Removed (circular) dependency between broadphase and collision shapes: moved parts CollisionShapes/btOptimizedBvh into BroadphaseCollision/btQuantizedBvh

This commit is contained in:
erwin.coumans
2008-08-26 23:40:51 +00:00
parent 110e8313da
commit 79b6f7a772
7 changed files with 1539 additions and 1459 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -16,477 +16,35 @@ subject to the following restrictions:
#ifndef OPTIMIZED_BVH_H
#define OPTIMIZED_BVH_H
//#define DEBUG_CHECK_DEQUANTIZATION 1
#ifdef DEBUG_CHECK_DEQUANTIZATION
#ifdef __SPU__
#define printf spu_printf
#endif //__SPU__
#include <stdio.h>
#include <stdlib.h>
#endif //DEBUG_CHECK_DEQUANTIZATION
#include "LinearMath/btVector3.h"
#include "LinearMath/btAlignedAllocator.h"
//http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang/html/vclrf__m128.asp
#include "BulletCollision/BroadphaseCollision/btQuantizedBvh.h"
class btStridingMeshInterface;
//Note: currently we have 16 bytes per quantized node
#define MAX_SUBTREE_SIZE_IN_BYTES 2048
// 10 gives the potential for 1024 parts, with at most 2^21 (2097152) (minus one
// actually) triangles each (since the sign bit is reserved
#define MAX_NUM_PARTS_IN_BITS 10
///btQuantizedBvhNode is a compressed aabb node, 16 bytes.
///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).
ATTRIBUTE_ALIGNED16 (struct) btQuantizedBvhNode
{
BT_DECLARE_ALIGNED_ALLOCATOR();
//12 bytes
unsigned short int m_quantizedAabbMin[3];
unsigned short int m_quantizedAabbMax[3];
//4 bytes
int m_escapeIndexOrTriangleIndex;
bool isLeafNode() const
{
//skipindex is negative (internal node), triangleindex >=0 (leafnode)
return (m_escapeIndexOrTriangleIndex >= 0);
}
int getEscapeIndex() const
{
btAssert(!isLeafNode());
return -m_escapeIndexOrTriangleIndex;
}
int getTriangleIndex() const
{
btAssert(isLeafNode());
// Get only the lower bits where the triangle index is stored
return (m_escapeIndexOrTriangleIndex&~((~0)<<(31-MAX_NUM_PARTS_IN_BITS)));
}
int getPartId() const
{
btAssert(isLeafNode());
// Get only the highest bits where the part index is stored
return (m_escapeIndexOrTriangleIndex>>(31-MAX_NUM_PARTS_IN_BITS));
}
}
;
/// btOptimizedBvhNode contains both internal and leaf node information.
/// Total node size is 44 bytes / node. You can use the compressed version of 16 bytes.
ATTRIBUTE_ALIGNED16 (struct) btOptimizedBvhNode
{
BT_DECLARE_ALIGNED_ALLOCATOR();
//32 bytes
btVector3 m_aabbMinOrg;
btVector3 m_aabbMaxOrg;
//4
int m_escapeIndex;
//8
//for child nodes
int m_subPart;
int m_triangleIndex;
int m_padding[5];//bad, due to alignment
};
///btBvhSubtreeInfo provides info to gather a subtree of limited size
ATTRIBUTE_ALIGNED16(class) btBvhSubtreeInfo
///OptimizedBvh extends the btQuantizedBvh to create AABB tree for triangle meshes, through the btStridingMeshInterface.
ATTRIBUTE_ALIGNED16(class) btOptimizedBvh : public btQuantizedBvh
{
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
//12 bytes
unsigned short int m_quantizedAabbMin[3];
unsigned short int m_quantizedAabbMax[3];
//4 bytes, points to the root of the subtree
int m_rootNodeIndex;
//4 bytes
int m_subtreeSize;
int m_padding[3];
btBvhSubtreeInfo()
{
//memset(&m_padding[0], 0, sizeof(m_padding));
}
void setAabbFromQuantizeNode(const btQuantizedBvhNode& quantizedNode)
{
m_quantizedAabbMin[0] = quantizedNode.m_quantizedAabbMin[0];
m_quantizedAabbMin[1] = quantizedNode.m_quantizedAabbMin[1];
m_quantizedAabbMin[2] = quantizedNode.m_quantizedAabbMin[2];
m_quantizedAabbMax[0] = quantizedNode.m_quantizedAabbMax[0];
m_quantizedAabbMax[1] = quantizedNode.m_quantizedAabbMax[1];
m_quantizedAabbMax[2] = quantizedNode.m_quantizedAabbMax[2];
}
}
;
class btNodeOverlapCallback
{
public:
virtual ~btNodeOverlapCallback() {};
virtual void processNode(int subPart, int triangleIndex) = 0;
};
#include "LinearMath/btAlignedAllocator.h"
#include "LinearMath/btAlignedObjectArray.h"
///for code readability:
typedef btAlignedObjectArray<btOptimizedBvhNode> NodeArray;
typedef btAlignedObjectArray<btQuantizedBvhNode> QuantizedNodeArray;
typedef btAlignedObjectArray<btBvhSubtreeInfo> BvhSubtreeInfoArray;
///OptimizedBvh store an AABB tree that can be quickly traversed on CPU (and SPU,GPU in future)
ATTRIBUTE_ALIGNED16(class) btOptimizedBvh
{
NodeArray m_leafNodes;
NodeArray m_contiguousNodes;
QuantizedNodeArray m_quantizedLeafNodes;
QuantizedNodeArray m_quantizedContiguousNodes;
int m_curNodeIndex;
//quantization data
bool m_useQuantization;
btVector3 m_bvhAabbMin;
btVector3 m_bvhAabbMax;
btVector3 m_bvhQuantization;
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
enum btTraversalMode
{
TRAVERSAL_STACKLESS = 0,
TRAVERSAL_STACKLESS_CACHE_FRIENDLY,
TRAVERSAL_RECURSIVE
};
protected:
btTraversalMode m_traversalMode;
BvhSubtreeInfoArray m_SubtreeHeaders;
//This is only used for serialization so we don't have to add serialization directly to btAlignedObjectArray
int m_subtreeHeaderCount;
///two versions, one for quantized and normal nodes. This allows code-reuse while maintaining readability (no template/macro!)
///this might be refactored into a virtual, it is usually not calculated at run-time
void setInternalNodeAabbMin(int nodeIndex, const btVector3& aabbMin)
{
if (m_useQuantization)
{
quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] ,aabbMin,0);
} else
{
m_contiguousNodes[nodeIndex].m_aabbMinOrg = aabbMin;
}
}
void setInternalNodeAabbMax(int nodeIndex,const btVector3& aabbMax)
{
if (m_useQuantization)
{
quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0],aabbMax,1);
} else
{
m_contiguousNodes[nodeIndex].m_aabbMaxOrg = aabbMax;
}
}
btVector3 getAabbMin(int nodeIndex) const
{
if (m_useQuantization)
{
return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMin[0]);
}
//non-quantized
return m_leafNodes[nodeIndex].m_aabbMinOrg;
}
btVector3 getAabbMax(int nodeIndex) const
{
if (m_useQuantization)
{
return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMax[0]);
}
//non-quantized
return m_leafNodes[nodeIndex].m_aabbMaxOrg;
}
void setInternalNodeEscapeIndex(int nodeIndex, int escapeIndex)
{
if (m_useQuantization)
{
m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = -escapeIndex;
}
else
{
m_contiguousNodes[nodeIndex].m_escapeIndex = escapeIndex;
}
}
void mergeInternalNodeAabb(int nodeIndex,const btVector3& newAabbMin,const btVector3& newAabbMax)
{
if (m_useQuantization)
{
unsigned short int quantizedAabbMin[3];
unsigned short int quantizedAabbMax[3];
quantize(quantizedAabbMin,newAabbMin,0);
quantize(quantizedAabbMax,newAabbMax,1);
for (int i=0;i<3;i++)
{
if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] > quantizedAabbMin[i])
m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] = quantizedAabbMin[i];
if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] < quantizedAabbMax[i])
m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] = quantizedAabbMax[i];
}
} else
{
//non-quantized
m_contiguousNodes[nodeIndex].m_aabbMinOrg.setMin(newAabbMin);
m_contiguousNodes[nodeIndex].m_aabbMaxOrg.setMax(newAabbMax);
}
}
void swapLeafNodes(int firstIndex,int secondIndex);
void assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex);
protected:
void buildTree (int startIndex,int endIndex);
int calcSplittingAxis(int startIndex,int endIndex);
int sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis);
void walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const;
void walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const;
void walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const;
///tree traversal designed for small-memory processors like PS3 SPU
void walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const;
///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal
void walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const;
///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal
void walkRecursiveQuantizedTreeAgainstQuantizedTree(const btQuantizedBvhNode* treeNodeA,const btQuantizedBvhNode* treeNodeB,btNodeOverlapCallback* nodeCallback) const;
#define USE_BANCHLESS 1
#ifdef USE_BANCHLESS
//This block replaces the block below and uses no branches, and replaces the 8 bit return with a 32 bit return for improved performance (~3x on XBox 360)
SIMD_FORCE_INLINE unsigned testQuantizedAabbAgainstQuantizedAabb(unsigned short int* aabbMin1,unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2) const
{
return static_cast<unsigned int>(btSelect((unsigned)((aabbMin1[0] <= aabbMax2[0]) & (aabbMax1[0] >= aabbMin2[0])
& (aabbMin1[2] <= aabbMax2[2]) & (aabbMax1[2] >= aabbMin2[2])
& (aabbMin1[1] <= aabbMax2[1]) & (aabbMax1[1] >= aabbMin2[1])),
1, 0));
}
#else
SIMD_FORCE_INLINE bool testQuantizedAabbAgainstQuantizedAabb(unsigned short int* aabbMin1,unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2) const
{
bool overlap = true;
overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? false : overlap;
overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? false : overlap;
overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? false : overlap;
return overlap;
}
#endif //USE_BANCHLESS
void updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex);
public:
btOptimizedBvh();
virtual ~btOptimizedBvh();
void build(btStridingMeshInterface* triangles,bool useQuantizedAabbCompression, const btVector3& bvhAabbMin, const btVector3& bvhAabbMax);
///***************************************** expert/internal use only *************************
void setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin=btScalar(1.0));
QuantizedNodeArray& getLeafNodeArray() { return m_quantizedLeafNodes; }
///buildInternal is expert use only: assumes that setQuantizationValues and LeafNodeArray are initialized
void buildInternal();
///***************************************** expert/internal use only *************************
void reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const;
void reportRayOverlappingNodex (btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const;
void reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin,const btVector3& aabbMax) const;
SIMD_FORCE_INLINE void quantize(unsigned short* out, const btVector3& point,int isMax) const
{
btAssert(m_useQuantization);
btAssert(point.getX() <= m_bvhAabbMax.getX());
btAssert(point.getY() <= m_bvhAabbMax.getY());
btAssert(point.getZ() <= m_bvhAabbMax.getZ());
btAssert(point.getX() >= m_bvhAabbMin.getX());
btAssert(point.getY() >= m_bvhAabbMin.getY());
btAssert(point.getZ() >= m_bvhAabbMin.getZ());
btVector3 v = (point - m_bvhAabbMin) * m_bvhQuantization;
///Make sure rounding is done in a way that unQuantize(quantizeWithClamp(...)) is conservative
///end-points always set the first bit, so that they are sorted properly (so that neighbouring AABBs overlap properly)
///todo: double-check this
if (isMax)
{
out[0] = (unsigned short) (((unsigned short)(v.getX()+btScalar(1.)) | 1));
out[1] = (unsigned short) (((unsigned short)(v.getY()+btScalar(1.)) | 1));
out[2] = (unsigned short) (((unsigned short)(v.getZ()+btScalar(1.)) | 1));
} else
{
out[0] = (unsigned short) (((unsigned short)(v.getX()) & 0xfffe));
out[1] = (unsigned short) (((unsigned short)(v.getY()) & 0xfffe));
out[2] = (unsigned short) (((unsigned short)(v.getZ()) & 0xfffe));
}
#ifdef DEBUG_CHECK_DEQUANTIZATION
btVector3 newPoint = unQuantize(out);
if (isMax)
{
if (newPoint.getX() < point.getX())
{
printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n",newPoint.getX()-point.getX(), newPoint.getX(),point.getX());
}
if (newPoint.getY() < point.getY())
{
printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n",newPoint.getY()-point.getY(), newPoint.getY(),point.getY());
}
if (newPoint.getZ() < point.getZ())
{
printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n",newPoint.getZ()-point.getZ(), newPoint.getZ(),point.getZ());
}
} else
{
if (newPoint.getX() > point.getX())
{
printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n",newPoint.getX()-point.getX(), newPoint.getX(),point.getX());
}
if (newPoint.getY() > point.getY())
{
printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n",newPoint.getY()-point.getY(), newPoint.getY(),point.getY());
}
if (newPoint.getZ() > point.getZ())
{
printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n",newPoint.getZ()-point.getZ(), newPoint.getZ(),point.getZ());
}
}
#endif //DEBUG_CHECK_DEQUANTIZATION
}
SIMD_FORCE_INLINE void quantizeWithClamp(unsigned short* out, const btVector3& point2,int isMax) const
{
btAssert(m_useQuantization);
btVector3 clampedPoint(point2);
clampedPoint.setMax(m_bvhAabbMin);
clampedPoint.setMin(m_bvhAabbMax);
quantize(out,clampedPoint,isMax);
}
SIMD_FORCE_INLINE btVector3 unQuantize(const unsigned short* vecIn) const
{
btVector3 vecOut;
vecOut.setValue(
(btScalar)(vecIn[0]) / (m_bvhQuantization.getX()),
(btScalar)(vecIn[1]) / (m_bvhQuantization.getY()),
(btScalar)(vecIn[2]) / (m_bvhQuantization.getZ()));
vecOut += m_bvhAabbMin;
return vecOut;
}
///setTraversalMode let's you choose between stackless, recursive or stackless cache friendly tree traversal. Note this is only implemented for quantized trees.
void setTraversalMode(btTraversalMode traversalMode)
{
m_traversalMode = traversalMode;
}
void refit(btStridingMeshInterface* triangles,const btVector3& aabbMin,const btVector3& aabbMax);
void refitPartial(btStridingMeshInterface* triangles,const btVector3& aabbMin, const btVector3& aabbMax);
void updateBvhNodes(btStridingMeshInterface* meshInterface,int firstNode,int endNode,int index);
SIMD_FORCE_INLINE QuantizedNodeArray& getQuantizedNodeArray()
{
return m_quantizedContiguousNodes;
}
SIMD_FORCE_INLINE BvhSubtreeInfoArray& getSubtreeInfoArray()
{
return m_SubtreeHeaders;
}
/////Calculate space needed to store BVH for serialization
unsigned calculateSerializeBufferSize();
/// Data buffer MUST be 16 byte aligned
bool serialize(void *o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian);
///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place'
static btOptimizedBvh *deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian);
static unsigned int getAlignmentSerializationPadding();
SIMD_FORCE_INLINE bool isQuantized()
{
return m_useQuantization;
}
private:
// Special "copy" constructor that allows for in-place deserialization
// Prevents btVector3's default constructor from being called, but doesn't inialize much else
// ownsMemory should most likely be false if deserializing, and if you are not, don't call this (it also changes the function signature, which we need)
btOptimizedBvh(btOptimizedBvh &other, bool ownsMemory);
}
;
};
#endif //OPTIMIZED_BVH_H