initial upgrade to GIMPACT 0.3, thanks to Francisco Leon for the update. GIMPACT demo/build system will be fixed today.

This commit is contained in:
ejcoumans
2007-09-30 00:05:52 +00:00
parent c98a678c9a
commit 78fe8b7249
22 changed files with 5240 additions and 1082 deletions

View File

@@ -0,0 +1,180 @@
/*
This source file is part of GIMPACT Library.
For the latest info, see http://gimpact.sourceforge.net/
Copyright (c) 2007 Francisco Leon Najera. C.C. 80087371.
email: projectileman@yahoo.com
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "GIMPACT/Bullet/btContactProcessing.h"
#define MAX_COINCIDENT 8
struct CONTACT_KEY_TOKEN
{
unsigned int m_key;
int m_value;
CONTACT_KEY_TOKEN()
{
}
CONTACT_KEY_TOKEN(unsigned int key,int token)
{
m_key = key;
m_value = token;
}
CONTACT_KEY_TOKEN(const CONTACT_KEY_TOKEN& rtoken)
{
m_key = rtoken.m_key;
m_value = rtoken.m_value;
}
inline bool operator <(const CONTACT_KEY_TOKEN& other) const
{
return (m_key < other.m_key);
}
inline bool operator >(const CONTACT_KEY_TOKEN& other) const
{
return (m_key > other.m_key);
}
};
class CONTACT_KEY_TOKEN_COMP
{
public:
bool operator() ( const CONTACT_KEY_TOKEN& a, const CONTACT_KEY_TOKEN& b )
{
return ( a < b );
}
};
void btContactArray::merge_contacts(
const btContactArray & contacts, bool normal_contact_average)
{
clear();
if(contacts.size()==0) return;
if(contacts.size()==1)
{
push_back(contacts[0]);
return;
}
btAlignedObjectArray<CONTACT_KEY_TOKEN> keycontacts;
keycontacts.reserve(contacts.size());
//fill key contacts
for (int i = 0;i<contacts.size() ;i++ )
{
keycontacts.push_back(CONTACT_KEY_TOKEN(contacts[i].calc_key_contact(),i));
}
//sort keys
keycontacts.heapSort(CONTACT_KEY_TOKEN_COMP());
// Merge contacts
int coincident_count=0;
btVector3 coincident_normals[MAX_COINCIDENT];
unsigned int last_key = keycontacts[0].m_key;
unsigned int key = 0;
push_back(contacts[keycontacts[0].m_value]);
BT_CONTACT * pcontact = &(*this)[0];
for(int i=1;i<keycontacts.size();i++)
{
key = keycontacts[i].m_key;
const BT_CONTACT * scontact = &contacts[keycontacts[i].m_value];
if(last_key == key)//same points
{
//merge contact
if(pcontact->m_depth - CONTACT_DIFF_EPSILON > scontact->m_depth)//)
{
*pcontact = *scontact;
coincident_count = 0;
}
else if(normal_contact_average)
{
if(btFabs(pcontact->m_depth - scontact->m_depth)<CONTACT_DIFF_EPSILON)
{
if(coincident_count<MAX_COINCIDENT)
{
coincident_normals[coincident_count] = scontact->m_normal;
coincident_count++;
}
}
}
}
else
{//add new contact
if(normal_contact_average && coincident_count>0)
{
pcontact->interpolate_normals(coincident_normals,coincident_count);
coincident_count = 0;
}
push_back(*scontact);
pcontact = &(*this)[this->size()-1];
}
last_key = key;
}
}
void btContactArray::merge_contacts_unique(const btContactArray & contacts)
{
clear();
if(contacts.size()==0) return;
if(contacts.size()==1)
{
push_back(contacts[0]);
return;
}
BT_CONTACT average_contact = contacts[0];
for (int i=1;i<contacts.size() ;i++ )
{
average_contact.m_point += contacts[i].m_point;
average_contact.m_normal += contacts[i].m_normal * contacts[i].m_depth;
}
//divide
btScalar divide_average = 1.0f/((btScalar)contacts.size());
average_contact.m_point *= divide_average;
average_contact.m_normal *= divide_average;
average_contact.m_depth = average_contact.m_normal.length();
average_contact.m_normal /= average_contact.m_depth;
}

View File

@@ -0,0 +1,493 @@
/*! \file gim_box_set.h
\author Francisco Le<4C>n N<>jera
*/
/*
This source file is part of GIMPACT Library.
For the latest info, see http://gimpact.sourceforge.net/
Copyright (c) 2007 Francisco Leon Najera. C.C. 80087371.
email: projectileman@yahoo.com
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "GIMPACT/Bullet/btGImpactBvh.h"
#include "LinearMath/btQuickprof.h"
btClock g_tree_clock;
float g_accum_tree_collision_time = 0;
int g_count_traversing = 0;
void bt_begin_gim02_tree_time()
{
g_tree_clock.reset();
}
void bt_end_gim02_tree_time()
{
g_accum_tree_collision_time += g_tree_clock.getTimeMicroseconds();
g_count_traversing++;
}
//! Gets the average time in miliseconds of tree collisions
float btGImpactBvh::getAverageTreeCollisionTime()
{
if(g_count_traversing == 0) return 0;
float avgtime = g_accum_tree_collision_time;
avgtime /= (float)g_count_traversing;
g_accum_tree_collision_time = 0;
g_count_traversing = 0;
return avgtime;
// float avgtime = g_count_traversing;
// g_count_traversing = 0;
// return avgtime;
}
/////////////////////// btBvhTree /////////////////////////////////
int btBvhTree::_calc_splitting_axis(
BT_BVH_DATA_ARRAY & primitive_boxes, int startIndex, int endIndex)
{
int i;
btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.));
int numIndices = endIndex-startIndex;
for (i=startIndex;i<endIndex;i++)
{
btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max +
primitive_boxes[i].m_bound.m_min);
means+=center;
}
means *= (btScalar(1.)/(btScalar)numIndices);
for (i=startIndex;i<endIndex;i++)
{
btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max +
primitive_boxes[i].m_bound.m_min);
btVector3 diff2 = center-means;
diff2 = diff2 * diff2;
variance += diff2;
}
variance *= (btScalar(1.)/ ((btScalar)numIndices-1) );
return variance.maxAxis();
}
int btBvhTree::_sort_and_calc_splitting_index(
BT_BVH_DATA_ARRAY & primitive_boxes, int startIndex,
int endIndex, int splitAxis)
{
int i;
int splitIndex =startIndex;
int numIndices = endIndex - startIndex;
// average of centers
btScalar splitValue = 0.0f;
btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
for (i=startIndex;i<endIndex;i++)
{
btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max +
primitive_boxes[i].m_bound.m_min);
means+=center;
}
means *= (btScalar(1.)/(btScalar)numIndices);
splitValue = means[splitAxis];
//sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'.
for (i=startIndex;i<endIndex;i++)
{
btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max +
primitive_boxes[i].m_bound.m_min);
if (center[splitAxis] > splitValue)
{
//swap
primitive_boxes.swap(i,splitIndex);
//swapLeafNodes(i,splitIndex);
splitIndex++;
}
}
//if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex
//otherwise the tree-building might fail due to stack-overflows in certain cases.
//unbalanced1 is unsafe: it can cause stack overflows
//bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1)));
//unbalanced2 should work too: always use center (perfect balanced trees)
//bool unbalanced2 = true;
//this should be safe too:
int rangeBalancedIndices = numIndices/3;
bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices)));
if (unbalanced)
{
splitIndex = startIndex+ (numIndices>>1);
}
bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex));
btAssert(!unbal);
return splitIndex;
}
void btBvhTree::_build_sub_tree(BT_BVH_DATA_ARRAY & primitive_boxes, int startIndex, int endIndex)
{
int curIndex = m_num_nodes;
m_num_nodes++;
btAssert((endIndex-startIndex)>0);
if ((endIndex-startIndex)==1)
{
//We have a leaf node
setNodeBound(curIndex,primitive_boxes[startIndex].m_bound);
m_node_array[curIndex].setDataIndex(primitive_boxes[startIndex].m_data);
return;
}
//calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'.
//split axis
int splitIndex = _calc_splitting_axis(primitive_boxes,startIndex,endIndex);
splitIndex = _sort_and_calc_splitting_index(
primitive_boxes,startIndex,endIndex,
splitIndex//split axis
);
//calc this node bounding box
btAABB node_bound;
node_bound.invalidate();
for (int i=startIndex;i<endIndex;i++)
{
node_bound.merge(primitive_boxes[i].m_bound);
}
setNodeBound(curIndex,node_bound);
//build left branch
_build_sub_tree(primitive_boxes, startIndex, splitIndex );
//build right branch
_build_sub_tree(primitive_boxes, splitIndex ,endIndex);
m_node_array[curIndex].setEscapeIndex(m_num_nodes - curIndex);
}
//! stackless build tree
void btBvhTree::build_tree(
BT_BVH_DATA_ARRAY & primitive_boxes)
{
// initialize node count to 0
m_num_nodes = 0;
// allocate nodes
m_node_array.resize(primitive_boxes.size()*2);
_build_sub_tree(primitive_boxes, 0, primitive_boxes.size());
}
////////////////////////////////////class btGImpactBvh
void btGImpactBvh::refit()
{
int nodecount = getNodeCount();
while(nodecount--)
{
if(isLeafNode(nodecount))
{
btAABB leafbox;
m_primitive_manager->get_primitive_box(getNodeData(nodecount),leafbox);
setNodeBound(nodecount,leafbox);
}
else
{
//const BT_BVH_TREE_NODE * nodepointer = get_node_pointer(nodecount);
//get left bound
btAABB bound;
bound.invalidate();
btAABB temp_box;
int child_node = getLeftNode(nodecount);
if(child_node)
{
getNodeBound(child_node,temp_box);
bound.merge(temp_box);
}
child_node = getRightNode(nodecount);
if(child_node)
{
getNodeBound(child_node,temp_box);
bound.merge(temp_box);
}
setNodeBound(nodecount,bound);
}
}
}
//! this rebuild the entire set
void btGImpactBvh::buildSet()
{
//obtain primitive boxes
BT_BVH_DATA_ARRAY primitive_boxes;
primitive_boxes.resize(m_primitive_manager->get_primitive_count());
for (int i = 0;i<primitive_boxes.size() ;i++ )
{
m_primitive_manager->get_primitive_box(i,primitive_boxes[i].m_bound);
primitive_boxes[i].m_data = i;
}
m_box_tree.build_tree(primitive_boxes);
}
//! returns the indices of the primitives in the m_primitive_manager
bool btGImpactBvh::boxQuery(const btAABB & box, btAlignedObjectArray<int> & collided_results) const
{
int curIndex = 0;
int numNodes = getNodeCount();
while (curIndex < numNodes)
{
btAABB bound;
getNodeBound(curIndex,bound);
//catch bugs in tree data
bool aabbOverlap = bound.has_collision(box);
bool isleafnode = isLeafNode(curIndex);
if (isleafnode && aabbOverlap)
{
collided_results.push_back(getNodeData(curIndex));
}
if (aabbOverlap || isleafnode)
{
//next subnode
curIndex++;
}
else
{
//skip node
curIndex+= getEscapeNodeIndex(curIndex);
}
}
if(collided_results.size()>0) return true;
return false;
}
//! returns the indices of the primitives in the m_primitive_manager
bool btGImpactBvh::rayQuery(
const btVector3 & ray_dir,const btVector3 & ray_origin ,
btAlignedObjectArray<int> & collided_results) const
{
int curIndex = 0;
int numNodes = getNodeCount();
while (curIndex < numNodes)
{
btAABB bound;
getNodeBound(curIndex,bound);
//catch bugs in tree data
bool aabbOverlap = bound.collide_ray(ray_origin,ray_dir);
bool isleafnode = isLeafNode(curIndex);
if (isleafnode && aabbOverlap)
{
collided_results.push_back(getNodeData( curIndex));
}
if (aabbOverlap || isleafnode)
{
//next subnode
curIndex++;
}
else
{
//skip node
curIndex+= getEscapeNodeIndex(curIndex);
}
}
if(collided_results.size()>0) return true;
return false;
}
SIMD_FORCE_INLINE bool _node_collision(
btGImpactBvh * boxset0, btGImpactBvh * boxset1,
const BT_BOX_BOX_TRANSFORM_CACHE & trans_cache_1to0,
int node0 ,int node1, bool complete_primitive_tests)
{
btAABB box0;
boxset0->getNodeBound(node0,box0);
btAABB box1;
boxset1->getNodeBound(node1,box1);
return box0.overlapping_trans_cache(box1,trans_cache_1to0,complete_primitive_tests );
// box1.appy_transform_trans_cache(trans_cache_1to0);
// return box0.has_collision(box1);
}
//stackless recursive collision routine
static void _find_collision_pairs_recursive(
btGImpactBvh * boxset0, btGImpactBvh * boxset1,
btPairSet * collision_pairs,
const BT_BOX_BOX_TRANSFORM_CACHE & trans_cache_1to0,
int node0, int node1, bool complete_primitive_tests)
{
if( _node_collision(
boxset0,boxset1,trans_cache_1to0,
node0,node1,complete_primitive_tests) ==false) return;//avoid colliding internal nodes
if(boxset0->isLeafNode(node0))
{
if(boxset1->isLeafNode(node1))
{
// collision result
collision_pairs->push_pair(
boxset0->getNodeData(node0),boxset1->getNodeData(node1));
return;
}
else
{
//collide left recursive
_find_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
node0,boxset1->getLeftNode(node1),false);
//collide right recursive
_find_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
node0,boxset1->getRightNode(node1),false);
}
}
else
{
if(boxset1->isLeafNode(node1))
{
//collide left recursive
_find_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
boxset0->getLeftNode(node0),node1,false);
//collide right recursive
_find_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
boxset0->getRightNode(node0),node1,false);
}
else
{
//collide left0 left1
_find_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
boxset0->getLeftNode(node0),boxset1->getLeftNode(node1),false);
//collide left0 right1
_find_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
boxset0->getLeftNode(node0),boxset1->getRightNode(node1),false);
//collide right0 left1
_find_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
boxset0->getRightNode(node0),boxset1->getLeftNode(node1),false);
//collide right0 right1
_find_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
boxset0->getRightNode(node0),boxset1->getRightNode(node1),false);
}// else if node1 is not a leaf
}// else if node0 is not a leaf
}
void btGImpactBvh::find_collision(btGImpactBvh * boxset0, const btTransform & trans0,
btGImpactBvh * boxset1, const btTransform & trans1,
btPairSet & collision_pairs)
{
if(boxset0->getNodeCount()==0 || boxset1->getNodeCount()==0 ) return;
BT_BOX_BOX_TRANSFORM_CACHE trans_cache_1to0;
trans_cache_1to0.calc_from_homogenic(trans0,trans1);
bt_begin_gim02_tree_time();
_find_collision_pairs_recursive(
boxset0,boxset1,
&collision_pairs,trans_cache_1to0,0,0,true);
bt_end_gim02_tree_time();
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,523 @@
/*! \file gim_box_set.h
\author Francisco Le<4C>n N<>jera
*/
/*
This source file is part of GIMPACT Library.
For the latest info, see http://gimpact.sourceforge.net/
Copyright (c) 2007 Francisco Leon Najera. C.C. 80087371.
email: projectileman@yahoo.com
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "GIMPACT/Bullet/btGImpactQuantizedBvh.h"
#include "LinearMath/btQuickprof.h"
btClock g_q_tree_clock;
float g_q_accum_tree_collision_time = 0;
int g_q_count_traversing = 0;
void bt_begin_gim02_q_tree_time()
{
g_q_tree_clock.reset();
}
void bt_end_gim02_q_tree_time()
{
g_q_accum_tree_collision_time += g_q_tree_clock.getTimeMicroseconds();
g_q_count_traversing++;
}
//! Gets the average time in miliseconds of tree collisions
float btGImpactQuantizedBvh::getAverageTreeCollisionTime()
{
if(g_q_count_traversing == 0) return 0;
float avgtime = g_q_accum_tree_collision_time;
avgtime /= (float)g_q_count_traversing;
g_q_accum_tree_collision_time = 0;
g_q_count_traversing = 0;
return avgtime;
// float avgtime = g_q_count_traversing;
// g_q_count_traversing = 0;
// return avgtime;
}
/////////////////////// btQuantizedBvhTree /////////////////////////////////
void btQuantizedBvhTree::calc_quantization(
BT_BVH_DATA_ARRAY & primitive_boxes, btScalar boundMargin)
{
//calc globa box
btAABB global_bound;
global_bound.invalidate();
for (int i=0;i<primitive_boxes.size() ;i++ )
{
global_bound.merge(primitive_boxes[i].m_bound);
}
bt_calc_quantization_parameters(
m_global_bound.m_min,m_global_bound.m_max,m_bvhQuantization,global_bound.m_min,global_bound.m_max,boundMargin);
}
int btQuantizedBvhTree::_calc_splitting_axis(
BT_BVH_DATA_ARRAY & primitive_boxes, int startIndex, int endIndex)
{
int i;
btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.));
int numIndices = endIndex-startIndex;
for (i=startIndex;i<endIndex;i++)
{
btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max +
primitive_boxes[i].m_bound.m_min);
means+=center;
}
means *= (btScalar(1.)/(btScalar)numIndices);
for (i=startIndex;i<endIndex;i++)
{
btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max +
primitive_boxes[i].m_bound.m_min);
btVector3 diff2 = center-means;
diff2 = diff2 * diff2;
variance += diff2;
}
variance *= (btScalar(1.)/ ((btScalar)numIndices-1) );
return variance.maxAxis();
}
int btQuantizedBvhTree::_sort_and_calc_splitting_index(
BT_BVH_DATA_ARRAY & primitive_boxes, int startIndex,
int endIndex, int splitAxis)
{
int i;
int splitIndex =startIndex;
int numIndices = endIndex - startIndex;
// average of centers
btScalar splitValue = 0.0f;
btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
for (i=startIndex;i<endIndex;i++)
{
btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max +
primitive_boxes[i].m_bound.m_min);
means+=center;
}
means *= (btScalar(1.)/(btScalar)numIndices);
splitValue = means[splitAxis];
//sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'.
for (i=startIndex;i<endIndex;i++)
{
btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max +
primitive_boxes[i].m_bound.m_min);
if (center[splitAxis] > splitValue)
{
//swap
primitive_boxes.swap(i,splitIndex);
//swapLeafNodes(i,splitIndex);
splitIndex++;
}
}
//if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex
//otherwise the tree-building might fail due to stack-overflows in certain cases.
//unbalanced1 is unsafe: it can cause stack overflows
//bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1)));
//unbalanced2 should work too: always use center (perfect balanced trees)
//bool unbalanced2 = true;
//this should be safe too:
int rangeBalancedIndices = numIndices/3;
bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices)));
if (unbalanced)
{
splitIndex = startIndex+ (numIndices>>1);
}
bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex));
btAssert(!unbal);
return splitIndex;
}
void btQuantizedBvhTree::_build_sub_tree(BT_BVH_DATA_ARRAY & primitive_boxes, int startIndex, int endIndex)
{
int curIndex = m_num_nodes;
m_num_nodes++;
btAssert((endIndex-startIndex)>0);
if ((endIndex-startIndex)==1)
{
//We have a leaf node
setNodeBound(curIndex,primitive_boxes[startIndex].m_bound);
m_node_array[curIndex].setDataIndex(primitive_boxes[startIndex].m_data);
return;
}
//calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'.
//split axis
int splitIndex = _calc_splitting_axis(primitive_boxes,startIndex,endIndex);
splitIndex = _sort_and_calc_splitting_index(
primitive_boxes,startIndex,endIndex,
splitIndex//split axis
);
//calc this node bounding box
btAABB node_bound;
node_bound.invalidate();
for (int i=startIndex;i<endIndex;i++)
{
node_bound.merge(primitive_boxes[i].m_bound);
}
setNodeBound(curIndex,node_bound);
//build left branch
_build_sub_tree(primitive_boxes, startIndex, splitIndex );
//build right branch
_build_sub_tree(primitive_boxes, splitIndex ,endIndex);
m_node_array[curIndex].setEscapeIndex(m_num_nodes - curIndex);
}
//! stackless build tree
void btQuantizedBvhTree::build_tree(
BT_BVH_DATA_ARRAY & primitive_boxes)
{
calc_quantization(primitive_boxes);
// initialize node count to 0
m_num_nodes = 0;
// allocate nodes
m_node_array.resize(primitive_boxes.size()*2);
_build_sub_tree(primitive_boxes, 0, primitive_boxes.size());
}
////////////////////////////////////class btGImpactQuantizedBvh
void btGImpactQuantizedBvh::refit()
{
int nodecount = getNodeCount();
while(nodecount--)
{
if(isLeafNode(nodecount))
{
btAABB leafbox;
m_primitive_manager->get_primitive_box(getNodeData(nodecount),leafbox);
setNodeBound(nodecount,leafbox);
}
else
{
//const BT_BVH_TREE_NODE * nodepointer = get_node_pointer(nodecount);
//get left bound
btAABB bound;
bound.invalidate();
btAABB temp_box;
int child_node = getLeftNode(nodecount);
if(child_node)
{
getNodeBound(child_node,temp_box);
bound.merge(temp_box);
}
child_node = getRightNode(nodecount);
if(child_node)
{
getNodeBound(child_node,temp_box);
bound.merge(temp_box);
}
setNodeBound(nodecount,bound);
}
}
}
//! this rebuild the entire set
void btGImpactQuantizedBvh::buildSet()
{
//obtain primitive boxes
BT_BVH_DATA_ARRAY primitive_boxes;
primitive_boxes.resize(m_primitive_manager->get_primitive_count());
for (int i = 0;i<primitive_boxes.size() ;i++ )
{
m_primitive_manager->get_primitive_box(i,primitive_boxes[i].m_bound);
primitive_boxes[i].m_data = i;
}
m_box_tree.build_tree(primitive_boxes);
}
//! returns the indices of the primitives in the m_primitive_manager
bool btGImpactQuantizedBvh::boxQuery(const btAABB & box, btAlignedObjectArray<int> & collided_results) const
{
int curIndex = 0;
int numNodes = getNodeCount();
//quantize box
unsigned short quantizedMin[3];
unsigned short quantizedMax[3];
m_box_tree.quantizePoint(quantizedMin,box.m_min);
m_box_tree.quantizePoint(quantizedMax,box.m_max);
while (curIndex < numNodes)
{
//catch bugs in tree data
bool aabbOverlap = m_box_tree.testQuantizedBoxOverlapp(curIndex, quantizedMin,quantizedMax);
bool isleafnode = isLeafNode(curIndex);
if (isleafnode && aabbOverlap)
{
collided_results.push_back(getNodeData(curIndex));
}
if (aabbOverlap || isleafnode)
{
//next subnode
curIndex++;
}
else
{
//skip node
curIndex+= getEscapeNodeIndex(curIndex);
}
}
if(collided_results.size()>0) return true;
return false;
}
//! returns the indices of the primitives in the m_primitive_manager
bool btGImpactQuantizedBvh::rayQuery(
const btVector3 & ray_dir,const btVector3 & ray_origin ,
btAlignedObjectArray<int> & collided_results) const
{
int curIndex = 0;
int numNodes = getNodeCount();
while (curIndex < numNodes)
{
btAABB bound;
getNodeBound(curIndex,bound);
//catch bugs in tree data
bool aabbOverlap = bound.collide_ray(ray_origin,ray_dir);
bool isleafnode = isLeafNode(curIndex);
if (isleafnode && aabbOverlap)
{
collided_results.push_back(getNodeData( curIndex));
}
if (aabbOverlap || isleafnode)
{
//next subnode
curIndex++;
}
else
{
//skip node
curIndex+= getEscapeNodeIndex(curIndex);
}
}
if(collided_results.size()>0) return true;
return false;
}
SIMD_FORCE_INLINE bool _quantized_node_collision(
btGImpactQuantizedBvh * boxset0, btGImpactQuantizedBvh * boxset1,
const BT_BOX_BOX_TRANSFORM_CACHE & trans_cache_1to0,
int node0 ,int node1, bool complete_primitive_tests)
{
btAABB box0;
boxset0->getNodeBound(node0,box0);
btAABB box1;
boxset1->getNodeBound(node1,box1);
return box0.overlapping_trans_cache(box1,trans_cache_1to0,complete_primitive_tests );
// box1.appy_transform_trans_cache(trans_cache_1to0);
// return box0.has_collision(box1);
}
//stackless recursive collision routine
static void _find_quantized_collision_pairs_recursive(
btGImpactQuantizedBvh * boxset0, btGImpactQuantizedBvh * boxset1,
btPairSet * collision_pairs,
const BT_BOX_BOX_TRANSFORM_CACHE & trans_cache_1to0,
int node0, int node1, bool complete_primitive_tests)
{
if( _quantized_node_collision(
boxset0,boxset1,trans_cache_1to0,
node0,node1,complete_primitive_tests) ==false) return;//avoid colliding internal nodes
if(boxset0->isLeafNode(node0))
{
if(boxset1->isLeafNode(node1))
{
// collision result
collision_pairs->push_pair(
boxset0->getNodeData(node0),boxset1->getNodeData(node1));
return;
}
else
{
//collide left recursive
_find_quantized_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
node0,boxset1->getLeftNode(node1),false);
//collide right recursive
_find_quantized_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
node0,boxset1->getRightNode(node1),false);
}
}
else
{
if(boxset1->isLeafNode(node1))
{
//collide left recursive
_find_quantized_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
boxset0->getLeftNode(node0),node1,false);
//collide right recursive
_find_quantized_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
boxset0->getRightNode(node0),node1,false);
}
else
{
//collide left0 left1
_find_quantized_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
boxset0->getLeftNode(node0),boxset1->getLeftNode(node1),false);
//collide left0 right1
_find_quantized_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
boxset0->getLeftNode(node0),boxset1->getRightNode(node1),false);
//collide right0 left1
_find_quantized_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
boxset0->getRightNode(node0),boxset1->getLeftNode(node1),false);
//collide right0 right1
_find_quantized_collision_pairs_recursive(
boxset0,boxset1,
collision_pairs,trans_cache_1to0,
boxset0->getRightNode(node0),boxset1->getRightNode(node1),false);
}// else if node1 is not a leaf
}// else if node0 is not a leaf
}
void btGImpactQuantizedBvh::find_collision(btGImpactQuantizedBvh * boxset0, const btTransform & trans0,
btGImpactQuantizedBvh * boxset1, const btTransform & trans1,
btPairSet & collision_pairs)
{
if(boxset0->getNodeCount()==0 || boxset1->getNodeCount()==0 ) return;
BT_BOX_BOX_TRANSFORM_CACHE trans_cache_1to0;
trans_cache_1to0.calc_from_homogenic(trans0,trans1);
bt_begin_gim02_q_tree_time();
_find_quantized_collision_pairs_recursive(
boxset0,boxset1,
&collision_pairs,trans_cache_1to0,0,0,true);
bt_end_gim02_q_tree_time();
}

View File

@@ -1,30 +1,21 @@
/*
-----------------------------------------------------------------------------
This source file is part of GIMPACT Library.
For the latest info, see http://gimpact.sourceforge.net/
Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
Copyright (c) 2007 Francisco Leon Najera. C.C. 80087371.
email: projectileman@yahoo.com
This library is free software; you can redistribute it and/or
modify it under the terms of EITHER:
(1) The GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at
your option) any later version. The text of the GNU Lesser
General Public License is included with this library in the
file GIMPACT-LICENSE-LGPL.TXT.
(2) The BSD-style license that is included with this library in
the file GIMPACT-LICENSE-BSD.TXT.
(3) The zlib/libpng license that is included with this library in
the file GIMPACT-LICENSE-ZLIB.TXT.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
-----------------------------------------------------------------------------
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
@@ -36,18 +27,26 @@ email: projectileman@yahoo.com
void btGImpactCompoundShape::calculateLocalInertia(btScalar mass,btVector3& inertia)
{
lockChildShapes();
#ifdef CALC_EXACT_INERTIA
inertia.setValue(0.f,0.f,0.f);
GUINT i = this->getNumChildShapes();
GREAL shapemass = mass/btScalar(i);
int i = this->getNumChildShapes();
btScalar shapemass = mass/btScalar(i);
while(i--)
{
btVector3 temp_inertia;
m_childShapes[i]->calculateLocalInertia(shapemass,temp_inertia);
inertia = gim_inertia_add_transformed( inertia,temp_inertia,m_childTransforms[i]);
if(childrenHasTransform())
{
inertia = gim_inertia_add_transformed( inertia,temp_inertia,m_childTransforms[i]);
}
else
{
inertia = gim_inertia_add_transformed( inertia,temp_inertia,btTransform::getIdentity());
}
}
#else
@@ -65,20 +64,21 @@ void btGImpactCompoundShape::calculateLocalInertia(btScalar mass,btVector3& iner
inertia = scaledmass * (btVector3(y2+z2,x2+z2,x2+y2));
#endif
unlockChildShapes();
}
void btGImpactMeshShapePart::calculateLocalInertia(btScalar mass,btVector3& inertia)
{
lock();
lockChildShapes();
#ifdef CALC_EXACT_INERTIA
inertia.setValue(0.f,0.f,0.f);
GUINT i = this->getVertexCount();
GREAL pointmass = mass/btScalar(i);
int i = this->getVertexCount();
btScalar pointmass = mass/btScalar(i);
while(i--)
{
@@ -104,7 +104,7 @@ void btGImpactMeshShapePart::calculateLocalInertia(btScalar mass,btVector3& iner
#endif
unlock();
unlockChildShapes();
}
void btGImpactMeshShape::calculateLocalInertia(btScalar mass,btVector3& inertia)
@@ -113,8 +113,8 @@ void btGImpactMeshShape::calculateLocalInertia(btScalar mass,btVector3& inertia)
#ifdef CALC_EXACT_INERTIA
inertia.setValue(0.f,0.f,0.f);
GUINT i = this->getMeshPartCount();
GREAL partmass = mass/btScalar(i);
int i = this->getMeshPartCount();
btScalar partmass = mass/btScalar(i);
while(i--)
{
@@ -140,53 +140,42 @@ void btGImpactMeshShape::calculateLocalInertia(btScalar mass,btVector3& inertia)
#endif
}
void btGImpactCompoundShape::rayTest(const btVector3& rayFrom, const btVector3& rayTo, btCollisionWorld::RayResultCallback& resultCallback) const
{
}
void btGImpactMeshShape::rayTest(const btVector3& rayFrom, const btVector3& rayTo, btCollisionWorld::RayResultCallback& resultCallback) const
{
}
void btGImpactMeshShapePart::rayTest(const btVector3& rayFrom, const btVector3& rayTo, btCollisionWorld::RayResultCallback& resultCallback) const
{
}
void btGImpactMeshShapePart::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
lock();
GIM_AABB box;
lockChildShapes();
btAABB box;
box.m_min = aabbMin;
box.m_max = aabbMax;
gim_array<GUINT> collided;
btAlignedObjectArray<int> collided;
m_box_set.boxQuery(box,collided);
if(collided.size()==0)
{
unlock();
unlockChildShapes();
return;
}
int part = (int)getPart();
GIM_TRIANGLE triangle;
GUINT i = collided.size();
btPrimitiveTriangle triangle;
int i = collided.size();
while(i--)
{
this->getTriangle(collided[i],triangle);
this->getPrimitiveTriangle(collided[i],triangle);
callback->processTriangle(triangle.m_vertices,part,collided[i]);
}
unlock();
unlockChildShapes();
}
void btGImpactMeshShape::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
GUINT i = m_mesh_parts.size();
int i = m_mesh_parts.size();
while(i--)
{
m_mesh_parts[i]->processAllTriangles(callback,aabbMin,aabbMax);

View File

@@ -0,0 +1,216 @@
/*! \file btGImpactTriangleShape.h
\author Francisco Le<4C>n N<>jera
*/
/*
This source file is part of GIMPACT Library.
For the latest info, see http://gimpact.sourceforge.net/
Copyright (c) 2007 Francisco Leon Najera. C.C. 80087371.
email: projectileman@yahoo.com
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "GIMPACT/Bullet/btTriangleShapeEx.h"
void BT_TRIANGLE_CONTACT::merge_points(const btVector4 & plane,
btScalar margin, const btVector3 * points, int point_count)
{
m_point_count = 0;
m_penetration_depth= -1000.0f;
int point_indices[MAX_TRI_CLIPPING];
for (int _k=0;_k<point_count;_k++)
{
btScalar _dist = - bt_distance_point_plane(plane,points[_k]) + margin;
if (_dist>=0.0f)
{
if (_dist>m_penetration_depth)
{
m_penetration_depth = _dist;
point_indices[0] = _k;
m_point_count=1;
}
else if ((_dist+SIMD_EPSILON)>=m_penetration_depth)
{
point_indices[m_point_count] = _k;
m_point_count++;
}
}
}
for (int _k=0;_k<m_point_count;_k++)
{
m_points[_k] = points[point_indices[_k]];
}
}
///class btPrimitiveTriangle
bool btPrimitiveTriangle::overlap_test_conservative(const btPrimitiveTriangle& other)
{
btScalar total_margin = m_margin + other.m_margin;
// classify points on other triangle
btScalar dis0 = bt_distance_point_plane(m_plane,other.m_vertices[0]) - total_margin;
btScalar dis1 = bt_distance_point_plane(m_plane,other.m_vertices[1]) - total_margin;
btScalar dis2 = bt_distance_point_plane(m_plane,other.m_vertices[2]) - total_margin;
if (dis0>0.0f&&dis1>0.0f&&dis2>0.0f) return false;
// classify points on this triangle
dis0 = bt_distance_point_plane(other.m_plane,m_vertices[0]) - total_margin;
dis1 = bt_distance_point_plane(other.m_plane,m_vertices[1]) - total_margin;
dis2 = bt_distance_point_plane(other.m_plane,m_vertices[2]) - total_margin;
if (dis0>0.0f&&dis1>0.0f&&dis2>0.0f) return false;
return true;
}
int btPrimitiveTriangle::clip_triangle(btPrimitiveTriangle & other, btVector3 * clipped_points )
{
// edge 0
btVector3 temp_points[MAX_TRI_CLIPPING];
btVector4 edgeplane;
get_edge_plane(0,edgeplane);
int clipped_count = bt_plane_clip_triangle(
edgeplane,other.m_vertices[0],other.m_vertices[1],other.m_vertices[2],temp_points);
if (clipped_count == 0) return 0;
btVector3 temp_points1[MAX_TRI_CLIPPING];
// edge 1
get_edge_plane(1,edgeplane);
clipped_count = bt_plane_clip_polygon(edgeplane,temp_points,clipped_count,temp_points1);
if (clipped_count == 0) return 0;
// edge 2
get_edge_plane(2,edgeplane);
clipped_count = bt_plane_clip_polygon(
edgeplane,temp_points1,clipped_count,clipped_points);
return clipped_count;
}
bool btPrimitiveTriangle::find_triangle_collision_clip_method(btPrimitiveTriangle & other, BT_TRIANGLE_CONTACT & contacts)
{
btScalar margin = m_margin + other.m_margin;
btVector3 clipped_points[MAX_TRI_CLIPPING];
int clipped_count;
//create planes
// plane v vs U points
BT_TRIANGLE_CONTACT contacts1;
contacts1.m_separating_normal = m_plane;
clipped_count = clip_triangle(other,clipped_points);
if (clipped_count == 0 )
{
return false;//Reject
}
//find most deep interval face1
contacts1.merge_points(contacts1.m_separating_normal,margin,clipped_points,clipped_count);
if (contacts1.m_point_count == 0) return false; // too far
//Normal pointing to this triangle
contacts1.m_separating_normal *= -1.f;
//Clip tri1 by tri2 edges
BT_TRIANGLE_CONTACT contacts2;
contacts2.m_separating_normal = other.m_plane;
clipped_count = other.clip_triangle(*this,clipped_points);
if (clipped_count == 0 )
{
return false;//Reject
}
//find most deep interval face1
contacts2.merge_points(contacts2.m_separating_normal,margin,clipped_points,clipped_count);
if (contacts2.m_point_count == 0) return false; // too far
////check most dir for contacts
if (contacts2.m_penetration_depth<contacts1.m_penetration_depth)
{
contacts.copy_from(contacts2);
}
else
{
contacts.copy_from(contacts1);
}
return true;
}
///class btTriangleShapeEx: public btTriangleShape
bool btTriangleShapeEx::overlap_test_conservative(const btTriangleShapeEx& other)
{
btScalar total_margin = getMargin() + other.getMargin();
btVector4 plane0;
buildTriPlane(plane0);
btVector4 plane1;
other.buildTriPlane(plane1);
// classify points on other triangle
btScalar dis0 = bt_distance_point_plane(plane0,other.m_vertices1[0]) - total_margin;
btScalar dis1 = bt_distance_point_plane(plane0,other.m_vertices1[1]) - total_margin;
btScalar dis2 = bt_distance_point_plane(plane0,other.m_vertices1[2]) - total_margin;
if (dis0>0.0f&&dis1>0.0f&&dis2>0.0f) return false;
// classify points on this triangle
dis0 = bt_distance_point_plane(plane1,m_vertices1[0]) - total_margin;
dis1 = bt_distance_point_plane(plane1,m_vertices1[1]) - total_margin;
dis2 = bt_distance_point_plane(plane1,m_vertices1[2]) - total_margin;
if (dis0>0.0f&&dis1>0.0f&&dis2>0.0f) return false;
return true;
}

View File

@@ -48,10 +48,10 @@ void gim_contact_array::merge_contacts(
//fill key contacts
for (GUINT i = 0;i<contacts.size() ;i++ )
for (GUINT i = 0;i<contacts.size() ;i++ )
{
keycontacts[i].m_key = contacts[i].calc_key_contact();
keycontacts[i].m_value = i;
keycontacts[i].m_value = i;
}
//sort keys
@@ -121,10 +121,10 @@ void gim_contact_array::merge_contacts_unique(const gim_contact_array & contacts
GIM_CONTACT average_contact = contacts.back();
for (GUINT i=1;i<contacts.size() ;i++ )
for (GUINT i=1;i<contacts.size() ;i++ )
{
average_contact.m_point += contacts[i].m_point;
average_contact.m_normal += contacts[i].m_normal * contacts[i].m_depth;
average_contact.m_normal += contacts[i].m_normal * contacts[i].m_depth;
}
//divide