||||
m1[1][0]-m2[1][0],
|
||||
m1[1][1]-m2[1][1],
|
||||
m1[1][2]-m2[1][2],
|
||||
m1[2][0]-m2[2][0],
|
||||
m1[2][1]-m2[2][1],
|
||||
m1[2][2]-m2[2][2]);
|
||||
m1[0].mVec128 - m2[0].mVec128,
|
||||
m1[1].mVec128 - m2[1].mVec128,
|
||||
m1[2].mVec128 - m2[2].mVec128);
|
||||
#else
|
||||
return btMatrix3x3(
|
||||
m1[0][0]-m2[0][0],
|
||||
m1[0][1]-m2[0][1],
|
||||
m1[0][2]-m2[0][2],
|
||||
|
||||
m1[1][0]-m2[1][0],
|
||||
m1[1][1]-m2[1][1],
|
||||
m1[1][2]-m2[1][2],
|
||||
|
||||
m1[2][0]-m2[2][0],
|
||||
m1[2][1]-m2[2][1],
|
||||
m1[2][2]-m2[2][2]);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
SIMD_FORCE_INLINE btMatrix3x3&
|
||||
btMatrix3x3::operator-=(const btMatrix3x3& m)
|
||||
{
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
|
||||
m_el[0].mVec128 = m_el[0].mVec128 - m.m_el[0].mVec128;
|
||||
m_el[1].mVec128 = m_el[1].mVec128 - m.m_el[1].mVec128;
|
||||
m_el[2].mVec128 = m_el[2].mVec128 - m.m_el[2].mVec128;
|
||||
#else
|
||||
setValue(
|
||||
m_el[0][0]-m.m_el[0][0],
|
||||
m_el[0][1]-m.m_el[0][1],
|
||||
@@ -602,6 +938,7 @@ btMatrix3x3::operator-=(const btMatrix3x3& m)
|
||||
m_el[2][0]-m.m_el[2][0],
|
||||
m_el[2][1]-m.m_el[2][1],
|
||||
m_el[2][2]-m.m_el[2][2]);
|
||||
#endif
|
||||
return *this;
|
||||
}
|
||||
|
||||
@@ -616,18 +953,59 @@ btMatrix3x3::determinant() const
|
||||
SIMD_FORCE_INLINE btMatrix3x3
|
||||
btMatrix3x3::absolute() const
|
||||
{
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
|
||||
return btMatrix3x3(
|
||||
_mm_and_ps(m_el[0].mVec128, btvAbsfMask),
|
||||
_mm_and_ps(m_el[1].mVec128, btvAbsfMask),
|
||||
_mm_and_ps(m_el[2].mVec128, btvAbsfMask));
|
||||
#elif defined(BT_USE_NEON)
|
||||
return btMatrix3x3(
|
||||
(float32x4_t)vandq_s32((int32x4_t)m_el[0].mVec128, btv3AbsMask),
|
||||
(float32x4_t)vandq_s32((int32x4_t)m_el[1].mVec128, btv3AbsMask),
|
||||
(float32x4_t)vandq_s32((int32x4_t)m_el[2].mVec128, btv3AbsMask));
|
||||
#else
|
||||
return btMatrix3x3(
|
||||
btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
|
||||
btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
|
||||
btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
|
||||
btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
|
||||
btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
|
||||
btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
|
||||
#endif
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btMatrix3x3
|
||||
btMatrix3x3::transpose() const
|
||||
{
|
||||
return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(),
|
||||
m_el[0].y(), m_el[1].y(), m_el[2].y(),
|
||||
m_el[0].z(), m_el[1].z(), m_el[2].z());
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
|
||||
__m128 v0 = m_el[0].mVec128;
|
||||
__m128 v1 = m_el[1].mVec128;
|
||||
__m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
|
||||
__m128 vT;
|
||||
|
||||
v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
|
||||
|
||||
vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
|
||||
v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
|
||||
|
||||
v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) ); // y0 y1 y2 0
|
||||
v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) ); // x0 x1 x2 0
|
||||
v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
|
||||
|
||||
|
||||
return btMatrix3x3( v0, v1, v2 );
|
||||
#elif defined(BT_USE_NEON)
|
||||
// note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
|
||||
static const uint32x2_t zMask = (const uint32x2_t) {-1, 0 };
|
||||
float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 ); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
|
||||
float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) ); // {x2 0 }, {y2 0}
|
||||
float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] );
|
||||
float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] );
|
||||
float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask );
|
||||
float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q ); // z0 z1 z2 0
|
||||
return btMatrix3x3( v0, v1, v2 );
|
||||
#else
|
||||
return btMatrix3x3( m_el[0].x(), m_el[1].x(), m_el[2].x(),
|
||||
m_el[0].y(), m_el[1].y(), m_el[2].y(),
|
||||
m_el[0].z(), m_el[1].z(), m_el[2].z());
|
||||
#endif
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btMatrix3x3
|
||||
@@ -653,7 +1031,47 @@ btMatrix3x3::inverse() const
|
||||
SIMD_FORCE_INLINE btMatrix3x3
|
||||
btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
|
||||
{
|
||||
return btMatrix3x3(
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
|
||||
// zeros w
|
||||
// static const __m128i xyzMask = (const __m128i){ -1ULL, 0xffffffffULL };
|
||||
__m128 row = m_el[0].mVec128;
|
||||
__m128 m0 = _mm_and_ps( m.getRow(0).mVec128, btvFFF0fMask );
|
||||
__m128 m1 = _mm_and_ps( m.getRow(1).mVec128, btvFFF0fMask);
|
||||
__m128 m2 = _mm_and_ps( m.getRow(2).mVec128, btvFFF0fMask );
|
||||
__m128 r0 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0));
|
||||
__m128 r1 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0x55));
|
||||
__m128 r2 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0xaa));
|
||||
row = m_el[1].mVec128;
|
||||
r0 = _mm_add_ps( r0, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0)));
|
||||
r1 = _mm_add_ps( r1, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0x55)));
|
||||
r2 = _mm_add_ps( r2, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0xaa)));
|
||||
row = m_el[2].mVec128;
|
||||
r0 = _mm_add_ps( r0, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0)));
|
||||
r1 = _mm_add_ps( r1, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0x55)));
|
||||
r2 = _mm_add_ps( r2, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0xaa)));
|
||||
return btMatrix3x3( r0, r1, r2 );
|
||||
|
||||
#elif defined BT_USE_NEON
|
||||
// zeros w
|
||||
static const uint32x4_t xyzMask = (const uint32x4_t){ -1, -1, -1, 0 };
|
||||
float32x4_t m0 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(0).mVec128, xyzMask );
|
||||
float32x4_t m1 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(1).mVec128, xyzMask );
|
||||
float32x4_t m2 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(2).mVec128, xyzMask );
|
||||
float32x4_t row = m_el[0].mVec128;
|
||||
float32x4_t r0 = vmulq_lane_f32( m0, vget_low_f32(row), 0);
|
||||
float32x4_t r1 = vmulq_lane_f32( m0, vget_low_f32(row), 1);
|
||||
float32x4_t r2 = vmulq_lane_f32( m0, vget_high_f32(row), 0);
|
||||
row = m_el[1].mVec128;
|
||||
r0 = vmlaq_lane_f32( r0, m1, vget_low_f32(row), 0);
|
||||
r1 = vmlaq_lane_f32( r1, m1, vget_low_f32(row), 1);
|
||||
r2 = vmlaq_lane_f32( r2, m1, vget_high_f32(row), 0);
|
||||
row = m_el[2].mVec128;
|
||||
r0 = vmlaq_lane_f32( r0, m2, vget_low_f32(row), 0);
|
||||
r1 = vmlaq_lane_f32( r1, m2, vget_low_f32(row), 1);
|
||||
r2 = vmlaq_lane_f32( r2, m2, vget_high_f32(row), 0);
|
||||
return btMatrix3x3( r0, r1, r2 );
|
||||
#else
|
||||
return btMatrix3x3(
|
||||
m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
|
||||
m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
|
||||
m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
|
||||
@@ -663,38 +1081,196 @@ btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
|
||||
m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
|
||||
m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
|
||||
m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z());
|
||||
#endif
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btMatrix3x3
|
||||
btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
|
||||
{
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
|
||||
__m128 a0 = m_el[0].mVec128;
|
||||
__m128 a1 = m_el[1].mVec128;
|
||||
__m128 a2 = m_el[2].mVec128;
|
||||
|
||||
btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
|
||||
__m128 mx = mT[0].mVec128;
|
||||
__m128 my = mT[1].mVec128;
|
||||
__m128 mz = mT[2].mVec128;
|
||||
|
||||
__m128 r0 = _mm_mul_ps(mx, _mm_shuffle_ps(a0, a0, 0x00));
|
||||
__m128 r1 = _mm_mul_ps(mx, _mm_shuffle_ps(a1, a1, 0x00));
|
||||
__m128 r2 = _mm_mul_ps(mx, _mm_shuffle_ps(a2, a2, 0x00));
|
||||
r0 = _mm_add_ps(r0, _mm_mul_ps(my, _mm_shuffle_ps(a0, a0, 0x55)));
|
||||
r1 = _mm_add_ps(r1, _mm_mul_ps(my, _mm_shuffle_ps(a1, a1, 0x55)));
|
||||
r2 = _mm_add_ps(r2, _mm_mul_ps(my, _mm_shuffle_ps(a2, a2, 0x55)));
|
||||
r0 = _mm_add_ps(r0, _mm_mul_ps(mz, _mm_shuffle_ps(a0, a0, 0xaa)));
|
||||
r1 = _mm_add_ps(r1, _mm_mul_ps(mz, _mm_shuffle_ps(a1, a1, 0xaa)));
|
||||
r2 = _mm_add_ps(r2, _mm_mul_ps(mz, _mm_shuffle_ps(a2, a2, 0xaa)));
|
||||
return btMatrix3x3( r0, r1, r2);
|
||||
|
||||
#elif defined BT_USE_NEON
|
||||
float32x4_t a0 = m_el[0].mVec128;
|
||||
float32x4_t a1 = m_el[1].mVec128;
|
||||
float32x4_t a2 = m_el[2].mVec128;
|
||||
|
||||
btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
|
||||
float32x4_t mx = mT[0].mVec128;
|
||||
float32x4_t my = mT[1].mVec128;
|
||||
float32x4_t mz = mT[2].mVec128;
|
||||
|
||||
float32x4_t r0 = vmulq_lane_f32( mx, vget_low_f32(a0), 0);
|
||||
float32x4_t r1 = vmulq_lane_f32( mx, vget_low_f32(a1), 0);
|
||||
float32x4_t r2 = vmulq_lane_f32( mx, vget_low_f32(a2), 0);
|
||||
r0 = vmlaq_lane_f32( r0, my, vget_low_f32(a0), 1);
|
||||
r1 = vmlaq_lane_f32( r1, my, vget_low_f32(a1), 1);
|
||||
r2 = vmlaq_lane_f32( r2, my, vget_low_f32(a2), 1);
|
||||
r0 = vmlaq_lane_f32( r0, mz, vget_high_f32(a0), 0);
|
||||
r1 = vmlaq_lane_f32( r1, mz, vget_high_f32(a1), 0);
|
||||
r2 = vmlaq_lane_f32( r2, mz, vget_high_f32(a2), 0);
|
||||
return btMatrix3x3( r0, r1, r2 );
|
||||
|
||||
#else
|
||||
return btMatrix3x3(
|
||||
m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
|
||||
m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
|
||||
m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btVector3
|
||||
operator*(const btMatrix3x3& m, const btVector3& v)
|
||||
{
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
|
||||
return v.dot3(m[0], m[1], m[2]);
|
||||
#else
|
||||
return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
SIMD_FORCE_INLINE btVector3
|
||||
operator*(const btVector3& v, const btMatrix3x3& m)
|
||||
{
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
|
||||
|
||||
const __m128 vv = v.mVec128;
|
||||
|
||||
__m128 c0 = bt_splat_ps( vv, 0);
|
||||
__m128 c1 = bt_splat_ps( vv, 1);
|
||||
__m128 c2 = bt_splat_ps( vv, 2);
|
||||
|
||||
c0 = _mm_mul_ps(c0, _mm_and_ps(m[0].mVec128, btvFFF0fMask) );
|
||||
c1 = _mm_mul_ps(c1, _mm_and_ps(m[1].mVec128, btvFFF0fMask) );
|
||||
c0 = _mm_add_ps(c0, c1);
|
||||
c2 = _mm_mul_ps(c2, _mm_and_ps(m[2].mVec128, btvFFF0fMask) );
|
||||
|
||||
return btVector3(_mm_add_ps(c0, c2));
|
||||
#elif defined(BT_USE_NEON)
|
||||
const float32x4_t vv = v.mVec128;
|
||||
const float32x2_t vlo = vget_low_f32(vv);
|
||||
const float32x2_t vhi = vget_high_f32(vv);
|
||||
|
||||
float32x4_t c0, c1, c2;
|
||||
|
||||
c0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
|
||||
c1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
|
||||
c2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
|
||||
|
||||
c0 = vmulq_lane_f32(c0, vlo, 0);
|
||||
c1 = vmulq_lane_f32(c1, vlo, 1);
|
||||
c2 = vmulq_lane_f32(c2, vhi, 0);
|
||||
c0 = vaddq_f32(c0, c1);
|
||||
c0 = vaddq_f32(c0, c2);
|
||||
|
||||
return btVector3(c0);
|
||||
#else
|
||||
return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
|
||||
#endif
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btMatrix3x3
|
||||
operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
|
||||
{
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
|
||||
|
||||
__m128 m10 = m1[0].mVec128;
|
||||
__m128 m11 = m1[1].mVec128;
|
||||
__m128 m12 = m1[2].mVec128;
|
||||
|
||||
__m128 m2v = _mm_and_ps(m2[0].mVec128, btvFFF0fMask);
|
||||
|
||||
__m128 c0 = bt_splat_ps( m10, 0);
|
||||
__m128 c1 = bt_splat_ps( m11, 0);
|
||||
__m128 c2 = bt_splat_ps( m12, 0);
|
||||
|
||||
c0 = _mm_mul_ps(c0, m2v);
|
||||
c1 = _mm_mul_ps(c1, m2v);
|
||||
c2 = _mm_mul_ps(c2, m2v);
|
||||
|
||||
m2v = _mm_and_ps(m2[1].mVec128, btvFFF0fMask);
|
||||
|
||||
__m128 c0_1 = bt_splat_ps( m10, 1);
|
||||
__m128 c1_1 = bt_splat_ps( m11, 1);
|
||||
__m128 c2_1 = bt_splat_ps( m12, 1);
|
||||
|
||||
c0_1 = _mm_mul_ps(c0_1, m2v);
|
||||
c1_1 = _mm_mul_ps(c1_1, m2v);
|
||||
c2_1 = _mm_mul_ps(c2_1, m2v);
|
||||
|
||||
m2v = _mm_and_ps(m2[2].mVec128, btvFFF0fMask);
|
||||
|
||||
c0 = _mm_add_ps(c0, c0_1);
|
||||
c1 = _mm_add_ps(c1, c1_1);
|
||||
c2 = _mm_add_ps(c2, c2_1);
|
||||
|
||||
m10 = bt_splat_ps( m10, 2);
|
||||
m11 = bt_splat_ps( m11, 2);
|
||||
m12 = bt_splat_ps( m12, 2);
|
||||
|
||||
m10 = _mm_mul_ps(m10, m2v);
|
||||
m11 = _mm_mul_ps(m11, m2v);
|
||||
m12 = _mm_mul_ps(m12, m2v);
|
||||
|
||||
c0 = _mm_add_ps(c0, m10);
|
||||
c1 = _mm_add_ps(c1, m11);
|
||||
c2 = _mm_add_ps(c2, m12);
|
||||
|
||||
return btMatrix3x3(c0, c1, c2);
|
||||
|
||||
#elif defined(BT_USE_NEON)
|
||||
|
||||
float32x4_t rv0, rv1, rv2;
|
||||
float32x4_t v0, v1, v2;
|
||||
float32x4_t mv0, mv1, mv2;
|
||||
|
||||
v0 = m1[0].mVec128;
|
||||
v1 = m1[1].mVec128;
|
||||
v2 = m1[2].mVec128;
|
||||
|
||||
mv0 = (float32x4_t) vandq_s32((int32x4_t)m2[0].mVec128, btvFFF0Mask);
|
||||
mv1 = (float32x4_t) vandq_s32((int32x4_t)m2[1].mVec128, btvFFF0Mask);
|
||||
mv2 = (float32x4_t) vandq_s32((int32x4_t)m2[2].mVec128, btvFFF0Mask);
|
||||
|
||||
rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
|
||||
rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
|
||||
rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
|
||||
|
||||
rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
|
||||
rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
|
||||
rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
|
||||
|
||||
rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
|
||||
rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
|
||||
rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
|
||||
|
||||
return btMatrix3x3(rv0, rv1, rv2);
|
||||
|
||||
#else
|
||||
return btMatrix3x3(
|
||||
m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]),
|
||||
m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]),
|
||||
m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2]));
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -716,9 +1292,24 @@ m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
|
||||
* It will test all elements are equal. */
|
||||
SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2)
|
||||
{
|
||||
return ( m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
|
||||
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
|
||||
|
||||
__m128 c0, c1, c2;
|
||||
|
||||
c0 = _mm_cmpeq_ps(m1[0].mVec128, m2[0].mVec128);
|
||||
c1 = _mm_cmpeq_ps(m1[1].mVec128, m2[1].mVec128);
|
||||
c2 = _mm_cmpeq_ps(m1[2].mVec128, m2[2].mVec128);
|
||||
|
||||
c0 = _mm_and_ps(c0, c1);
|
||||
c0 = _mm_and_ps(c0, c2);
|
||||
|
||||
return (0x7 == _mm_movemask_ps((__m128)c0));
|
||||
#else
|
||||
return
|
||||
( m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
|
||||
m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
|
||||
m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] );
|
||||
#endif
|
||||
}
|
||||
|
||||
///for serialization
|
||||
|
||||
Reference in New Issue
Block a user