Add a virtual createConstraintRows method, to easier experiment with different kinds of btMultiBodyConstraint

This commit is contained in:
erwin.coumans
2013-10-02 21:38:40 +00:00
parent c2bece5280
commit 75f17509cc
8 changed files with 463 additions and 451 deletions

View File

@@ -19,6 +19,7 @@ subject to the following restrictions:
#include "BulletDynamics/ConstraintSolver/btSolverBody.h"
#include "btMultiBodyConstraint.h"
#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
#include "LinearMath/btQuickprof.h"
@@ -33,7 +34,8 @@ btScalar btMultiBodyConstraintSolver::solveSingleIteration(int iteration, btColl
{
btMultiBodySolverConstraint& constraint = m_multiBodyNonContactConstraints[j];
//if (iteration < constraint.m_overrideNumSolverIterations)
resolveSingleConstraintRowGenericMultiBody(constraint);
//resolveSingleConstraintRowGenericMultiBody(constraint);
resolveSingleConstraintRowGeneric(constraint);
}
//solve featherstone normal contact
@@ -69,9 +71,9 @@ btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlySetup(btCollisionOb
m_multiBodyNonContactConstraints.resize(0);
m_multiBodyNormalContactConstraints.resize(0);
m_multiBodyFrictionContactConstraints.resize(0);
m_jacobians.resize(0);
m_deltaVelocitiesUnitImpulse.resize(0);
m_deltaVelocities.resize(0);
m_data.m_jacobians.resize(0);
m_data.m_deltaVelocitiesUnitImpulse.resize(0);
m_data.m_deltaVelocities.resize(0);
for (int i=0;i<numBodies;i++)
{
@@ -90,7 +92,7 @@ btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlySetup(btCollisionOb
void btMultiBodyConstraintSolver::applyDeltaVee(btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
{
for (int i = 0; i < ndof; ++i)
m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
m_data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
}
void btMultiBodyConstraintSolver::resolveSingleConstraintRowGeneric(const btMultiBodySolverConstraint& c)
@@ -108,7 +110,7 @@ void btMultiBodyConstraintSolver::resolveSingleConstraintRowGeneric(const btMult
{
ndofA = c.m_multiBodyA->getNumLinks() + 6;
for (int i = 0; i < ndofA; ++i)
deltaVelADotn += m_jacobians[c.m_jacAindex+i] * m_deltaVelocities[c.m_deltaVelAindex+i];
deltaVelADotn += m_data.m_jacobians[c.m_jacAindex+i] * m_data.m_deltaVelocities[c.m_deltaVelAindex+i];
} else
{
bodyA = &m_tmpSolverBodyPool[c.m_solverBodyIdA];
@@ -119,7 +121,7 @@ void btMultiBodyConstraintSolver::resolveSingleConstraintRowGeneric(const btMult
{
ndofB = c.m_multiBodyB->getNumLinks() + 6;
for (int i = 0; i < ndofB; ++i)
deltaVelBDotn += m_jacobians[c.m_jacBindex+i] * m_deltaVelocities[c.m_deltaVelBindex+i];
deltaVelBDotn += m_data.m_jacobians[c.m_jacBindex+i] * m_data.m_deltaVelocities[c.m_deltaVelBindex+i];
} else
{
bodyB = &m_tmpSolverBodyPool[c.m_solverBodyIdB];
@@ -148,8 +150,8 @@ void btMultiBodyConstraintSolver::resolveSingleConstraintRowGeneric(const btMult
if (c.m_multiBodyA)
{
applyDeltaVee(&m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
c.m_multiBodyA->applyDeltaVee(&m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
c.m_multiBodyA->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
} else
{
bodyA->internalApplyImpulse(c.m_contactNormal1*bodyA->internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
@@ -157,8 +159,8 @@ void btMultiBodyConstraintSolver::resolveSingleConstraintRowGeneric(const btMult
}
if (c.m_multiBodyB)
{
applyDeltaVee(&m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
c.m_multiBodyB->applyDeltaVee(&m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
c.m_multiBodyB->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
} else
{
bodyB->internalApplyImpulse(c.m_contactNormal2*bodyB->internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
@@ -180,14 +182,14 @@ void btMultiBodyConstraintSolver::resolveSingleConstraintRowGenericMultiBody(con
{
ndofA = c.m_multiBodyA->getNumLinks() + 6;
for (int i = 0; i < ndofA; ++i)
deltaVelADotn += m_jacobians[c.m_jacAindex+i] * m_deltaVelocities[c.m_deltaVelAindex+i];
deltaVelADotn += m_data.m_jacobians[c.m_jacAindex+i] * m_data.m_deltaVelocities[c.m_deltaVelAindex+i];
}
if (c.m_multiBodyB)
{
ndofB = c.m_multiBodyB->getNumLinks() + 6;
for (int i = 0; i < ndofB; ++i)
deltaVelBDotn += m_jacobians[c.m_jacBindex+i] * m_deltaVelocities[c.m_deltaVelBindex+i];
deltaVelBDotn += m_data.m_jacobians[c.m_jacBindex+i] * m_data.m_deltaVelocities[c.m_deltaVelBindex+i];
}
@@ -212,13 +214,13 @@ void btMultiBodyConstraintSolver::resolveSingleConstraintRowGenericMultiBody(con
if (c.m_multiBodyA)
{
applyDeltaVee(&m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
c.m_multiBodyA->applyDeltaVee(&m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
c.m_multiBodyA->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
}
if (c.m_multiBodyB)
{
applyDeltaVee(&m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
c.m_multiBodyB->applyDeltaVee(&m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
c.m_multiBodyB->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
}
}
@@ -261,23 +263,23 @@ void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySol
if (solverConstraint.m_deltaVelAindex <0)
{
solverConstraint.m_deltaVelAindex = m_deltaVelocities.size();
solverConstraint.m_deltaVelAindex = m_data.m_deltaVelocities.size();
multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
m_deltaVelocities.resize(m_deltaVelocities.size()+ndofA);
m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofA);
} else
{
btAssert(m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
btAssert(m_data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
}
solverConstraint.m_jacAindex = m_jacobians.size();
m_jacobians.resize(m_jacobians.size()+ndofA);
m_deltaVelocitiesUnitImpulse.resize(m_deltaVelocitiesUnitImpulse.size()+ndofA);
btAssert(m_jacobians.size() == m_deltaVelocitiesUnitImpulse.size());
solverConstraint.m_jacAindex = m_data.m_jacobians.size();
m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofA);
m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
float* jac1=&m_jacobians[solverConstraint.m_jacAindex];
multiBodyA->fillContactJacobian(solverConstraint.m_linkA, cp.getPositionWorldOnA(), contactNormal, jac1, scratch_r, scratch_v, scratch_m);
float* delta = &m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
multiBodyA->calcAccelerationDeltas(&m_jacobians[solverConstraint.m_jacAindex],delta,scratch_r, scratch_v);
float* jac1=&m_data.m_jacobians[solverConstraint.m_jacAindex];
multiBodyA->fillContactJacobian(solverConstraint.m_linkA, cp.getPositionWorldOnA(), contactNormal, jac1, m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
float* delta = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
multiBodyA->calcAccelerationDeltas(&m_data.m_jacobians[solverConstraint.m_jacAindex],delta,m_data.scratch_r, m_data.scratch_v);
} else
{
btVector3 torqueAxis0 = rel_pos1.cross(contactNormal);
@@ -293,19 +295,19 @@ void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySol
solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
if (solverConstraint.m_deltaVelBindex <0)
{
solverConstraint.m_deltaVelBindex = m_deltaVelocities.size();
solverConstraint.m_deltaVelBindex = m_data.m_deltaVelocities.size();
multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
m_deltaVelocities.resize(m_deltaVelocities.size()+ndofB);
m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofB);
}
solverConstraint.m_jacBindex = m_jacobians.size();
solverConstraint.m_jacBindex = m_data.m_jacobians.size();
m_jacobians.resize(m_jacobians.size()+ndofB);
m_deltaVelocitiesUnitImpulse.resize(m_deltaVelocitiesUnitImpulse.size()+ndofB);
btAssert(m_jacobians.size() == m_deltaVelocitiesUnitImpulse.size());
m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofB);
m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
multiBodyB->fillContactJacobian(solverConstraint.m_linkB, cp.getPositionWorldOnB(), -contactNormal, &m_jacobians[solverConstraint.m_jacBindex], scratch_r, scratch_v, scratch_m);
multiBodyB->calcAccelerationDeltas(&m_jacobians[solverConstraint.m_jacBindex],&m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],scratch_r, scratch_v);
multiBodyB->fillContactJacobian(solverConstraint.m_linkB, cp.getPositionWorldOnB(), -contactNormal, &m_data.m_jacobians[solverConstraint.m_jacBindex], m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
multiBodyB->calcAccelerationDeltas(&m_data.m_jacobians[solverConstraint.m_jacBindex],&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],m_data.scratch_r, m_data.scratch_v);
} else
{
btVector3 torqueAxis1 = rel_pos2.cross(contactNormal);
@@ -327,8 +329,8 @@ void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySol
if (multiBodyA)
{
ndofA = multiBodyA->getNumLinks() + 6;
jacA = &m_jacobians[solverConstraint.m_jacAindex];
lambdaA = &m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
lambdaA = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
for (int i = 0; i < ndofA; ++i)
{
float j = jacA[i] ;
@@ -346,8 +348,8 @@ void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySol
if (multiBodyB)
{
const int ndofB = multiBodyB->getNumLinks() + 6;
jacB = &m_jacobians[solverConstraint.m_jacBindex];
lambdaB = &m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
lambdaB = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
for (int i = 0; i < ndofB; ++i)
{
float j = jacB[i] ;
@@ -403,7 +405,7 @@ void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySol
if (multiBodyA)
{
ndofA = multiBodyA->getNumLinks() + 6;
btScalar* jacA = &m_jacobians[solverConstraint.m_jacAindex];
btScalar* jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
for (int i = 0; i < ndofA ; ++i)
rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
} else
@@ -416,7 +418,7 @@ void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySol
if (multiBodyB)
{
ndofB = multiBodyB->getNumLinks() + 6;
btScalar* jacB = &m_jacobians[solverConstraint.m_jacBindex];
btScalar* jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
for (int i = 0; i < ndofB ; ++i)
rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
@@ -449,7 +451,7 @@ void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySol
if (multiBodyA)
{
btScalar impulse = solverConstraint.m_appliedImpulse;
btScalar* deltaV = &m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
multiBodyA->applyDeltaVee(deltaV,impulse);
applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
} else
@@ -460,7 +462,7 @@ void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySol
if (multiBodyB)
{
btScalar impulse = solverConstraint.m_appliedImpulse;
btScalar* deltaV = &m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
multiBodyB->applyDeltaVee(deltaV,impulse);
applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
} else
@@ -524,257 +526,6 @@ void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySol
void btMultiBodyConstraintSolver::setupMultiBodyJointLimitConstraint(btMultiBodySolverConstraint& constraintRow,
btScalar* jacOrgA,btScalar* jacOrgB,
btScalar penetration,btScalar combinedFrictionCoeff, btScalar combinedRestitutionCoeff,
const btContactSolverInfo& infoGlobal)
{
BT_PROFILE("setupMultiBodyContactConstraint");
btMultiBody* multiBodyA = constraintRow.m_multiBodyA;
btMultiBody* multiBodyB = constraintRow.m_multiBodyB;
if (multiBodyA)
{
const int ndofA = multiBodyA->getNumLinks() + 6;
constraintRow.m_deltaVelAindex = multiBodyA->getCompanionId();
if (constraintRow.m_deltaVelAindex <0)
{
constraintRow.m_deltaVelAindex = m_deltaVelocities.size();
multiBodyA->setCompanionId(constraintRow.m_deltaVelAindex);
m_deltaVelocities.resize(m_deltaVelocities.size()+ndofA);
} else
{
btAssert(m_deltaVelocities.size() >= constraintRow.m_deltaVelAindex+ndofA);
}
constraintRow.m_jacAindex = m_jacobians.size();
m_jacobians.resize(m_jacobians.size()+ndofA);
m_deltaVelocitiesUnitImpulse.resize(m_deltaVelocitiesUnitImpulse.size()+ndofA);
btAssert(m_jacobians.size() == m_deltaVelocitiesUnitImpulse.size());
for (int i=0;i<ndofA;i++)
m_jacobians[constraintRow.m_jacAindex+i] = jacOrgA[i];
float* delta = &m_deltaVelocitiesUnitImpulse[constraintRow.m_jacAindex];
multiBodyA->calcAccelerationDeltas(&m_jacobians[constraintRow.m_jacAindex],delta,scratch_r, scratch_v);
}
if (multiBodyB)
{
const int ndofB = multiBodyB->getNumLinks() + 6;
constraintRow.m_deltaVelBindex = multiBodyB->getCompanionId();
if (constraintRow.m_deltaVelBindex <0)
{
constraintRow.m_deltaVelBindex = m_deltaVelocities.size();
multiBodyB->setCompanionId(constraintRow.m_deltaVelBindex);
m_deltaVelocities.resize(m_deltaVelocities.size()+ndofB);
}
constraintRow.m_jacBindex = m_jacobians.size();
m_jacobians.resize(m_jacobians.size()+ndofB);
for (int i=0;i<ndofB;i++)
m_jacobians[constraintRow.m_jacBindex+i] = jacOrgB[i];
m_deltaVelocitiesUnitImpulse.resize(m_deltaVelocitiesUnitImpulse.size()+ndofB);
btAssert(m_jacobians.size() == m_deltaVelocitiesUnitImpulse.size());
multiBodyB->calcAccelerationDeltas(&m_jacobians[constraintRow.m_jacBindex],&m_deltaVelocitiesUnitImpulse[constraintRow.m_jacBindex],scratch_r, scratch_v);
}
{
btVector3 vec;
btScalar denom0 = 0.f;
btScalar denom1 = 0.f;
btScalar* jacB = 0;
btScalar* jacA = 0;
btScalar* lambdaA =0;
btScalar* lambdaB =0;
int ndofA = 0;
if (multiBodyA)
{
ndofA = multiBodyA->getNumLinks() + 6;
jacA = &m_jacobians[constraintRow.m_jacAindex];
lambdaA = &m_deltaVelocitiesUnitImpulse[constraintRow.m_jacAindex];
for (int i = 0; i < ndofA; ++i)
{
float j = jacA[i] ;
float l =lambdaA[i];
denom0 += j*l;
}
}
if (multiBodyB)
{
const int ndofB = multiBodyB->getNumLinks() + 6;
jacB = &m_jacobians[constraintRow.m_jacBindex];
lambdaB = &m_deltaVelocitiesUnitImpulse[constraintRow.m_jacBindex];
for (int i = 0; i < ndofB; ++i)
{
float j = jacB[i] ;
float l =lambdaB[i];
denom1 += j*l;
}
}
if (multiBodyA && (multiBodyA==multiBodyB))
{
// ndof1 == ndof2 in this case
for (int i = 0; i < ndofA; ++i)
{
denom1 += jacB[i] * lambdaA[i];
denom1 += jacA[i] * lambdaB[i];
}
}
float d = denom0+denom1;
if (btFabs(d)>SIMD_EPSILON)
{
constraintRow.m_jacDiagABInv = 1.f/(d);
} else
{
constraintRow.m_jacDiagABInv = 1.f;
}
}
//compute rhs and remaining constraintRow fields
btScalar restitution = 0.f;
btScalar rel_vel = 0.f;
int ndofA = 0;
int ndofB = 0;
{
btVector3 vel1,vel2;
if (multiBodyA)
{
ndofA = multiBodyA->getNumLinks() + 6;
btScalar* jacA = &m_jacobians[constraintRow.m_jacAindex];
for (int i = 0; i < ndofA ; ++i)
rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
}
if (multiBodyB)
{
ndofB = multiBodyB->getNumLinks() + 6;
btScalar* jacB = &m_jacobians[constraintRow.m_jacBindex];
for (int i = 0; i < ndofB ; ++i)
rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
}
constraintRow.m_friction = combinedFrictionCoeff;
restitution = restitutionCurve(rel_vel, combinedRestitutionCoeff);
if (restitution <= btScalar(0.))
{
restitution = 0.f;
};
}
/*
///warm starting (or zero if disabled)
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
{
constraintRow.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
if (constraintRow.m_appliedImpulse)
{
if (multiBodyA)
{
btScalar impulse = constraintRow.m_appliedImpulse;
btScalar* deltaV = &m_deltaVelocitiesUnitImpulse[constraintRow.m_jacAindex];
multiBodyA->applyDeltaVee(deltaV,impulse);
applyDeltaVee(deltaV,impulse,constraintRow.m_deltaVelAindex,ndofA);
}
if (multiBodyB)
{
btScalar impulse = constraintRow.m_appliedImpulse;
btScalar* deltaV = &m_deltaVelocitiesUnitImpulse[constraintRow.m_jacBindex];
multiBodyB->applyDeltaVee(deltaV,impulse);
applyDeltaVee(deltaV,impulse,constraintRow.m_deltaVelBindex,ndofB);
}
}
}
else
*/
{
constraintRow.m_appliedImpulse = 0.f;
}
constraintRow.m_appliedPushImpulse = 0.f;
{
btScalar positionalError = 0.f;
btScalar velocityError = restitution - rel_vel;// * damping;
btScalar erp = infoGlobal.m_erp2;
if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
{
erp = infoGlobal.m_erp;
}
// const btScalar ALLOWED_PENETRATION = btScalar(0.01);
// float baumgarte_coeff = 0.3;
/// float one_over_dt = 1.f/infoGlobal.m_timeStep;
// btScalar minus_vnew = -penetration * baumgarte_coeff * one_over_dt;
// float myrhs = minus_vnew*solverConstraint.m_jacDiagABInv;//??
// solverConstraint.m_rhs = minus_vnew*solverConstraint.m_jacDiagABInv;//??
//solverConstraint.m_rhsPenetration = 0.f;
//penetration=0.f;
if (penetration>0)
{
positionalError = 0;
velocityError = -penetration / infoGlobal.m_timeStep;
} else
{
positionalError = -penetration * erp/infoGlobal.m_timeStep;
}
btScalar penetrationImpulse = positionalError*constraintRow.m_jacDiagABInv;
btScalar velocityImpulse = velocityError *constraintRow.m_jacDiagABInv;
if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
{
//combine position and velocity into rhs
constraintRow.m_rhs = penetrationImpulse+velocityImpulse;
constraintRow.m_rhsPenetration = 0.f;
} else
{
//split position and velocity into rhs and m_rhsPenetration
constraintRow.m_rhs = velocityImpulse;
constraintRow.m_rhsPenetration = penetrationImpulse;
}
constraintRow.m_cfm = 0.f;
constraintRow.m_lowerLimit = 0;
constraintRow.m_upperLimit = 1e10f;
}
}
btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
{
@@ -1013,19 +764,7 @@ void btMultiBodyConstraintSolver::convertContacts(btPersistentManifold** manifol
for (int i=0;i<m_tmpNumMultiBodyConstraints;i++)
{
btMultiBodyConstraint* c = m_tmpMultiBodyConstraints[i];
c->update();
for (int row=0;row<c->getNumRows();row++)
{
btMultiBodySolverConstraint& constraintRow = m_multiBodyNonContactConstraints.expandNonInitializing();
constraintRow.m_multiBodyA = c->getMultiBodyA();
constraintRow.m_multiBodyB = c->getMultiBodyB();
btScalar penetration = c->getPosition(row);//rhs = c->computeRhs(row,infoGlobal.m_timeStep);
setupMultiBodyJointLimitConstraint(constraintRow,c->jacobianA(row),c->jacobianB(row),penetration,0,0,infoGlobal);
}
c->createConstraintRows(m_multiBodyNonContactConstraints,m_data, infoGlobal);
}
}