move some recent MiniCL work to trunk

This commit is contained in:
erwin.coumans
2010-02-08 22:42:58 +00:00
parent 52e60c8246
commit 7d4e2873e2
15 changed files with 1471 additions and 724 deletions

View File

@@ -56,6 +56,7 @@ ADD_LIBRARY(BulletMultiThreaded
btGpuUtilsSharedDefs.h
#MiniCL provides a small subset of OpenCL
MiniCL.cpp
MiniCLTaskScheduler.cpp
MiniCLTaskScheduler.h
MiniCLTask/MiniCLTask.cpp
@@ -63,6 +64,7 @@ ADD_LIBRARY(BulletMultiThreaded
../MiniCL/cl.h
../MiniCL/cl_gl.h
../MiniCL/cl_platform.h
../MiniCL/cl_MiniCL_Defs.h
)
IF (BUILD_SHARED_LIBS)

View File

@@ -0,0 +1,512 @@
/*
Copyright (C) 2010 Sony Computer Entertainment Inc.
All rights reserved.
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "MiniCL/cl.h"
#define __PHYSICS_COMMON_H__ 1
#ifdef _WIN32
#include "BulletMultiThreaded/Win32ThreadSupport.h"
#endif
#include "BulletMultiThreaded/SequentialThreadSupport.h"
#include "MiniCLTaskScheduler.h"
#include "MiniCLTask/MiniCLTask.h"
#include "LinearMath/btMinMax.h"
//#define DEBUG_MINICL_KERNELS 1
CL_API_ENTRY cl_int CL_API_CALL clGetDeviceInfo(
cl_device_id device ,
cl_device_info param_name ,
size_t param_value_size ,
void * param_value ,
size_t * /* param_value_size_ret */) CL_API_SUFFIX__VERSION_1_0
{
switch (param_name)
{
case CL_DEVICE_NAME:
{
char deviceName[] = "CPU";
unsigned int nameLen = strlen(deviceName)+1;
assert(param_value_size>strlen(deviceName));
if (nameLen < param_value_size)
{
sprintf_s((char*)param_value,param_value_size, "CPU");
} else
{
printf("error: param_value_size should be at least %d, but it is %d\n",nameLen,param_value_size);
}
break;
}
case CL_DEVICE_TYPE:
{
if (param_value_size>=sizeof(cl_device_type))
{
cl_device_type* deviceType = (cl_device_type*)param_value;
*deviceType = CL_DEVICE_TYPE_CPU;
} else
{
printf("error: param_value_size should be at least %d\n",sizeof(cl_device_type));
}
break;
}
case CL_DEVICE_MAX_COMPUTE_UNITS:
{
if (param_value_size>=sizeof(cl_uint))
{
cl_uint* numUnits = (cl_uint*)param_value;
*numUnits= 4;
} else
{
printf("error: param_value_size should be at least %d\n",sizeof(cl_uint));
}
break;
}
case CL_DEVICE_MAX_WORK_ITEM_SIZES:
{
size_t workitem_size[3];
if (param_value_size>=sizeof(workitem_size))
{
size_t* workItemSize = (size_t*)param_value;
workItemSize[0] = 64;
workItemSize[1] = 24;
workItemSize[2] = 16;
} else
{
printf("error: param_value_size should be at least %d\n",sizeof(cl_uint));
}
break;
}
case CL_DEVICE_MAX_CLOCK_FREQUENCY:
{
cl_uint* clock_frequency = (cl_uint*)param_value;
*clock_frequency = 3*1024;
break;
}
default:
{
printf("error: unsupported param_name:%d\n",param_name);
}
}
return 0;
}
CL_API_ENTRY cl_int CL_API_CALL clReleaseMemObject(cl_mem /* memobj */) CL_API_SUFFIX__VERSION_1_0
{
return 0;
}
CL_API_ENTRY cl_int CL_API_CALL clReleaseCommandQueue(cl_command_queue /* command_queue */) CL_API_SUFFIX__VERSION_1_0
{
return 0;
}
CL_API_ENTRY cl_int CL_API_CALL clReleaseProgram(cl_program /* program */) CL_API_SUFFIX__VERSION_1_0
{
return 0;
}
CL_API_ENTRY cl_int CL_API_CALL clReleaseKernel(cl_kernel /* kernel */) CL_API_SUFFIX__VERSION_1_0
{
return 0;
}
// Enqueued Commands APIs
CL_API_ENTRY cl_int CL_API_CALL clEnqueueReadBuffer(cl_command_queue command_queue ,
cl_mem buffer ,
cl_bool /* blocking_read */,
size_t offset ,
size_t cb ,
void * ptr ,
cl_uint /* num_events_in_wait_list */,
const cl_event * /* event_wait_list */,
cl_event * /* event */) CL_API_SUFFIX__VERSION_1_0
{
MiniCLTaskScheduler* scheduler = (MiniCLTaskScheduler*) command_queue;
///wait for all work items to be completed
scheduler->flush();
memcpy(ptr,(char*)buffer + offset,cb);
return 0;
}
CL_API_ENTRY cl_int clGetProgramBuildInfo(cl_program /* program */,
cl_device_id /* device */,
cl_program_build_info /* param_name */,
size_t /* param_value_size */,
void * /* param_value */,
size_t * /* param_value_size_ret */) CL_API_SUFFIX__VERSION_1_0
{
return 0;
}
// Program Object APIs
CL_API_ENTRY cl_program
clCreateProgramWithSource(cl_context context ,
cl_uint /* count */,
const char ** /* strings */,
const size_t * /* lengths */,
cl_int * errcode_ret ) CL_API_SUFFIX__VERSION_1_0
{
*errcode_ret = CL_SUCCESS;
return (cl_program)context;
}
CL_API_ENTRY cl_int CL_API_CALL clEnqueueWriteBuffer(cl_command_queue command_queue ,
cl_mem buffer ,
cl_bool /* blocking_read */,
size_t offset,
size_t cb ,
const void * ptr ,
cl_uint /* num_events_in_wait_list */,
const cl_event * /* event_wait_list */,
cl_event * /* event */) CL_API_SUFFIX__VERSION_1_0
{
MiniCLTaskScheduler* scheduler = (MiniCLTaskScheduler*) command_queue;
///wait for all work items to be completed
scheduler->flush();
memcpy((char*)buffer + offset, ptr,cb);
return 0;
}
CL_API_ENTRY cl_int CL_API_CALL clFlush(cl_command_queue command_queue)
{
MiniCLTaskScheduler* scheduler = (MiniCLTaskScheduler*) command_queue;
///wait for all work items to be completed
scheduler->flush();
return 0;
}
CL_API_ENTRY cl_int CL_API_CALL clEnqueueNDRangeKernel(cl_command_queue /* command_queue */,
cl_kernel clKernel ,
cl_uint work_dim ,
const size_t * /* global_work_offset */,
const size_t * global_work_size ,
const size_t * /* local_work_size */,
cl_uint /* num_events_in_wait_list */,
const cl_event * /* event_wait_list */,
cl_event * /* event */) CL_API_SUFFIX__VERSION_1_0
{
MiniCLKernel* kernel = (MiniCLKernel*) clKernel;
for (unsigned int ii=0;ii<work_dim;ii++)
{
int maxTask = kernel->m_scheduler->getMaxNumOutstandingTasks();
int numWorkItems = global_work_size[ii];
//at minimum 64 work items per task
int numWorkItemsPerTask = btMax(64,numWorkItems / maxTask);
for (int t=0;t<numWorkItems;)
{
//Performance Hint: tweak this number during benchmarking
int endIndex = (t+numWorkItemsPerTask) < numWorkItems ? t+numWorkItemsPerTask : numWorkItems;
kernel->m_scheduler->issueTask(t, endIndex, kernel);
t = endIndex;
}
}
/*
void* bla = 0;
scheduler->issueTask(bla,2,3);
scheduler->flush();
*/
return 0;
}
#define LOCAL_BUF_SIZE 32768
static int sLocalMemBuf[LOCAL_BUF_SIZE * 4 + 16];
static int* spLocalBufCurr = NULL;
static int sLocalBufUsed = LOCAL_BUF_SIZE; // so it will be reset at the first call
static void* localBufMalloc(int size)
{
int size16 = (size + 15) >> 4; // in 16-byte units
if((sLocalBufUsed + size16) > LOCAL_BUF_SIZE)
{ // reset
spLocalBufCurr = sLocalMemBuf;
while((int)spLocalBufCurr & 0x0F) spLocalBufCurr++; // align to 16 bytes
sLocalBufUsed = 0;
}
void* ret = spLocalBufCurr;
spLocalBufCurr += size16 * 4;
sLocalBufUsed += size;
return ret;
}
CL_API_ENTRY cl_int CL_API_CALL clSetKernelArg(cl_kernel clKernel ,
cl_uint arg_index ,
size_t arg_size ,
const void * arg_value ) CL_API_SUFFIX__VERSION_1_0
{
MiniCLKernel* kernel = (MiniCLKernel* ) clKernel;
btAssert(arg_size <= MINICL_MAX_ARGLENGTH);
if (arg_index>MINI_CL_MAX_ARG)
{
printf("error: clSetKernelArg arg_index (%d) exceeds %d\n",arg_index,MINI_CL_MAX_ARG);
} else
{
// if (arg_size>=MINICL_MAX_ARGLENGTH)
if (arg_size != MINICL_MAX_ARGLENGTH)
{
printf("error: clSetKernelArg argdata too large: %d (maximum is %d)\n",arg_size,MINICL_MAX_ARGLENGTH);
}
else
{
if(arg_value == NULL)
{ // this is only for __local memory qualifier
void* ptr = localBufMalloc(arg_size);
kernel->m_argData[arg_index] = ptr;
}
else
{
memcpy(&(kernel->m_argData[arg_index]), arg_value, arg_size);
}
kernel->m_argSizes[arg_index] = arg_size;
if(arg_index >= kernel->m_numArgs)
{
kernel->m_numArgs = arg_index + 1;
kernel->updateLauncher();
}
}
}
return 0;
}
// Kernel Object APIs
CL_API_ENTRY cl_kernel CL_API_CALL clCreateKernel(cl_program program ,
const char * kernel_name ,
cl_int * errcode_ret ) CL_API_SUFFIX__VERSION_1_0
{
MiniCLTaskScheduler* scheduler = (MiniCLTaskScheduler*) program;
MiniCLKernel* kernel = new MiniCLKernel();
int nameLen = strlen(kernel_name);
if(nameLen >= MINI_CL_MAX_KERNEL_NAME)
{
*errcode_ret = CL_INVALID_KERNEL_NAME;
return NULL;
}
strcpy_s(kernel->m_name, kernel_name);
kernel->m_numArgs = 0;
//kernel->m_kernelProgramCommandId = scheduler->findProgramCommandIdByName(kernel_name);
//if (kernel->m_kernelProgramCommandId>=0)
//{
// *errcode_ret = CL_SUCCESS;
//} else
//{
// *errcode_ret = CL_INVALID_KERNEL_NAME;
//}
kernel->m_scheduler = scheduler;
if(kernel->registerSelf() == NULL)
{
*errcode_ret = CL_INVALID_KERNEL_NAME;
return NULL;
}
else
{
*errcode_ret = CL_SUCCESS;
}
return (cl_kernel)kernel;
}
CL_API_ENTRY cl_int CL_API_CALL clBuildProgram(cl_program /* program */,
cl_uint /* num_devices */,
const cl_device_id * /* device_list */,
const char * /* options */,
void (*pfn_notify)(cl_program /* program */, void * /* user_data */),
void * /* user_data */) CL_API_SUFFIX__VERSION_1_0
{
return CL_SUCCESS;
}
CL_API_ENTRY cl_program CL_API_CALL clCreateProgramWithBinary(cl_context context ,
cl_uint /* num_devices */,
const cl_device_id * /* device_list */,
const size_t * /* lengths */,
const unsigned char ** /* binaries */,
cl_int * /* binary_status */,
cl_int * /* errcode_ret */) CL_API_SUFFIX__VERSION_1_0
{
return (cl_program)context;
}
// Memory Object APIs
CL_API_ENTRY cl_mem CL_API_CALL clCreateBuffer(cl_context /* context */,
cl_mem_flags flags ,
size_t size,
void * host_ptr ,
cl_int * errcode_ret ) CL_API_SUFFIX__VERSION_1_0
{
cl_mem buf = (cl_mem)malloc(size);
if ((flags&CL_MEM_COPY_HOST_PTR) && host_ptr)
{
memcpy(buf,host_ptr,size);
}
*errcode_ret = 0;
return buf;
}
// Command Queue APIs
CL_API_ENTRY cl_command_queue CL_API_CALL clCreateCommandQueue(cl_context context ,
cl_device_id /* device */,
cl_command_queue_properties /* properties */,
cl_int * errcode_ret ) CL_API_SUFFIX__VERSION_1_0
{
*errcode_ret = 0;
return (cl_command_queue) context;
}
extern CL_API_ENTRY cl_int CL_API_CALL clGetContextInfo(cl_context /* context */,
cl_context_info param_name ,
size_t param_value_size ,
void * param_value,
size_t * param_value_size_ret ) CL_API_SUFFIX__VERSION_1_0
{
switch (param_name)
{
case CL_CONTEXT_DEVICES:
{
if (!param_value_size)
{
*param_value_size_ret = 13;
} else
{
sprintf_s((char*)param_value, param_value_size, "MiniCL_Test.");
}
break;
};
default:
{
printf("unsupported\n");
}
}
return 0;
}
CL_API_ENTRY cl_context CL_API_CALL clCreateContextFromType(cl_context_properties * /* properties */,
cl_device_type /* device_type */,
void (*pfn_notify)(const char *, const void *, size_t, void *) /* pfn_notify */,
void * /* user_data */,
cl_int * errcode_ret ) CL_API_SUFFIX__VERSION_1_0
{
int maxNumOutstandingTasks = 4;
// int maxNumOutstandingTasks = 1;
gMiniCLNumOutstandingTasks = maxNumOutstandingTasks;
const int maxNumOfThreadSupports = 8;
static int sUniqueThreadSupportIndex = 0;
static char* sUniqueThreadSupportName[maxNumOfThreadSupports] =
{
"MiniCL_0", "MiniCL_1", "MiniCL_2", "MiniCL_3", "MiniCL_4", "MiniCL_5", "MiniCL_6", "MiniCL_7"
};
#ifdef DEBUG_MINICL_KERNELS
SequentialThreadSupport::SequentialThreadConstructionInfo stc("MiniCL",processMiniCLTask,createMiniCLLocalStoreMemory);
SequentialThreadSupport* threadSupport = new SequentialThreadSupport(stc);
#else
#if _WIN32
btAssert(sUniqueThreadSupportIndex < maxNumOfThreadSupports);
Win32ThreadSupport* threadSupport = new Win32ThreadSupport(Win32ThreadSupport::Win32ThreadConstructionInfo(
// "MiniCL",
sUniqueThreadSupportName[sUniqueThreadSupportIndex++],
processMiniCLTask, //processCollisionTask,
createMiniCLLocalStoreMemory,//createCollisionLocalStoreMemory,
maxNumOutstandingTasks));
#else
///todo: add posix thread support for other platforms
SequentialThreadSupport::SequentialThreadConstructionInfo stc("MiniCL",processMiniCLTask,createMiniCLLocalStoreMemory);
SequentialThreadSupport* threadSupport = new SequentialThreadSupport(stc);
#endif
#endif //DEBUG_MINICL_KERNELS
MiniCLTaskScheduler* scheduler = new MiniCLTaskScheduler(threadSupport,maxNumOutstandingTasks);
*errcode_ret = 0;
return (cl_context)scheduler;
}
CL_API_ENTRY cl_int CL_API_CALL clReleaseContext(cl_context context ) CL_API_SUFFIX__VERSION_1_0
{
MiniCLTaskScheduler* scheduler = (MiniCLTaskScheduler*) context;
btThreadSupportInterface* threadSupport = scheduler->getThreadSupportInterface();
delete scheduler;
delete threadSupport;
return 0;
}
extern CL_API_ENTRY cl_int CL_API_CALL
clFinish(cl_command_queue /* command_queue */) CL_API_SUFFIX__VERSION_1_0
{
return CL_SUCCESS;
}
extern CL_API_ENTRY cl_int CL_API_CALL
clGetKernelWorkGroupInfo(cl_kernel kernel ,
cl_device_id /* device */,
cl_kernel_work_group_info wgi/* param_name */,
size_t sz /* param_value_size */,
void * ptr /* param_value */,
size_t * /* param_value_size_ret */) CL_API_SUFFIX__VERSION_1_0
{
if((wgi == CL_KERNEL_WORK_GROUP_SIZE)
&&(sz == sizeof(int))
&&(ptr != NULL))
{
MiniCLKernel* miniCLKernel = (MiniCLKernel*)kernel;
MiniCLTaskScheduler* scheduler = miniCLKernel->m_scheduler;
*((int*)ptr) = scheduler->getMaxNumOutstandingTasks();
return CL_SUCCESS;
}
else
{
return CL_INVALID_VALUE;
}
}

View File

@@ -15,10 +15,12 @@ subject to the following restrictions:
#include "MiniCLTask.h"
#include "../PlatformDefinitions.h"
#include "../SpuFakeDma.h"
#include "BulletMultiThreaded/PlatformDefinitions.h"
#include "BulletMultiThreaded/SpuFakeDma.h"
#include "LinearMath/btMinMax.h"
#include "BulletMultiThreaded/MiniCLTask/MiniCLTask.h"
#include "MiniCLTask.h"
#include "BulletMultiThreaded/MiniCLTaskScheduler.h"
#ifdef __SPU__
#include <spu_printf.h>
@@ -27,9 +29,7 @@ subject to the following restrictions:
#define spu_printf printf
#endif
#define __kernel
#define __global
#define get_global_id(a) guid
int gMiniCLNumOutstandingTasks = 0;
struct MiniCLTask_LocalStoreMemory
{
@@ -37,65 +37,23 @@ struct MiniCLTask_LocalStoreMemory
};
///////////////////////////////////////////////////
// OpenCL Kernel Function for element by element vector addition
__kernel void VectorAdd(__global const float8* a, __global const float8* b, __global float8* c, int guid)
{
// get oct-float index into global data array
int iGID = get_global_id(0);
// read inputs into registers
float8 f8InA = a[iGID];
float8 f8InB = b[iGID];
float8 f8Out = (float8)0.0f;
// add the vector elements
f8Out.s0 = f8InA.s0 + f8InB.s0;
f8Out.s1 = f8InA.s1 + f8InB.s1;
f8Out.s2 = f8InA.s2 + f8InB.s2;
f8Out.s3 = f8InA.s3 + f8InB.s3;
f8Out.s4 = f8InA.s4 + f8InB.s4;
f8Out.s5 = f8InA.s5 + f8InB.s5;
f8Out.s6 = f8InA.s6 + f8InB.s6;
f8Out.s7 = f8InA.s7 + f8InB.s7;
// write back out to GMEM
c[get_global_id(0)] = f8Out;
}
///////////////////////////////////////////////////
//-- MAIN METHOD
void processMiniCLTask(void* userPtr, void* lsMemory)
{
// BT_PROFILE("processSampleTask");
//MiniCLTask_LocalStoreMemory* localMemory = (MiniCLTask_LocalStoreMemory*)lsMemory;
MiniCLTask_LocalStoreMemory* localMemory = (MiniCLTask_LocalStoreMemory*)lsMemory;
MiniCLTaskDesc* taskDescPtr = (MiniCLTaskDesc*)userPtr;
MiniCLTaskDesc& taskDesc = *taskDescPtr;
printf("Compute Unit[%d] executed kernel %d work items [%d..%d)\n",taskDesc.m_taskId,taskDesc.m_kernelProgramId,taskDesc.m_firstWorkUnit,taskDesc.m_lastWorkUnit);
switch (taskDesc.m_kernelProgramId)
for (unsigned int i=taskDesc.m_firstWorkUnit;i<taskDesc.m_lastWorkUnit;i++)
{
case CMD_MINICL_ADDVECTOR:
{
for (unsigned int i=taskDesc.m_firstWorkUnit;i<taskDesc.m_lastWorkUnit;i++)
{
VectorAdd(*(const float8**)&taskDesc.m_argData[0][0],*(const float8**)&taskDesc.m_argData[1][0],*(float8**)&taskDesc.m_argData[2][0],i);
}
break;
}
default:
{
printf("error in processMiniCLTask: unknown command id: %d\n",taskDesc.m_kernelProgramId);
}
};
taskDesc.m_kernel->m_launcher(&taskDesc, i);
}
// printf("Compute Unit[%d] executed kernel %d work items [%d..%d)\n",taskDesc.m_taskId,taskDesc.m_kernelProgramId,taskDesc.m_firstWorkUnit,taskDesc.m_lastWorkUnit);
}

View File

@@ -16,39 +16,17 @@ subject to the following restrictions:
#ifndef MINICL__TASK_H
#define MINICL__TASK_H
#include "../PlatformDefinitions.h"
#include "BulletMultiThreaded/PlatformDefinitions.h"
#include "LinearMath/btScalar.h"
#include "LinearMath/btAlignedAllocator.h"
enum
{
CMD_MINICL_1= 1,
CMD_MINICL_ADDVECTOR
};
#define MINICL_MAX_ARGLENGTH (sizeof(void*))
#define MINI_CL_MAX_ARG 16
#define MINI_CL_MAX_KERNEL_NAME 256
struct float8
{
float s0;
float s1;
float s2;
float s3;
float s4;
float s5;
float s6;
float s7;
float8(float scalar)
{
s0=s1=s2=s3=s4=s5=s6=s7=scalar;
}
};
#define MINICL_MAX_ARGLENGTH 128
#define MINI_CL_MAX_ARG 8
struct MiniCLKernel;
ATTRIBUTE_ALIGNED16(struct) MiniCLTaskDesc
{
@@ -62,16 +40,19 @@ ATTRIBUTE_ALIGNED16(struct) MiniCLTaskDesc
}
}
uint32_t m_taskId;
uint32_t m_taskId;
uint32_t m_kernelProgramId;
uint32_t m_firstWorkUnit;
uint32_t m_lastWorkUnit;
uint32_t m_firstWorkUnit;
uint32_t m_lastWorkUnit;
char m_argData[MINI_CL_MAX_ARG][MINICL_MAX_ARGLENGTH];
int m_argSizes[MINI_CL_MAX_ARG];
MiniCLKernel* m_kernel;
void* m_argData[MINI_CL_MAX_ARG];
int m_argSizes[MINI_CL_MAX_ARG];
};
extern "C" int gMiniCLNumOutstandingTasks;
void processMiniCLTask(void* userPtr, void* lsMemory);
void* createMiniCLLocalStoreMemory();

View File

@@ -14,6 +14,7 @@ subject to the following restrictions:
*/
//#define __CELLOS_LV2__ 1
#define __BT_SKIP_UINT64_H 1
#define USE_SAMPLE_PROCESS 1
#ifdef USE_SAMPLE_PROCESS
@@ -43,21 +44,18 @@ void* SamplelsMemoryFunc()
#else
#include "btThreadSupportInterface.h"
#include "BulletMultiThreaded/btThreadSupportInterface.h"
//# include "SPUAssert.h"
#include <string.h>
#include "MiniCL/cl_platform.h"
extern "C" {
extern char SPU_SAMPLE_ELF_SYMBOL[];
}
MiniCLTaskScheduler::MiniCLTaskScheduler(btThreadSupportInterface* threadInterface, int maxNumOutstandingTasks)
:m_threadInterface(threadInterface),
m_maxNumOutstandingTasks(maxNumOutstandingTasks)
@@ -66,6 +64,8 @@ m_maxNumOutstandingTasks(maxNumOutstandingTasks)
m_taskBusy.resize(m_maxNumOutstandingTasks);
m_spuSampleTaskDesc.resize(m_maxNumOutstandingTasks);
m_kernels.resize(0);
for (int i = 0; i < m_maxNumOutstandingTasks; i++)
{
m_taskBusy[i] = false;
@@ -105,7 +105,7 @@ void MiniCLTaskScheduler::initialize()
}
void MiniCLTaskScheduler::issueTask(int firstWorkUnit, int lastWorkUnit,int kernelProgramId,char* argData,int* argSizes)
void MiniCLTaskScheduler::issueTask(int firstWorkUnit, int lastWorkUnit, MiniCLKernel* kernel)
{
#ifdef DEBUG_SPU_TASK_SCHEDULING
@@ -120,16 +120,18 @@ void MiniCLTaskScheduler::issueTask(int firstWorkUnit, int lastWorkUnit,int kern
// send task description in event message
taskDesc.m_firstWorkUnit = firstWorkUnit;
taskDesc.m_lastWorkUnit = lastWorkUnit;
taskDesc.m_kernelProgramId = kernelProgramId;
taskDesc.m_kernel = kernel;
//some bookkeeping to recognize finished tasks
taskDesc.m_taskId = m_currentTask;
for (int i=0;i<MINI_CL_MAX_ARG;i++)
// for (int i=0;i<MINI_CL_MAX_ARG;i++)
for (unsigned int i=0; i < kernel->m_numArgs; i++)
{
taskDesc.m_argSizes[i] = argSizes[i];
taskDesc.m_argSizes[i] = kernel->m_argSizes[i];
if (taskDesc.m_argSizes[i])
{
memcpy(&taskDesc.m_argData[i],&argData[MINICL_MAX_ARGLENGTH*i],taskDesc.m_argSizes[i]);
taskDesc.m_argData[i] = kernel->m_argData[i];
// memcpy(&taskDesc.m_argData[i],&argData[MINICL_MAX_ARGLENGTH*i],taskDesc.m_argSizes[i]);
}
}
}
@@ -221,6 +223,296 @@ void MiniCLTaskScheduler::flush()
}
typedef void (*MiniCLKernelLauncher0)(int);
typedef void (*MiniCLKernelLauncher1)(void*, int);
typedef void (*MiniCLKernelLauncher2)(void*, void*, int);
typedef void (*MiniCLKernelLauncher3)(void*, void*, void*, int);
typedef void (*MiniCLKernelLauncher4)(void*, void*, void*, void*, int);
typedef void (*MiniCLKernelLauncher5)(void*, void*, void*, void*, void*, int);
typedef void (*MiniCLKernelLauncher6)(void*, void*, void*, void*, void*, void*, int);
typedef void (*MiniCLKernelLauncher7)(void*, void*, void*, void*, void*, void*, void*, int);
typedef void (*MiniCLKernelLauncher8)(void*, void*, void*, void*, void*, void*, void*, void*, int);
typedef void (*MiniCLKernelLauncher9)(void*, void*, void*, void*, void*, void*, void*, void*, void*, int);
typedef void (*MiniCLKernelLauncher10)(void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, int);
typedef void (*MiniCLKernelLauncher11)(void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, int);
typedef void (*MiniCLKernelLauncher12)(void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, int);
typedef void (*MiniCLKernelLauncher13)(void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, int);
typedef void (*MiniCLKernelLauncher14)(void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, int);
typedef void (*MiniCLKernelLauncher15)(void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, int);
typedef void (*MiniCLKernelLauncher16)(void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, void*, int);
static void kernelLauncher0(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher0)(taskDesc->m_kernel->m_launcher))(guid);
}
static void kernelLauncher1(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher1)(taskDesc->m_kernel->m_pCode))( taskDesc->m_argData[0],
guid);
}
static void kernelLauncher2(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher2)(taskDesc->m_kernel->m_pCode))( taskDesc->m_argData[0],
taskDesc->m_argData[1],
guid);
}
static void kernelLauncher3(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher3)(taskDesc->m_kernel->m_pCode))( taskDesc->m_argData[0],
taskDesc->m_argData[1],
taskDesc->m_argData[2],
guid);
}
static void kernelLauncher4(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher4)(taskDesc->m_kernel->m_pCode))( taskDesc->m_argData[0],
taskDesc->m_argData[1],
taskDesc->m_argData[2],
taskDesc->m_argData[3],
guid);
}
static void kernelLauncher5(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher5)(taskDesc->m_kernel->m_pCode))( taskDesc->m_argData[0],
taskDesc->m_argData[1],
taskDesc->m_argData[2],
taskDesc->m_argData[3],
taskDesc->m_argData[4],
guid);
}
static void kernelLauncher6(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher6)(taskDesc->m_kernel->m_pCode))( taskDesc->m_argData[0],
taskDesc->m_argData[1],
taskDesc->m_argData[2],
taskDesc->m_argData[3],
taskDesc->m_argData[4],
taskDesc->m_argData[5],
guid);
}
static void kernelLauncher7(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher7)(taskDesc->m_kernel->m_pCode))( taskDesc->m_argData[0],
taskDesc->m_argData[1],
taskDesc->m_argData[2],
taskDesc->m_argData[3],
taskDesc->m_argData[4],
taskDesc->m_argData[5],
taskDesc->m_argData[6],
guid);
}
static void kernelLauncher8(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher8)(taskDesc->m_kernel->m_pCode))( taskDesc->m_argData[0],
taskDesc->m_argData[1],
taskDesc->m_argData[2],
taskDesc->m_argData[3],
taskDesc->m_argData[4],
taskDesc->m_argData[5],
taskDesc->m_argData[6],
taskDesc->m_argData[7],
guid);
}
static void kernelLauncher9(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher9)(taskDesc->m_kernel->m_pCode))( taskDesc->m_argData[0],
taskDesc->m_argData[1],
taskDesc->m_argData[2],
taskDesc->m_argData[3],
taskDesc->m_argData[4],
taskDesc->m_argData[5],
taskDesc->m_argData[6],
taskDesc->m_argData[7],
taskDesc->m_argData[8],
guid);
}
static void kernelLauncher10(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher10)(taskDesc->m_kernel->m_pCode))(taskDesc->m_argData[0],
taskDesc->m_argData[1],
taskDesc->m_argData[2],
taskDesc->m_argData[3],
taskDesc->m_argData[4],
taskDesc->m_argData[5],
taskDesc->m_argData[6],
taskDesc->m_argData[7],
taskDesc->m_argData[8],
taskDesc->m_argData[9],
guid);
}
static void kernelLauncher11(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher11)(taskDesc->m_kernel->m_pCode))(taskDesc->m_argData[0],
taskDesc->m_argData[1],
taskDesc->m_argData[2],
taskDesc->m_argData[3],
taskDesc->m_argData[4],
taskDesc->m_argData[5],
taskDesc->m_argData[6],
taskDesc->m_argData[7],
taskDesc->m_argData[8],
taskDesc->m_argData[9],
taskDesc->m_argData[10],
guid);
}
static void kernelLauncher12(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher12)(taskDesc->m_kernel->m_pCode))(taskDesc->m_argData[0],
taskDesc->m_argData[1],
taskDesc->m_argData[2],
taskDesc->m_argData[3],
taskDesc->m_argData[4],
taskDesc->m_argData[5],
taskDesc->m_argData[6],
taskDesc->m_argData[7],
taskDesc->m_argData[8],
taskDesc->m_argData[9],
taskDesc->m_argData[10],
taskDesc->m_argData[11],
guid);
}
static void kernelLauncher13(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher13)(taskDesc->m_kernel->m_pCode))(taskDesc->m_argData[0],
taskDesc->m_argData[1],
taskDesc->m_argData[2],
taskDesc->m_argData[3],
taskDesc->m_argData[4],
taskDesc->m_argData[5],
taskDesc->m_argData[6],
taskDesc->m_argData[7],
taskDesc->m_argData[8],
taskDesc->m_argData[9],
taskDesc->m_argData[10],
taskDesc->m_argData[11],
taskDesc->m_argData[12],
guid);
}
static void kernelLauncher14(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher14)(taskDesc->m_kernel->m_pCode))(taskDesc->m_argData[0],
taskDesc->m_argData[1],
taskDesc->m_argData[2],
taskDesc->m_argData[3],
taskDesc->m_argData[4],
taskDesc->m_argData[5],
taskDesc->m_argData[6],
taskDesc->m_argData[7],
taskDesc->m_argData[8],
taskDesc->m_argData[9],
taskDesc->m_argData[10],
taskDesc->m_argData[11],
taskDesc->m_argData[12],
taskDesc->m_argData[13],
guid);
}
static void kernelLauncher15(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher15)(taskDesc->m_kernel->m_pCode))(taskDesc->m_argData[0],
taskDesc->m_argData[1],
taskDesc->m_argData[2],
taskDesc->m_argData[3],
taskDesc->m_argData[4],
taskDesc->m_argData[5],
taskDesc->m_argData[6],
taskDesc->m_argData[7],
taskDesc->m_argData[8],
taskDesc->m_argData[9],
taskDesc->m_argData[10],
taskDesc->m_argData[11],
taskDesc->m_argData[12],
taskDesc->m_argData[13],
taskDesc->m_argData[14],
guid);
}
static void kernelLauncher16(MiniCLTaskDesc* taskDesc, int guid)
{
((MiniCLKernelLauncher16)(taskDesc->m_kernel->m_pCode))(taskDesc->m_argData[0],
taskDesc->m_argData[1],
taskDesc->m_argData[2],
taskDesc->m_argData[3],
taskDesc->m_argData[4],
taskDesc->m_argData[5],
taskDesc->m_argData[6],
taskDesc->m_argData[7],
taskDesc->m_argData[8],
taskDesc->m_argData[9],
taskDesc->m_argData[10],
taskDesc->m_argData[11],
taskDesc->m_argData[12],
taskDesc->m_argData[13],
taskDesc->m_argData[14],
taskDesc->m_argData[15],
guid);
}
static kernelLauncherCB spLauncherList[MINI_CL_MAX_ARG+1] =
{
kernelLauncher0,
kernelLauncher1,
kernelLauncher2,
kernelLauncher3,
kernelLauncher4,
kernelLauncher5,
kernelLauncher6,
kernelLauncher7,
kernelLauncher8,
kernelLauncher9,
kernelLauncher10,
kernelLauncher11,
kernelLauncher12,
kernelLauncher13,
kernelLauncher14,
kernelLauncher15,
kernelLauncher16
};
void MiniCLKernel::updateLauncher()
{
m_launcher = spLauncherList[m_numArgs];
}
struct MiniCLKernelDescEntry
{
void* pCode;
char* pName;
};
static MiniCLKernelDescEntry spKernelDesc[256];
static int sNumKernelDesc = 0;
MiniCLKernelDesc::MiniCLKernelDesc(void* pCode, char* pName)
{
for(int i = 0; i < sNumKernelDesc; i++)
{
if(!strcmp(pName, spKernelDesc[i].pName))
{ // already registered
btAssert(spKernelDesc[i].pCode == pCode);
return;
}
}
spKernelDesc[sNumKernelDesc].pCode = pCode;
spKernelDesc[sNumKernelDesc].pName = pName;
sNumKernelDesc++;
}
MiniCLKernel* MiniCLKernel::registerSelf()
{
m_scheduler->registerKernel(this);
for(int i = 0; i < sNumKernelDesc; i++)
{
if(!strcmp(m_name, spKernelDesc[i].pName))
{
m_pCode = spKernelDesc[i].pCode;
return this;
}
}
return NULL;
}
#endif

View File

@@ -21,7 +21,7 @@ subject to the following restrictions:
#include <assert.h>
#include "PlatformDefinitions.h"
#include "BulletMultiThreaded/PlatformDefinitions.h"
#include <stdlib.h>
@@ -30,11 +30,10 @@ subject to the following restrictions:
#include "MiniCLTask/MiniCLTask.h"
//just add your commands here, try to keep them globally unique for debugging purposes
#define CMD_SAMPLE_TASK_COMMAND 10
struct MiniCLKernel;
/// MiniCLTaskScheduler handles SPU processing of collision pairs.
/// When PPU issues a task, it will look for completed task buffers
@@ -44,7 +43,11 @@ class MiniCLTaskScheduler
// track task buffers that are being used, and total busy tasks
btAlignedObjectArray<bool> m_taskBusy;
btAlignedObjectArray<MiniCLTaskDesc> m_spuSampleTaskDesc;
btAlignedObjectArray<const MiniCLKernel*> m_kernels;
int m_numBusyTasks;
// the current task and the current entry to insert a new work unit
@@ -68,7 +71,7 @@ public:
///call initialize in the beginning of the frame, before addCollisionPairToTask
void initialize();
void issueTask(int firstWorkUnit, int lastWorkUnit,int kernelProgramId,char* argData,int* argSizes);
void issueTask(int firstWorkUnit, int lastWorkUnit, MiniCLKernel* kernel);
///call flush to submit potential outstanding work to SPUs and wait for all involved SPUs to be finished
void flush();
@@ -78,25 +81,35 @@ public:
return m_threadInterface;
}
int findProgramCommandIdByName(const char* programName) const
{
return CMD_MINICL_ADDVECTOR;//hardcoded temp value, todo: implement multi-program support
}
int findProgramCommandIdByName(const char* programName) const;
int getMaxNumOutstandingTasks() const
{
return m_maxNumOutstandingTasks;
}
void registerKernel(MiniCLKernel* kernel)
{
m_kernels.push_back(kernel);
}
};
typedef void (*kernelLauncherCB)(MiniCLTaskDesc* taskDesc, int guid);
struct MiniCLKernel
{
MiniCLTaskScheduler* m_scheduler;
int m_kernelProgramCommandId;
// int m_kernelProgramCommandId;
char m_argData[MINI_CL_MAX_ARG][MINICL_MAX_ARGLENGTH];
char m_name[MINI_CL_MAX_KERNEL_NAME];
unsigned int m_numArgs;
kernelLauncherCB m_launcher;
void* m_pCode;
void updateLauncher();
MiniCLKernel* registerSelf();
void* m_argData[MINI_CL_MAX_ARG];
int m_argSizes[MINI_CL_MAX_ARG];
};

View File

@@ -19,7 +19,9 @@ typedef union
typedef unsigned char uint8_t;
#ifndef __PHYSICS_COMMON_H__
#ifndef __BT_SKIP_UINT64_H
typedef unsigned long int uint64_t;
#endif //__BT_SKIP_UINT64_H
typedef unsigned int uint32_t;
#endif //__PHYSICS_COMMON_H__
typedef unsigned short uint16_t;

View File

@@ -2,11 +2,11 @@
#define __PPU_ADDRESS_SPACE_H
#ifdef WIN32
#ifdef _WIN32
//stop those casting warnings until we have a better solution for ppu_address_t / void* / uint64 conversions
#pragma warning (disable: 4311)
#pragma warning (disable: 4312)
#endif //WIN32
#endif //_WIN32
#if defined(_WIN64) || defined(__LP64__) || defined(__x86_64__) || defined(USE_ADDR64)
typedef uint64_t ppu_address_t;