Start of a urdfEditor.py, limited support to extract a URDF from a PyBullet body.

Use btCylinderShapeZ for URDF cylinder, instead of converting it to a btConvexHullShape.
Implement PyBullet.getCollisionShapeData
Extend PyBullet.getDynamicsInfo / b3GetDynamicsInfo, remove flag (don't rely on API returning a fixed number of elements in a list!)
Extend PyBullet.getJointInfo: add parentIndex
This commit is contained in:
Erwin Coumans
2018-01-03 19:17:28 -08:00
parent a1492f50fc
commit 79d78a325a
16 changed files with 858 additions and 45 deletions

View File

@@ -0,0 +1,325 @@
import pybullet as p
import time
p.connect(p.GUI)
door = p.loadURDF("door.urdf")
class UrdfInertial(object):
def __init__(self):
self.mass = 1
self.inertia_xxyyzz=[7,8,9]
self.origin_rpy=[1,2,3]
self.origin_xyz=[4,5,6]
class UrdfContact(object):
def __init__(self):
self.lateral_friction = 1
self.rolling_friction = 0
self.spinning_friction = 0
class UrdfLink(object):
def __init__(self):
self.link_name = "dummy"
self.urdf_inertial = UrdfInertial()
self.urdf_visual_shapes=[]
self.urdf_collision_shapes=[]
class UrdfVisual(object):
def __init__(self):
self.origin_rpy = [1,2,3]
self.origin_xyz = [4,5,6]
self.geom_type = p.GEOM_BOX
self.geom_radius = 1
self.geom_extents = [7,8,9]
self.geom_length=[10]
self.geom_meshfile = "meshfile"
self.material_rgba = [1,0,0,1]
self.material_name = ""
class UrdfCollision(object):
def __init__(self):
self.origin_rpy = [1,2,3]
self.origin_xyz = [4,5,6]
self.geom_type = p.GEOM_BOX
self.geom_radius = 1
self.geom_extents = [7,8,9]
self.geom_meshfile = "meshfile"
class UrdfJoint(object):
def __init__(self):
self.joint_name = "joint_dummy"
self.joint_type = p.JOINT_REVOLUTE
self.joint_lower_limit = 0
self.joint_upper_limit = -1
self.parent_name = "parentName"
self.child_name = "childName"
self.joint_origin_xyz = [1,2,3]
self.joint_axis_xyz = [1,2,3]
class UrdfEditor(object):
def __init__(self):
self.initialize()
def initialize(self):
self.urdfLinks=[]
self.urdfJoints=[]
self.robotName = ""
#def addLink(...)
#def createMultiBody(self):
def convertLinkFromMultiBody(self, bodyUid, linkIndex, urdfLink):
dyn = p.getDynamicsInfo(bodyUid,linkIndex)
urdfLink.urdf_inertial.mass = dyn[0]
urdfLink.urdf_inertial.inertia_xxyyzz = dyn[2]
#todo
urdfLink.urdf_inertial.origin_xyz = dyn[3]
rpy = p.getEulerFromQuaternion(dyn[4])
urdfLink.urdf_inertial.origin_rpy = rpy
visualShapes = p.getVisualShapeData(bodyUid)
matIndex = 0
for v in visualShapes:
if (v[1]==linkIndex):
print("visualShape base:",v)
urdfVisual = UrdfVisual()
urdfVisual.geom_type = v[2]
if (v[2]==p.GEOM_BOX):
urdfVisual.geom_extents = v[3]
if (v[2]==p.GEOM_SPHERE):
urdfVisual.geom_radius = v[3][0]
if (v[2]==p.GEOM_MESH):
urdfVisual.geom_meshfile = v[4].decode("utf-8")
if (v[2]==p.GEOM_CYLINDER):
urdfVisual.geom_radius=v[3][1]
urdfVisual.geom_length=v[3][0]
urdfVisual.origin_xyz = v[5]
urdfVisual.origin_rpy = p.getEulerFromQuaternion(v[6])
urdfVisual.material_rgba = v[7]
name = 'mat_{}_{}'.format(linkIndex,matIndex)
urdfVisual.material_name = name
urdfLink.urdf_visual_shapes.append(urdfVisual)
matIndex=matIndex+1
collisionShapes = p.getCollisionShapeData(bodyUid, linkIndex)
for v in collisionShapes:
print("collisionShape base:",v)
urdfCollision = UrdfCollision()
print("geom type=",v[0])
urdfCollision.geom_type = v[2]
if (v[2]==p.GEOM_BOX):
urdfCollision.geom_extents = v[3]
if (v[2]==p.GEOM_SPHERE):
urdfCollision.geom_radius = v[3][0]
if (v[2]==p.GEOM_MESH):
urdfCollision.geom_meshfile = v[4].decode("utf-8")
#localInertiaFrame*childTrans
if (v[2]==p.GEOM_CYLINDER):
urdfCollision.geom_radius=v[3][1]
urdfCollision.geom_length=v[3][0]
pos,orn = p.multiplyTransforms(dyn[3],dyn[4],\
v[5], v[6])
urdfCollision.origin_xyz = pos
urdfCollision.origin_rpy = p.getEulerFromQuaternion(orn)
urdfLink.urdf_collision_shapes.append(urdfCollision)
def initializeFromBulletBody(self, bodyUid):
self.initialize()
#always create a base link
baseLink = UrdfLink()
baseLinkIndex = -1
self.convertLinkFromMultiBody(bodyUid, baseLinkIndex, baseLink)
baseLink.link_name = p.getBodyInfo(bodyUid)[0].decode("utf-8")
self.urdfLinks.append(baseLink)
#print(visualShapes)
#optionally create child links and joints
for j in range(p.getNumJoints(bodyUid)):
jointInfo = p.getJointInfo(bodyUid,j)
urdfLink = UrdfLink()
self.convertLinkFromMultiBody(bodyUid, j, urdfLink)
urdfLink.link_name = jointInfo[12].decode("utf-8")
self.urdfLinks.append(urdfLink)
urdfJoint = UrdfJoint()
urdfJoint.joint_name = jointInfo[1].decode("utf-8")
urdfJoint.joint_type = jointInfo[2]
urdfJoint.joint_axis_xyz = jointInfo[13]
parentIndex = jointInfo[16]
if (parentIndex<0):
urdfJoint.parent_name = baseLink.link_name
else:
parentJointInfo = p.getJointInfo(bodyUid,parentIndex)
urdfJoint.parent_name = parentJointInfo[12].decode("utf-8")
urdfJoint.child_name = urdfLink.link_name
#todo, compensate for inertia/link frame offset
dyn = p.getDynamicsInfo(bodyUid,parentIndex)
parentInertiaPos = dyn[3]
parentInertiaOrn = dyn[4]
pos,orn = p.multiplyTransforms(dyn[3],dyn[4],\
jointInfo[14], jointInfo[15])
urdfJoint.joint_origin_xyz = pos
urdfJoint.joint_origin_rpy = p.getEulerFromQuaternion(orn)
self.urdfJoints.append(urdfJoint)
def writeInertial(self,file,urdfInertial, precision=5):
file.write("\t\t<inertial>\n")
str = '\t\t\t<origin rpy=\"{:.{prec}f} {:.{prec}f} {:.{prec}f}\" xyz=\"{:.{prec}f} {:.{prec}f} {:.{prec}f}\"/>\n'.format(\
urdfInertial.origin_rpy[0],urdfInertial.origin_rpy[1],urdfInertial.origin_rpy[2],\
urdfInertial.origin_xyz[0],urdfInertial.origin_xyz[1],urdfInertial.origin_xyz[2], prec=precision)
file.write(str)
str = '\t\t\t<mass value=\"{:.{prec}f}\"/>\n'.format(urdfInertial.mass,prec=precision)
file.write(str)
str = '\t\t\t<inertia ixx=\"{:.{prec}f}\" ixy=\"0\" ixz=\"0\" iyy=\"{:.{prec}f}\" iyz=\"0\" izz=\"{:.{prec}f}\"/>\n'.format(\
urdfInertial.inertia_xxyyzz[0],\
urdfInertial.inertia_xxyyzz[1],\
urdfInertial.inertia_xxyyzz[2],prec=precision)
file.write(str)
file.write("\t\t</inertial>\n")
def writeVisualShape(self,file,urdfVisual, precision=5):
file.write("\t\t<visual>\n")
str = '\t\t\t<origin rpy="{:.{prec}f} {:.{prec}f} {:.{prec}f}" xyz="{:.{prec}f} {:.{prec}f} {:.{prec}f}"/>\n'.format(\
urdfVisual.origin_rpy[0],urdfVisual.origin_rpy[1],urdfVisual.origin_rpy[2],
urdfVisual.origin_xyz[0],urdfVisual.origin_xyz[1],urdfVisual.origin_xyz[2], prec=precision)
file.write(str)
file.write("\t\t\t<geometry>\n")
if urdfVisual.geom_type == p.GEOM_BOX:
str = '\t\t\t\t<box size=\"{:.{prec}f} {:.{prec}f} {:.{prec}f}\"/>\n'.format(urdfVisual.geom_extents[0],\
urdfVisual.geom_extents[1],urdfVisual.geom_extents[2], prec=precision)
file.write(str)
if urdfVisual.geom_type == p.GEOM_SPHERE:
str = '\t\t\t\t<sphere radius=\"{:.{prec}f}\"/>\n'.format(urdfVisual.geom_radius,\
prec=precision)
file.write(str)
if urdfVisual.geom_type == p.GEOM_MESH:
str = '\t\t\t\t<mesh filename=\"{}\"/>\n'.format(urdfVisual.geom_meshfile,\
prec=precision)
file.write(str)
if urdfVisual.geom_type == p.GEOM_CYLINDER:
str = '\t\t\t\t<cylinder length=\"{:.{prec}f}\" radius=\"{:.{prec}f}\"/>\n'.format(\
urdfVisual.geom_length, urdfVisual.geom_radius, prec=precision)
file.write(str)
file.write("\t\t\t</geometry>\n")
str = '\t\t\t<material name=\"{}\">\n'.format(urdfVisual.material_name)
file.write(str)
str = '\t\t\t\t<color rgba="{:.{prec}f} {:.{prec}f} {:.{prec}f} {:.{prec}f}" />\n'.format(urdfVisual.material_rgba[0],\
urdfVisual.material_rgba[1],urdfVisual.material_rgba[2],urdfVisual.material_rgba[3],prec=precision)
file.write(str)
file.write("\t\t\t</material>\n")
file.write("\t\t</visual>\n")
def writeCollisionShape(self,file,urdfCollision, precision=5):
file.write("\t\t<collision>\n")
str = '\t\t\t<origin rpy="{:.{prec}f} {:.{prec}f} {:.{prec}f}" xyz="{:.{prec}f} {:.{prec}f} {:.{prec}f}"/>\n'.format(\
urdfCollision.origin_rpy[0],urdfCollision.origin_rpy[1],urdfCollision.origin_rpy[2],
urdfCollision.origin_xyz[0],urdfCollision.origin_xyz[1],urdfCollision.origin_xyz[2], prec=precision)
file.write(str)
file.write("\t\t\t<geometry>\n")
if urdfCollision.geom_type == p.GEOM_BOX:
str = '\t\t\t\t<box size=\"{:.{prec}f} {:.{prec}f} {:.{prec}f}\"/>\n'.format(urdfCollision.geom_extents[0],\
urdfCollision.geom_extents[1],urdfCollision.geom_extents[2], prec=precision)
file.write(str)
if urdfCollision.geom_type == p.GEOM_SPHERE:
str = '\t\t\t\t<sphere radius=\"{:.{prec}f}\"/>\n'.format(urdfCollision.geom_radius,\
prec=precision)
file.write(str)
if urdfCollision.geom_type == p.GEOM_MESH:
str = '\t\t\t\t<mesh filename=\"{}\"/>\n'.format(urdfCollision.geom_meshfile,\
prec=precision)
file.write(str)
if urdfCollision.geom_type == p.GEOM_CYLINDER:
str = '\t\t\t\t<cylinder length=\"{:.{prec}f}\" radius=\"{:.{prec}f}\"/>\n'.format(\
urdfCollision.geom_length, urdfCollision.geom_radius, prec=precision)
file.write(str)
file.write("\t\t\t</geometry>\n")
file.write("\t\t</collision>\n")
def writeLink(self, file, urdfLink):
file.write("\t<link name=\"")
file.write(urdfLink.link_name)
file.write("\">\n")
self.writeInertial(file,urdfLink.urdf_inertial)
for v in urdfLink.urdf_visual_shapes:
self.writeVisualShape(file,v)
for c in urdfLink.urdf_collision_shapes:
self.writeCollisionShape(file,c)
file.write("\t</link>\n")
def writeJoint(self, file, urdfJoint, precision=5):
jointTypeStr = "invalid"
if urdfJoint.joint_type == p.JOINT_REVOLUTE:
if urdfJoint.joint_upper_limit < urdfJoint.joint_lower_limit:
jointTypeStr = "continuous"
else:
jointTypeStr = "revolute"
if urdfJoint.joint_type == p.JOINT_FIXED:
jointTypeStr = "fixed"
if urdfJoint.joint_type == p.JOINT_PRISMATIC:
jointTypeStr = "prismatic"
str = '\t<joint name=\"{}\" type=\"{}\">\n'.format(urdfJoint.joint_name, jointTypeStr)
file.write(str)
str = '\t\t<parent link=\"{}\"/>\n'.format(urdfJoint.parent_name)
file.write(str)
str = '\t\t<child link=\"{}\"/>\n'.format(urdfJoint.child_name)
file.write(str)
file.write("\t\t<dynamics damping=\"1.0\" friction=\"0.0001\"/>\n")
str = '\t\t<origin xyz=\"{:.{prec}f} {:.{prec}f} {:.{prec}f}\"/>\n'.format(urdfJoint.joint_origin_xyz[0],\
urdfJoint.joint_origin_xyz[1],urdfJoint.joint_origin_xyz[2], prec=precision)
file.write(str)
str = '\t\t<axis xyz=\"{:.{prec}f} {:.{prec}f} {:.{prec}f}\"/>\n'.format(urdfJoint.joint_axis_xyz[0],\
urdfJoint.joint_axis_xyz[1],urdfJoint.joint_axis_xyz[2], prec=precision)
file.write(str)
file.write("\t</joint>\n")
def saveUrdf(self, fileName):
file = open(fileName,"w")
file.write("<?xml version=\"0.0\" ?>\n")
file.write("<robot name=\"")
file.write(self.robotName)
file.write("\">\n")
for link in self.urdfLinks:
self.writeLink(file,link)
for joint in self.urdfJoints:
self.writeJoint(file,joint)
file.write("</robot>\n")
file.close()
def __del__(self):
pass
parser = UrdfEditor()
parser.initializeFromBulletBody(door)
parser.saveUrdf("test.urdf")
parser=0
p.setRealTimeSimulation(1)
print("numJoints:",p.getNumJoints(door))
print("base name:",p.getBodyInfo(door))
for i in range(p.getNumJoints(door)):
print("jointInfo(",i,"):",p.getJointInfo(door,i))
print("linkState(",i,"):",p.getLinkState(door,i))
while (p.getConnectionInfo()["isConnected"]):
time.sleep(0.01)

View File

@@ -913,13 +913,12 @@ static PyObject* pybullet_getDynamicsInfo(PyObject* self, PyObject* args, PyObje
{
int bodyUniqueId = -1;
int linkIndex = -2;
int flags = 0;
b3PhysicsClientHandle sm = 0;
int physicsClientId = 0;
static char* kwlist[] = {"bodyUniqueId", "linkIndex", "flags", "physicsClientId", NULL};
if (!PyArg_ParseTupleAndKeywords(args, keywds, "ii|ii", kwlist, &bodyUniqueId, &linkIndex, &flags, &physicsClientId))
static char* kwlist[] = {"bodyUniqueId", "linkIndex", "physicsClientId", NULL};
if (!PyArg_ParseTupleAndKeywords(args, keywds, "ii|i", kwlist, &bodyUniqueId, &linkIndex, &physicsClientId))
{
return NULL;
}
@@ -934,11 +933,7 @@ static PyObject* pybullet_getDynamicsInfo(PyObject* self, PyObject* args, PyObje
b3SharedMemoryCommandHandle cmd_handle;
b3SharedMemoryStatusHandle status_handle;
struct b3DynamicsInfo info;
int numFields = 2;
if (flags & eDYNAMICS_INFO_REPORT_INERTIA)
{
numFields++;
}
if (bodyUniqueId < 0)
{
@@ -959,25 +954,41 @@ static PyObject* pybullet_getDynamicsInfo(PyObject* self, PyObject* args, PyObje
return NULL;
}
if (b3GetDynamicsInfo(status_handle, &info))
{
int numFields = 10;
PyObject* pyDynamicsInfo = PyTuple_New(numFields);
PyTuple_SetItem(pyDynamicsInfo, 0, PyFloat_FromDouble(info.m_mass));
PyTuple_SetItem(pyDynamicsInfo, 1, PyFloat_FromDouble(info.m_lateralFrictionCoeff));
if (flags & eDYNAMICS_INFO_REPORT_INERTIA)
{
PyObject* pyInertiaDiag = PyTuple_New(3);
PyTuple_SetItem(pyInertiaDiag,0,PyFloat_FromDouble(info.m_localInertialDiagonal[0]));
PyTuple_SetItem(pyInertiaDiag,1,PyFloat_FromDouble(info.m_localInertialDiagonal[1]));
PyTuple_SetItem(pyInertiaDiag,2,PyFloat_FromDouble(info.m_localInertialDiagonal[2]));
PyTuple_SetItem(pyInertiaDiag, 0, PyFloat_FromDouble(info.m_localInertialDiagonal[0]));
PyTuple_SetItem(pyInertiaDiag, 1, PyFloat_FromDouble(info.m_localInertialDiagonal[1]));
PyTuple_SetItem(pyInertiaDiag, 2, PyFloat_FromDouble(info.m_localInertialDiagonal[2]));
PyTuple_SetItem(pyDynamicsInfo, 2, pyInertiaDiag);
}
{
PyObject* pyInertiaPos= PyTuple_New(3);
PyTuple_SetItem(pyInertiaPos, 0, PyFloat_FromDouble(info.m_localInertialFrame[0]));
PyTuple_SetItem(pyInertiaPos, 1, PyFloat_FromDouble(info.m_localInertialFrame[1]));
PyTuple_SetItem(pyInertiaPos, 2, PyFloat_FromDouble(info.m_localInertialFrame[2]));
PyTuple_SetItem(pyDynamicsInfo, 3, pyInertiaPos);
}
{
PyObject* pyInertiaOrn= PyTuple_New(4);
PyTuple_SetItem(pyInertiaOrn, 0, PyFloat_FromDouble(info.m_localInertialFrame[3]));
PyTuple_SetItem(pyInertiaOrn, 1, PyFloat_FromDouble(info.m_localInertialFrame[4]));
PyTuple_SetItem(pyInertiaOrn, 2, PyFloat_FromDouble(info.m_localInertialFrame[5]));
PyTuple_SetItem(pyInertiaOrn, 3, PyFloat_FromDouble(info.m_localInertialFrame[6]));
PyTuple_SetItem(pyDynamicsInfo, 4, pyInertiaOrn);
}
PyTuple_SetItem(pyDynamicsInfo, 5, PyFloat_FromDouble(info.m_restitution));
PyTuple_SetItem(pyDynamicsInfo, 6, PyFloat_FromDouble(info.m_rollingFrictionCoeff));
PyTuple_SetItem(pyDynamicsInfo, 7, PyFloat_FromDouble(info.m_spinningFrictionCoeff));
PyTuple_SetItem(pyDynamicsInfo, 8, PyFloat_FromDouble(info.m_contactDamping));
PyTuple_SetItem(pyDynamicsInfo, 9, PyFloat_FromDouble(info.m_contactStiffness));
return pyDynamicsInfo;
}
}
@@ -3067,7 +3078,7 @@ static PyObject* pybullet_getJointInfo(PyObject* self, PyObject* args, PyObject*
int bodyUniqueId = -1;
int jointIndex = -1;
int jointInfoSize = 13; // size of struct b3JointInfo
int jointInfoSize = 17; // size of struct b3JointInfo
b3PhysicsClientHandle sm = 0;
int physicsClientId = 0;
static char* kwlist[] = {"bodyUniqueId", "jointIndex", "physicsClientId", NULL};
@@ -3138,6 +3149,30 @@ static PyObject* pybullet_getJointInfo(PyObject* self, PyObject* args, PyObject*
PyTuple_SetItem(pyListJointInfo, 12,
PyString_FromString("not available"));
}
{
PyObject* axis = PyTuple_New(3);
PyTuple_SetItem(axis, 0, PyFloat_FromDouble(info.m_jointAxis[0]));
PyTuple_SetItem(axis, 1, PyFloat_FromDouble(info.m_jointAxis[1]));
PyTuple_SetItem(axis, 2, PyFloat_FromDouble(info.m_jointAxis[2]));
PyTuple_SetItem(pyListJointInfo, 13, axis);
}
{
PyObject* pos = PyTuple_New(3);
PyTuple_SetItem(pos, 0, PyFloat_FromDouble(info.m_parentFrame[0]));
PyTuple_SetItem(pos, 1, PyFloat_FromDouble(info.m_parentFrame[1]));
PyTuple_SetItem(pos, 2, PyFloat_FromDouble(info.m_parentFrame[2]));
PyTuple_SetItem(pyListJointInfo, 14, pos);
}
{
PyObject* orn = PyTuple_New(4);
PyTuple_SetItem(orn, 0, PyFloat_FromDouble(info.m_parentFrame[3]));
PyTuple_SetItem(orn, 1, PyFloat_FromDouble(info.m_parentFrame[4]));
PyTuple_SetItem(orn, 2, PyFloat_FromDouble(info.m_parentFrame[5]));
PyTuple_SetItem(orn, 3, PyFloat_FromDouble(info.m_parentFrame[6]));
PyTuple_SetItem(pyListJointInfo, 15, orn);
}
PyTuple_SetItem(pyListJointInfo, 16, PyInt_FromLong(info.m_parentIndex));
return pyListJointInfo;
}
@@ -4773,6 +4808,107 @@ static PyObject* pybullet_setDebugObjectColor(PyObject* self, PyObject* args, Py
return Py_None;
}
static PyObject* pybullet_getCollisionShapeData(PyObject* self, PyObject* args, PyObject* keywds)
{
int objectUniqueId = -1;
b3SharedMemoryCommandHandle commandHandle;
b3SharedMemoryStatusHandle statusHandle;
struct b3CollisionShapeInformation collisionShapeInfo;
int statusType;
int i;
int linkIndex;
PyObject* pyResultList = 0;
int physicsClientId = 0;
b3PhysicsClientHandle sm = 0;
static char* kwlist[] = { "objectUniqueId", "linkIndex", "physicsClientId", NULL };
if (!PyArg_ParseTupleAndKeywords(args, keywds, "ii|i", kwlist, &objectUniqueId, &linkIndex, &physicsClientId))
{
return NULL;
}
sm = getPhysicsClient(physicsClientId);
if (sm == 0)
{
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
{
commandHandle = b3InitRequestCollisionShapeInformation(sm, objectUniqueId, linkIndex);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, commandHandle);
statusType = b3GetStatusType(statusHandle);
if (statusType == CMD_COLLISION_SHAPE_INFO_COMPLETED)
{
b3GetCollisionShapeInformation(sm, &collisionShapeInfo);
pyResultList = PyTuple_New(collisionShapeInfo.m_numCollisionShapes);
for (i = 0; i < collisionShapeInfo.m_numCollisionShapes; i++)
{
PyObject* collisionShapeObList = PyTuple_New(7);
PyObject* item;
item = PyInt_FromLong(collisionShapeInfo.m_collisionShapeData[i].m_objectUniqueId);
PyTuple_SetItem(collisionShapeObList, 0, item);
item = PyInt_FromLong(collisionShapeInfo.m_collisionShapeData[i].m_linkIndex);
PyTuple_SetItem(collisionShapeObList, 1, item);
item = PyInt_FromLong(collisionShapeInfo.m_collisionShapeData[i].m_collisionGeometryType);
PyTuple_SetItem(collisionShapeObList, 2, item);
{
PyObject* vec = PyTuple_New(3);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_dimensions[0]);
PyTuple_SetItem(vec, 0, item);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_dimensions[1]);
PyTuple_SetItem(vec, 1, item);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_dimensions[2]);
PyTuple_SetItem(vec, 2, item);
PyTuple_SetItem(collisionShapeObList, 3, vec);
}
item = PyString_FromString(collisionShapeInfo.m_collisionShapeData[i].m_meshAssetFileName);
PyTuple_SetItem(collisionShapeObList, 4, item);
{
PyObject* vec = PyTuple_New(3);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_localCollisionFrame[0]);
PyTuple_SetItem(vec, 0, item);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_localCollisionFrame[1]);
PyTuple_SetItem(vec, 1, item);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_localCollisionFrame[2]);
PyTuple_SetItem(vec, 2, item);
PyTuple_SetItem(collisionShapeObList, 5, vec);
}
{
PyObject* vec = PyTuple_New(4);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_localCollisionFrame[3]);
PyTuple_SetItem(vec, 0, item);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_localCollisionFrame[4]);
PyTuple_SetItem(vec, 1, item);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_localCollisionFrame[5]);
PyTuple_SetItem(vec, 2, item);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_localCollisionFrame[6]);
PyTuple_SetItem(vec, 3, item);
PyTuple_SetItem(collisionShapeObList, 6, vec);
}
PyTuple_SetItem(pyResultList, i, collisionShapeObList);
}
return pyResultList;
}
else
{
PyErr_SetString(SpamError, "Error receiving collision shape info");
return NULL;
}
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject* pybullet_getVisualShapeData(PyObject* self, PyObject* args, PyObject* keywds)
{
int objectUniqueId = -1;
@@ -8088,6 +8224,9 @@ static PyMethodDef SpamMethods[] = {
{"getVisualShapeData", (PyCFunction)pybullet_getVisualShapeData, METH_VARARGS | METH_KEYWORDS,
"Return the visual shape information for one object."},
{ "getCollisionShapeData", (PyCFunction)pybullet_getCollisionShapeData, METH_VARARGS | METH_KEYWORDS,
"Return the collision shape information for one object." },
{"changeVisualShape", (PyCFunction)pybullet_changeVisualShape, METH_VARARGS | METH_KEYWORDS,
"Change part of the visual shape information for one object."},
@@ -8306,8 +8445,7 @@ initpybullet(void)
PyModule_AddIntConstant(m, "JOINT_POINT2POINT", ePoint2PointType); // user read
PyModule_AddIntConstant(m, "JOINT_GEAR", eGearType); // user read
PyModule_AddIntConstant(m, "DYNAMICS_INFO_REPORT_INERTIA", eDYNAMICS_INFO_REPORT_INERTIA); // report local inertia in 'getDynamicsInfo'
PyModule_AddIntConstant(m, "SENSOR_FORCE_TORQUE", eSensorForceTorqueType); // user read
PyModule_AddIntConstant(m, "TORQUE_CONTROL", CONTROL_MODE_TORQUE);